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Abstract: A precise determination of the mass diffusion coefficient and the mass Biot number
is indispensable for deeper mass transfer analysis that can enable finding optimum conditions
for conducting a considered process. The aim of the article is to estimate the mass diffusion
coefficient and the mass Biot number by applying nondominated sorting genetic algorithm (NSGA) II
genetic algorithms. The method is used in drying. The maximization of coefficient of correlation
(R) and simultaneous minimization of mean absolute error (MAE) and root mean square error
(RMSE) between the model and experimental data were taken into account. The Biot number and
moisture diffusion coefficient can be determined using the following equations: Bi = 0.7647141 +

10.1689977s − 0.003400086T + 948.715758s2 + 0.000024316T2
− 0.12478256sT, D = 1.27547936·10−7

−

2.3808·10−5s− 5.08365633·10−9T + 0.0030005179s2 + 4.266495·10−11T2 + 8.33633·10−7sT or Bi = 0.764714
+ 10.1689091s − 0.003400089T + 948.715738s2 + 0.000024316T2

− 0.12478252sT, D = 1.27547948·10−7
−

2.3806·10−5s − 5.08365753·10−9T + 0.0030005175s2 + 4.266493·10−11T2 + 8.336334·10−7sT. The results
of statistical analysis for the Biot number and moisture diffusion coefficient equations were as follows:
R = 0.9905672, MAE = 0.0406375, RMSE = 0.050252 and R = 0.9905611, MAE = 0.0406403 and
RMSE = 0.050273, respectively.

Keywords: mass Biot number; diffusion coefficient; multi-objective genetic algorithm

1. Introduction

The diffusion coefficient (D) is an important mass exchange parameter. The values of this property
are needed in the mathematical description of various processes. The discussed coefficient is affected
by intermolecular interaction and depends on solution concentration and kind of substances [1]. The
diffusivity of such substances in food as water, salt, small organic acids or aromas is determined in the
literature [2]. Gross and Ruegg [3] measured the diffusion coefficient of salt and aroma in gels and salt
in cheese. Whereas Warin et al. [4] determined the diffusivity of disaccharides in a two-phase medium
composed of a milk product with a fruit layer in its bottom. Rattanakijsuntorn et al. [5] developed the
technique of measurement of the drugs diffusion coefficient in the vitreous humor using Finite Element
Method (FEM) and Magnetic Resonance Imaging (MRI). The method can be applied to different types
of bioporous media.

The diffusion of liquid, gases and vapors in heterogeneous and non-isotropic media depends
very often on the direction of mass transfer and; therefore, the diffusivity value varies along the
diffusion path [6]. In some cases, the solid can be deformed by the influence of concentration
gradients. Moreover, the interaction between solid and diffusing substances can occur. Mentioned
processes influence diffusion and; therefore, the diffusion in solid materials is described using an
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effective diffusion coefficient [1]. Zamel et al. [7] determined such a coefficient in the carbon paper
gas-diffusion layer (GDL) used in polymer electrolyte membrane (PEM) fuel cells, whereas Chan
et al. [8] measured the discussed coefficient through PEM fuel call GDLs with and without the
microporous layer. Garcia-Salaberri et al. [9] determined the effective gas-diffusion coefficient for dry
and partially-saturated carbon paper gas-diffusion layers. Wang et al. [10] studied the impact of humic
acid on fouling problems in the application of membrane technology for drinking water treatments and
examined the effects of calcium and pH on the effective diffusion coefficient of humic acid. Stewart [11]
reviewed the discussed diffusion property in biofilms.

Data concerning diffusion properties of solids with respect to moisture are important, among
others, in such fields of application as building materials, drying and rehydration.

Global warming causes a growing interest not only in renewable materials but in energy savings in
building construction as well [12]. Therefore the study of mass and heat exchange in building materials
is needed [13]. The value of the moisture diffusion coefficient is necessary to solve the mass transfer
equation. The discussed coefficient was determined, among others, for low- and medium-density
fiberboard, spruce wood oriented in tangential and radial directions [12] and northern red oak (Quercus
rubra) [14].

Fick’s second law of diffusion can be applied for explaining and/or modelling the moisture
movement during solid body drying. Knowledge of the values of the moisture diffusion coefficient is
necessary for solving the Fickian equation. The mechanism of drying of hygroscopic-porous products
is very complicated. It can be accepted that moisture is transported by water, vapor and Knudsen
diffusion, by hydrodynamic and capillary flow, and also by condensation effects. There is a mixture of
above mentioned types of moisture movement very often, and their contributions to the total moisture
transport depend on the place in the dried solid and time of drying. For this reason, the moisture
diffusion coefficient in the Fickian equation is called the effective coefficient because it takes into
account the total moisture transport [15,16]. The discussed coefficient depends on temperature [17,18],
on the moisture content [19–21] and the material structure [2]. Effective diffusivity of moisture was
determined, among others, for: Willow (Salix viminalis) stems dried by natural wind [22], pumpkin
(Cucurbita maxima) dried in vacuum dryer [23], air-dried date palm (Phoenix dactylifera L.) fruits [24],
mushrooms dried in a hybrid-solar dryer [25], and apples (var. Ligol) dried in a fluidized dryer [26].

Rehydration is a complicated mass transport process. Liquid imbibition in the porous body,
such as dried products, is governed by complex phenomena including hydraulic and capillary flow,
convection and molecular diffusion. To predict liquid absorption during rehydration, Fick’s second
law of diffusion is often applied. Fickian equation for rehydration contains the effective diffusion
coefficient, an apparent property that takes into account all the factors involved in the process [27]. The
effective diffusivity depends on temperature, moisture content and material structure [24,28–30]. The
discussed property was determined, among others, for the process of water absorption by amaranth
grain in the process of soaking [31]. Cunningham et al. [32] investigated the influence of drying method,
temperature and pre-drying treatments on the moisture diffusion coefficient during rehydration of
dried potatoes. Whereas Maldonado et al. [33] determined the effect of processing conditions on water
diffusion in dried mangoes during rehydration. Ramallo and Albani [34] determined the effective
water diffusion coefficient in a packaged yerba mate.

To solve the Fickian equation, appropriate initial and boundary conditions have to be adopted.
Mass transport at the surface of the porous body can be described using boundary condition of the
first kind or the third kind [35]. Condition of the first kind informs that the external resistance to mass
movement can be treated as negligible, whereas the discussed condition of the third kind indicates
that the mass flux from the porous object surface is represented in the form of diffusing component
concentration difference between the surface and the equilibrium concentration.

In the case when the third kind condition is expressed in the dimensionless form, the dimensionless
Biot number (Bi) appeared in a partial differential equation. Bi (Bi = kL/D) represents the interdependence
between internal and external mass fluxes and; therefore, informs about the controlling mechanism of
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mass exchange in the process [17,20,36]. For Bi < 0.1 the surface mass resistance in the boundary layer
of external fluid is bigger than the internal resistance of the mass diffusion in porous material [36].
Bi > 100 [36] or even Bi > 40 [21] informs that the internal resistance of mass diffusion controls mass
exchange. The third kind of boundary condition for moisture transport during drying was applied,
among others, by Miketinac et al. [37] for grain, Wang and Brennan [38] for potato, Białobrzewski [39]
for celery root and Górnicki and Kaleta [40] for blanched carrot cubes. Mass Biot number was
determined in several publications to achieve a deeper insight into such investigated processes as
drying of shrinking potato slabs [17], heat and mass transport during porous object drying [41], air
drying of small wet porous materials [42] or apple-leather and wheat drying [20]. Zielińska and
Markowski [19] analyzed the changes in Bi vs. time and temperature during drying of carrot cubes in
a spout-fluidized bed dryer.

Many works have been dedicated to data modelling by an artificial neural network. Artificial neural
networks (ANNs) are comprised of neurons with associated weights and activation functions. These
neurons are simplified computational models based on our understanding of biological neurons. The
weights represent the relationship between the neurons. Various architectures, including feed-forward
neural networks, with associated learning schemes, such as back-propagation, have been proposed
using networks of these neurons. The combination of feed-forward networks and fuzzy decision rules
allowed for the creation of the adaptive neuro-fuzzy inference system (ANFIS). The ANFIS is a method
used for finding nonlinear function. The data are used to train by gradient descent and least-squares
methods. More details of this combination of systems can be found in [43].

Recently, many research and technical papers have been dealing with optimization issues. It can
be seen that soft computing is realized through techniques such as response surface methodology
and genetic algorithms. Response surface methodology (RSM) is a statistical method often used for
planning experiments, modelling and optimization. This method allows one to efficiently find the
relationship between inputs and outputs parameters. The relationships between them are described by
quadratic functions that are then optimized. In this way, it reduces the time and costs of the experiment.
Examples of optimization tasks using RSM can be found in [44,45].

Genetic algorithms (GAs) are an efficient optimization technique. This method is often used for
global optimization. GAs in comparison with the RSM method can be an efficient tool for solving
tasks which do not need to be differentiable. Moreover, GAs are often used to find the optimum for
discontinuous or multimodal functions [46]. The authors chose GA because performs better than RSM
when a large number of experiments are affordable. Response surface methods are used in small
spaces to search within established boundaries.

Recently, various papers related to multi-objective optimization (MOO) have been published. MOO
has been also realized in the food industry. Kopsidas [47] proposed a multi-objective optimization
for the process design of a table olive preparation system. Kiranoudis and Markatos [48] used
non-preference multi-criteria optimization methods to drying of sliced potato. Therdthai et al. [49]
developed the mathematical models to describe the effect of the baking temperature profile and baking
time on the weight loss, crust colour and internal temperature for white sandwich bread. Erdogdu and
Balaban [50] applied a nonlinearly constrained optimization method to two different shapes, subjected
to the same thermal processing boundary conditions, to find a variable process temperature profile to
maximize the average retention volume of thiamine. MOO has been realized in wine filtration [51].
Hadiyanto et al. [52] sequentially applied a multi-objective optimization to improve the product
range of baking systems. Further applications of MOO to simulated moving beds in food processing
are shown in [53–55]. Abakarov et al. [56] have used a multi-objective optimization technique for
the thermal sterilization of packaged foods. The quality indicators of apple issues for drying and
rehydrated processes using a non-sorting genetic algorithm (NSGA) were described in [57,58].

MOO applications in the food industry concentrate on finding Pareto optimal solutions for product
quality and cost objectives, with many of them using MOO methods which generate multiple solutions.
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Such methods are readily available and effective at generating Pareto optimal solutions, as reported
Seng and Rangaiah [59].

A precise evaluation of the mass diffusion coefficient and the mass Biot number is indispensable
for deeper mass transfer analysis that can enable to find optimum conditions for conducting a
considered process.

As mentioned, some authors have described the mass diffusion coefficient and the mass Biot
number. Górnicki et al. [60] estimated the mass Biot number using GA. Authors presented the method
of Biot number estimation in the drying process and proposed equations for determination of Bi. The
mass Biot number depended on the drying temperature in the proposed equations. Therefore in the
current paper, the authors decided to estimate, additionally, the mass diffusion coefficient using NSGA
II. The method is used in the drying process. The equations for the mass diffusion coefficient and the
mass Biot number determination will be proposed. The purpose of the work is also to make D and Bi
dependent not only on the drying temperature but also on the characteristic dimension of the dried
sample as a novelty. These equations will be more widely used in the application.

2. Materials and Methods

2.1. Material

The parsley roots of Berlińska variety were cut into 3, 6 and 9 mm thick slices. The research
material was dried in natural convection conditions. The drying air temperatures were the following:
40, 50, 60 and 70 ◦C.

The detail about the equipment, measurements and their accuracy have been described in [61].

2.2. Moisture Transfer Analysis

It is assumed very often that the water transfer inside the dried solid is only a diffusion movement
in the convection drying of materials with high initial moisture content. Therefore the equation used
for the description of the drying process (for an infinite plane (slices)) takes the following form [62–64]:

∂M
∂t

= D
∂2M
∂x2

(t > 0; −s < x < s) (1)

The following simplifications were used in this equation: The volume and shape of the drying
sample do not change during drying, D is constant.

Initial and boundary conditions are taken for solving Equation (1) were as follows [62,64]:

• Initial condition: M at any point of the sample is the same at the beginning of drying:

M(x, 0) = M0 = const, (2)

• Boundary conditions of the third kind: The moisture flux from the surface of the sample is
described in terms of moisture content difference between the surface and the equilibrium
moisture content:

±D
∂M(±s, t)

∂x
= k[M(±s, t) −Me], (3)

An analytical solution of Equation (1) with the initial condition (Equation (2)) and boundary
conditions (Equation (3)) in the form of mean moisture content being a function of time can be expressed
as [62,64]:

MR =
M−Me

M0 −Me
=

∞∑
i = 1

Bi exp
[
−µ2

i
D
s2 t

]
, (4)

where:

Bi =
2Bi2

µ2
i

(
Bi2 + Bi + µ2

i

) , ctgµi =
1
Bi
µi (5)
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A method of solving the diffusion equation for different geometries can be found in the
literature [62,64].

The Biot number in Equation (5) and D in Equation (4) were assumed dependent on temperature
and characteristic dimension using the formulas:

Bi = aBi + bBis + cBiT + dBis2 + eBiT2 + fBisT, (6)

D = aD + bDs + cDT + dDs2 + eDT2 + fDsT, (7)

A similar type of dependents (linear, logarithmic, exponential, rational, square type of equations)
were considered in the literature. The authors investigated the effects of the particle shape, particle
size, initial material load [65], initial height of the layer, drying air temperature, air velocity [66] and
vegetable species [67] on the drying models coefficients and constants.

To compare the fit quality of the model (4) to experimental data, the root mean square error
(RMSE), the mean absolute error (MAE) and the coefficient of correlation (R) were taken (the most
commonly used [60,67]):

RMSE =

√√√
1
N

N∑
i = 1

(
MRpred −MRexp

)2
, (8)

MAE =
1
N

N∑
i = 1

∣∣∣MRpred −MRexp
∣∣∣, (9)

R2= 1−

N∑
i = 1

(
MRpred −MRexp

)2

N∑
i = 1

(
MRpred −MRexp

)2
(10)

2.3. Multi-Objective Optimization

In many applications, the cost function has multiple, oftentimes conflicting, objectives. This will
be a multi-objective optimization problem (MOO) problem. In multi-objective optimization, usually,
no single solution exists that is optimum with respect to all objectives. Therefore a set of optimal
solutions are obtained, often known as Pareto optimal solutions or noninferior solutions, and all these
solutions are equally satisfactory.

The aim of multi-objective optimization is finding as many of these solutions as possible. If the
reallocation of resources cannot improve one cost without raising another cost, then the solution is
Pareto optimal. Pareto solution returns a population with many members on the Pareto front. The
population is ordered based on dominance. Solution S1 dominates solution S2 if S1 has a lower cost
than S2 for at least one of the objective functions and is not worse with respect to the remaining
objective functions.

A noninferior solution is optimal if no other solution dominates that solution with respect to the
cost functions. A solution is nondominated if no solution can be found that dominates it. Once this set
of solutions is found, then the user can select a single solution based on various post-optimization
trade-offs rather than weighing the costs. One way of finding the Pareto front is to run an algorithm
for many various combinations of the fitness function weights. Each optimal solution is on the Pareto
front. This approach needs too many runs to estimate the Pareto set. The multi-objective genetic
algorithm (MOGA) starts by finding all nondominated chromosomes of a population and gives them a
rank of one, as reported by Fonesca and Flemming [68].

Deb [69] proposed a new nondominated sorting genetic algorithm (NSGA) that uses several layers
for the classification of individuals. Before selection, the population is ordered in terms of dominance.
All nondominated individuals fall into one category. An artificial match value is introduced that is
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proportional to the population size. In this way, individuals are given equal reproductive potential.
To maintain population diversity, this artificial fitness function is shared. Then the next group of
nondominated individuals is classified. This process is repeated until all individuals in the population
have been classified. A full description of the algorithm can be found in the literature [69].

The next NSGA II algorithm improves the NSGA algorithm by reducing the computational
difficulty of the nondominated sorting, introducing elitism, replacing sharing with crowded comparison
to reduce computations.

Figure 1 shows a flowchart of this Pareto genetic algorithm. This approach allows an easier way to
trade off the infinite number of optimal solutions to the MOO problem. The Pareto genetic algorithm
introduced here works with two fitness functions. It can be easily modified to work with more. A
Pareto solution needs a large population size to work well since it is trying to define the Pareto front.
Accordingly, we only include the tournament selection and mutation operator in the genetic algorithm.
More details are described in the literature [69].
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Figure 1. Flowchart of the Pareto nondominated sorting genetic algorithm NSGA.

2.4. The Optimization Tasks

The optimization problem was divided into two tasks. The first one was the evaluation of the
mass diffusion coefficient and Biot number from Equation (4) for each drying temperature: 40, 50,
60 and 70 ◦C and for each characteristic dimension (slices thickness): 3, 6 and 9 mm. The second
optimization task was to determine the constants in Equations (6) and (7).

Both RMSE and MAE were minimized, whereas R was maximized, for the difference between the
data and objective function for considered optimized tasks. The algorithm randomly selects a set of
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models by minimizing the error between the proposed model and experimental data. Next, it evolves
them to give the best fit, hence the MOO problem was formulated in the following way:

Minimum =


Mininium RMSE
Minimum MAE

Maximum R
(11)

The optimization task was solved in MATLAB Optimization Toolbox™ using the following
options: The “crossover” and “mutation” rates of 0.7 and 0.15, respectively; “ParetoFraction” of 0.5;
number of generations of 600 multiplied by number of variables; “Population size” of 50 multiplied by
number of variables; and “Tournament” method as selection function [70].

3. Results and Discussion

3.1. Optimization of Bi and D

The results of the optimization tasks described by Equations (4) and (11) are shown in Table
S1 and the Figures 2–4. The best solution for the optimization task in the case of drying at 40 ◦C
for slices 3 mm thick, with the largest R for ID 40-3_5 (R = 0.9939), ID 40-3_8 (R = 0.9937) and ID
40-30_6 and ID 40-3_7 (R = 0.9935) for which Bi is 0.7264, 0.7243, 0.7016 and 0.7038, respectively. The
RMSE values were characterized by the following ID 40-3_1 and ID 40-3_2 (RMSE = 0.4032), ID 40-3_4
(RMSE = 0436) and ID 40-3_8 (RMSE = 0.0447). The best solutions for the smallest MAE values are ID
40-3_9 (MAE = 0.0329), ID 40-3_3 (MAE = 0.340), ID 40-3_4 (MAE = 0.0351), ID 40-3_1 (MAE = 0.0353)
and ID 40-3_2 (MAE = 0.0354). For the largest R and smallest RMSE, ID 40-3_8 can be used as the
best solution, while the smallest RMSE and smallest MAE can be ID 40-3_1 and ID 40-3_4. However,
in the case of a full optimization task (described by Equation (11)), it is difficult to give a one-factor
solution. The R-value is in continuous conflict with RMSE and MAE values, which have higher values
than for the best solutions (see, for example, ID 40-3_5-ID 40-3_7). The Pareto set of the best solutions
for 40 ◦C indicates the greatest dispersion of solutions when the MAE and R criterion is considered
(see Figure 2).
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Bi calculated for drying at 50 ◦C shows the smallest RMSE = 0.0373 and the greatest R = 0.9951 for
ID 50-6_3. The value of MAE = 0.0300 is the smallest for ID 50-6_1 and ID 50-6_4. The solution of R
maximization is ID 50-6_9 (0.9951). From Table S1 it can be seen that the solutions are characterized
by better statistics than for the temperature of 40 ◦C. The dispersion of the best solutions is larger
compared with one for the higher temperatures (see Figure 2).

The drying at 60 ◦C indicates the smallest RMSE for ID 60-6_2 and ID 60-6_6 (0.0334). For ID
60-6_4, R is the greatest (0.9952). The result of MAE minimization is ID 60-6_1 and ID 60-6_3 (0.0259).
The results for 60 ◦C are characterized by the smallest dispersion (see Figure 2).
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The set of the best solutions for 70 ◦C shows the smallest RMSE = 0.0276 for ID 70-6_3 and ID
70-6_7. The result of MAE minimization is ID 70-6_4 (0.0216), with the solutions for ID 70-6_2 and ID
70-6_5 (0.0217, differences 0.0001).

It can be seen that the optimization solutions are characterized by better results (R, RMSE, MAE)
for average drying temperatures (Figure 2). For T = 40 ◦C (R~0.993, RMSE~0.047, MAE~0.038), and
T = 70 ◦C (R~0.996, RMSE~0.3 and MAE~0.022).

Statistics for Pareto optimal sets at T = 70 ◦C and various thicknesses are presented in Figure 3.
The Biot number calculated for 6 mm slices, dried at 70 ◦C (ID = 70-6_4) has the best statistical values
(see Table S1 and Figure 3). In this case, the smallest MAE = 0.0216 and the largest R = 0.9961 were
obtained. The statistical results for the slices of 6 mm dried at T = 70 ◦C are larger than for the other
thickness (see Figure 3). The Pareto set of the best solutions as for as the slices of 9 mm are considered
shows the smallest dispersion (see Figure 3).

3.2. Optimization of Parameters of the Functions for Determining Bi and D.

The optimization task described by Equation (11) was to search the function constants for
evaluation Biot number Bi (aBi, bBi, cBi, dBi, eBi, fBi) and water diffusion coefficient D (aD, bD, cD, dD, eD,
fD). The results of the tests are shown in Tables 1 and 2 and Figure 5.
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Table 1. Pareto optimal set for constants (aBi, bBi, cBi, dBi, eBi, f Bi) in Equation (6) and considered statistics; R - coefficient of correlation, MAE - mean absolute error,
RMSE - root mean square error.

ID aBi bBi cBi dBi eBi fBi R RMSE MAE

S_1 0.7647141 10.1689977 −0.003400086 948.715758 0.000024316 −0.12478256 0.9905672 0.050289 0.0406375
S_2 0.7647140 10.1689891 −0.003400089 948.715738 0.000024316 −0.12478252 0.9905665 0.050287 0.0406376
S_3 0.7647142 10.1689057 −0.003400089 948.715760 0.000024319 −0.12478129 0.9905653 0.050284 0.0406381
S_4 0.7647142 10.1689752 −0.003400082 948.715784 0.000024316 −0.12478196 0.9905647 0.050282 0.0406383
S_5 0.7647143 10.1689954 −0.003400083 948.715759 0.000024317 −0.12478102 0.9905638 0.050280 0.0406389
S_6 0.7646614 10.1689890 −0.003400072 948.715763 0.000024330 −0.12478277 0.9905631 0.050278 0.0406391
S_7 0.7647142 10.1689346 −0.003400066 948.715773 0.000024316 −0.12477951 0.9905627 0.050277 0.0406395
S_8 0.7646615 10.1689980 −0.003400071 948.715758 0.000024330 −0.12478214 0.9905619 0.050275 0.0406397
S_9 0.7647164 10.1689977 −0.003400082 948.715752 0.000024316 −0.12478000 0.9905611 0.050273 0.0406403
S_10 0.7646749 10.1689859 −0.003400075 948.715762 0.000024323 −0.12478259 0.9905604 0.050271 0.0406404
S_11 0.7647171 10.1689683 −0.003400077 948.715759 0.000024316 −0.12478368 0.9905593 0.050268 0.0406411
S_12 0.7646708 10.1689920 −0.003400071 948.715757 0.000024324 −0.12478274 0.9905588 0.050267 0.0406412
S_13 0.7646981 10.1689694 −0.003399883 948.715758 0.000024320 −0.12478335 0.9905584 0.050267 0.0406418
S_14 0.7647143 10.1689797 −0.003400077 948.715764 0.000024316 −0.12478110 0.9905574 0.050264 0.0406421
S_15 0.7646723 10.1689885 −0.003400092 948.715759 0.000024324 −0.12478362 0.9905565 0.050261 0.0406425
S_16 0.7647146 10.1689610 −0.003400070 948.715796 0.000024316 −0.12478125 0.9905553 0.050259 0.0406432
S_17 0.7647112 10.1689946 −0.003400011 948.715761 0.000024316 −0.12478272 0.9905544 0.050257 0.0406438
S_18 0.7646966 10.1689920 −0.003400075 948.715743 0.000024323 −0.12478189 0.9905537 0.050256 0.0406442
S_19 0.7647146 10.1689886 −0.003400073 948.715721 0.000024317 −0.12478261 0.9905528 0.050254 0.0406447
S_20 0.7647145 10.1689228 −0.003400067 948.715776 0.000024316 −0.12478094 0.9905517 0.050252 0.0406452



Symmetry 2020, 12, 260 11 of 16

Table 2. Pareto optimal set for constants (aD, bD, cD, dD, eD, f D) in Equation (7) and considered statistics.

ID aD bD cD dD eD fD R RMSE MAE

S_1 0.000000127547936 −0.000023808 −0.00000000508365633 0.0030005179 0.00000000004266495 0.0000008336330 0.9905672 0.050289 0.0406375
S_2 0.000000127547948 −0.000023806 −0.00000000508365753 0.0030005175 0.00000000004266493 0.0000008336334 0.9905665 0.050287 0.0406376
S_3 0.000000127547939 −0.000023803 −0.00000000508365666 0.0030005216 0.00000000004266494 0.0000008336333 0.9905653 0.050284 0.0406381
S_4 0.000000127547938 −0.000023801 −0.00000000508365663 0.0030004841 0.00000000004266493 0.0000008336339 0.9905647 0.050282 0.0406383
S_5 0.000000127547934 −0.000023799 −0.00000000508365680 0.0030005241 0.00000000004266493 0.0000008336334 0.9905638 0.050280 0.0406389
S_6 0.000000127547927 −0.000023797 −0.00000000508365755 0.0030005275 0.00000000004266495 0.0000008336336 0.9905631 0.050278 0.0406391
S_7 0.000000127547932 −0.000023796 −0.00000000508365677 0.0030005201 0.00000000004266492 0.0000008336339 0.9905627 0.050277 0.0406395
S_8 0.000000127547934 −0.000023794 −0.00000000508365671 0.0030005301 0.00000000004266494 0.0000008336337 0.9905619 0.050275 0.0406397
S_9 0.000000127547936 −0.000023792 −0.00000000508365669 0.0030005201 0.00000000004266494 0.0000008336338 0.9905611 0.050273 0.0406403
S_10 0.000000127547930 −0.000023790 −0.00000000508365669 0.0030005199 0.00000000004266495 0.0000008336335 0.9905604 0.050271 0.0406404
S_11 0.000000127547935 −0.000023787 −0.00000000508365634 0.0030004820 0.00000000004266493 0.0000008336332 0.9905593 0.050268 0.0406411
S_12 0.000000127547929 −0.000023786 −0.00000000508365667 0.0030005267 0.00000000004266494 0.0000008336337 0.9905588 0.050267 0.0406412
S_13 0.000000127547934 −0.000023785 −0.00000000508365706 0.0030005213 0.00000000004266494 0.0000008336336 0.9905584 0.050267 0.0406418
S_14 0.000000127547935 −0.000023782 −0.00000000508365694 0.0030004793 0.00000000004266493 0.0000008336337 0.9905574 0.050264 0.0406421
S_15 0.000000127547933 −0.000023780 −0.00000000508365703 0.0030005265 0.00000000004266494 0.0000008336336 0.9905565 0.050261 0.0406425
S_16 0.000000127547937 −0.000023777 −0.00000000508365643 0.0030004974 0.00000000004266494 0.0000008336336 0.9905553 0.050259 0.0406432
S_17 0.000000127547934 −0.000023775 −0.00000000508365667 0.0030005259 0.00000000004266494 0.0000008336337 0.9905544 0.050257 0.0406438
S_18 0.000000127547929 −0.000023773 −0.00000000508365675 0.0030005227 0.00000000004266494 0.0000008336335 0.9905537 0.050256 0.0406442
S_19 0.000000127547931 −0.000023771 −0.00000000508365740 0.0030005313 0.00000000004266494 0.0000008336340 0.9905528 0.050254 0.0406447
S_20 0.000000127547938 −0.000023768 −0.00000000508365654 0.0030005173 0.00000000004266493 0.0000008336333 0.9905517 0.050252 0.0406452
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The best solution for the optimization task is ID S_1 (the greatest R = 0.9905672 and the smallest
MAE = 0.0406375). The Biot number for ID S_1 is estimated from the equation:

Bi = 0.7647141 + 10.1689977s− 0.003400086T + 948.715758s2 + 0.000024316T2
− 0.12478256sT, (12)

and the water diffusion coefficient:

D = 1.27547936 · 10−7
− 2.3808 · 10−5s− 5.08365633 · 10−9T + 0.0030005179s2 + 4.266495 · 10−11T2

+8.33633 · 10−7sT
(13)

However, the best solution for the smallest RMSE = 0.050252 is ID S_20. The Biot number for ID
S_20 is estimated from the equation:

Bi = 0.764714 + 10.1689091s− 0.003400089T + 948.715738s2 + 0.000024316T2
− 0.12478252sT, (14)

and the water diffusion coefficient:

D = 1.27547948 · 10−7
− 2.3806 · 10−5s− 5.08365753 · 10−9T + 0.0030005175s2 + 4.266493 · 10−11T2

+8.336334 · 10−7sT
(15)

Considering maximizing R and minimizing both MSE and RMSE, ID S_9 is the best solution
(R = 0.9905611; RMSE = 0.050273; MAE = 0.0406403).

The Biot number for ID S_9 is estimated from the equation:

Bi = 0.7647164 + 10.1689997s− 0.003400082T + 948.715752s2 + 0.000024316T2
− 0.12478sT, (16)

and the water diffusion coefficient:

D = 1.27547936 · 10−7
− 2.3792 · 10−5s− 5.08365669 · 10−9T + 0.0030005201s2 + 4.266494 · 10−11T2

+8.336338 · 10−7sT
(17)

Model validation was performed. The validation was carried out using new empirical data and it
gave good results. These data concerned the drying process of 5 mm thick slices at 45 ◦C. The R, RMSE
and MAE obtained between these data and the model (Equation (4) with Bi and D calculated from (12)
and (13), respectively) were 0.9951, 0.0590 and 0.0475, respectively.

4. Conclusions

The paper used a Pareto optimization method for the evaluation of mass diffusion coefficient and
mass Biot number, occurring in the equations, describing the drying process. An NSGA algorithm
taking into account simultaneous maximization of R and minimization of RMSE and MAE, between
the experimental data and model, was satisfactorily used. The optimum Bi, constants of function for
Biot number calculation, D and constants of function for mass diffusion coefficient calculation, gained
by the NSGA II algorithm, were established. The square type of function f (T,s) can be applied for
evaluation of considered Bi and D. The results of statistical analysis for the Bi and D equations were
as follows: R = 0.9906, MAE = 0.0406 and RMSE = 0.0503. The conducted model validation gave
good results.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-8994/12/2/260/s1,
Table S1: Results of optimization tasks (Pareto optimal set) and considered statistics.
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Nomenclature

aBi, bBi, cBi, dBi, eBi, fBi constants in Equation (7) (-)
aD, bD, cD, dD, eD, fD constants in Equation (8) (-)
Bi mass Biot number
D mass diffusion coefficient (m2 s−1)
k mass transfer coefficient (m s−1)
L characteristic dimension (m)

M, M0, Me
moisture content, initial moisture content, equilibrium moisture content (kg H2O
kg−1 d.m.)

MR, MRexp, MRpred moisture ratio, moisture ratio from experiment, predicted moisture ratio (-)
MRexp average moisture ratio from experiment
N number of data (-)
s half of plane (slice) thickness (m)
t time (s)
T temperature (◦C)
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