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Abstract: The present study elaborates the suitability of the artificial neural network (ANN)
and adaptive neuro-fuzzy interface system (ANFIS) to predict the thermal performances of the
thermoelectric generator system for waste heat recovery. Six ANN models and seven ANFIS models
are formulated by considering hot gas temperatures and voltage load conditions as the inputs to
predict current, power, and thermal efficiency of the thermoelectric generator system for waste heat
recovery. The ANN model with the back-propagation algorithm, the Levenberg–Marquardt variant,
Tan-Sigmoidal transfer function and 25 number of hidden neurons is found to be an optimum model
to accurately predict current, power and thermal efficiency. For current, power and thermal efficiency,
the ANFIS model with pi-5 or gauss-5-membership function is recommended as the optimum model
when the prediction accuracy is important while the ANFIS model with gbell-3-membership function
is suggested as the optimum model when the prediction cost plays a crucial role along with the
prediction accuracy. The proposed optimal ANN and ANFIS models present higher prediction
accuracy than the coupled numerical approach.

Keywords: adaptive neuro-fuzzy interface system; artificial neural network; current; power; thermal
efficiency; thermoelectric generator system; waste heat recovery

1. Introduction

In the last two decades, the researches on waste heat recovery technologies have been increased
to diminish the global energy crisis [1]. The thermoelectric generators are the evolving technology
for the waste heat recovery due to its non-polluting and silent operational characteristics [2]. The
thermoelectric generators convert the thermal energy into the electricity using the Seebeck effect of
semiconductor materials [2]. The automobile vehicles are the heavy consumers of the fossil fuel and
approximately 30%–40% of heat is lost as the vehicle exhaust [3]. The significant research works have
been done on the applications of the thermoelectric generators in the automobile vehicle for waste
heat recovery. However, the low conversion efficiency of the thermoelectric generators restricts their
commercialization in the automobile field [3]. To improve the performance of the thermoelectric
generators in the waste heat recovery of the automobile vehicles, the hot heat exchanger is provided
with various internal structures in the form of fins, inserts and protrusions.

Wang et al. have proved that the dimpled surface hot heat exchanger enhances the power output
of the thermoelectric generator by 173.60% and reduces the pressure drop by 20.57% compared to
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inserted fins hot heat exchanger [3]. Niu et al. have recommended that the baffles should be installed
in front of the thermoelectric modules and the baffle angle should be increased in the flow direction
to enhance the performance of the thermoelectric generator and to reduce the pressure drop [4]. Liu
et al. and Quan et al. have proved that the chaos shaped internal structure in the heat exchanger
improves the power output and thermal performance of the automotive thermoelectric generators [5,6].
Luo et al. have improved the performance of the thermoelectric generators by proposing the heat
exchanger with hotter side converges towards the inward [7]. Nithyanandam et al. have proposed that
the metal foam-based heat exchanger shows 5.7 to 7.8 times higher power output than that without the
metal foam for automobile waste heat recovery [8]. Cao et al. have proved that the heat pipe with
insertion depth of 60 mm and gas flow direction of 15o enhances the open circuit voltage, maximum
power and maximum power density of the automotive thermoelectric generator system by 7.5, 10.17
and 15.49%, respectively [9]. He et al. have shown that the plate type heat exchanger shows the
maximum conversion efficiency of 5% for the louvered fins and 4.5% for the smooth and offset strip
fins, respectively [10]. Lu et al. have proved that the hot heat exchanger configurations with uniform
winglet vortex and non-uniform winglet vortex show higher power output of the thermoelectric
generator than the hot heat exchanger without fins [11]. Rana et al. have the generated maximum
power of 79.02 W by designing the heat exchanger with 0.08 m length, 1 m height, 4 mm gap size
and 50 thermoelectric modules [12]. Suter et al. have proposed 1 kW thermoelectric stack with the
counterflow parallel plate heat exchanger and 127 pairs of thermoelectric modules to convert the
geothermal reservoir heat to electricity using the optimized stack volume of 0.0021 m3 and optimized
the conversion efficiency of 4.2% [13]. Zhao et al. have showed that the application of intermediate
fluid improves the maximum power output and generation efficiency of the automotive thermoelectric
generator system [14,15]. Lu et al. have shown that 1-inlet 2-outlet heat exchanger has improved the
performance characteristics compared to 2-inlet 2-outlet and empty cavity heat exchangers [16].

The conducted literature review concludes that the numerous experimental and numerical
studies have been demonstrated on the thermoelectric generator system for waste heat recovery. The
experimental study on the thermoelectric generator system for waste heat recovery shows that the
energy imbalance results into the excessive loss within the system and improper insulation results
in heat loss from the system to the environment. In addition, the thermocouples embedded into the
thermoelectric generator system for waste heat recovery show measuring errors in the temperatures
of various parts of the system, and manufacturing complexity arises due to non-uniform material
properties. The numerical study on the thermoelectric generator system for waste heat recovery
requires the powerful computational devices which involve higher computational time and higher
computational cost. In the last few years, the artificial intelligence techniques have a secured position as
the effective prediction tools to predict and optimize the performances of the various physical system.
The artificial intelligence techniques are the most efficient tools to accurately predict the performance
of the thermoelectric generator system for waste heat recovery and diminish the limitations of the
corresponding experimental and numerical approaches. Dheenamma et al. have shown the artificial
neural network models to predict the overall heat transfer coefficient, friction factors of hot and cold
fluids, and effectiveness of the plate type heat exchanger by considering the Reynolds number of hot
and cold fluids, Prandtl numbers of hot and cold fluids and the concentration of the cold fluid as the
input conditions [17]. Angeline et al. have formulated the artificial neural network to predict the
performance parameters of open circuit voltage, maximum power and matched load resistance of the
thermoelectric generator for various hot side temperatures. The predicted results from the artificial
neural network are found within 3% error with the corresponding experimental results [18,19].

The application of the artificial neural network and adaptive neuro-fuzzy interface system for the
performance prediction of the thermoelectric generator system for waste heat recovery has not been
investigated. Therefore, six ANN models with various combinations of training variants, transfer functions
and the number of hidden neurons as well as seven ANFIS models with various combinations of types of
membership functions and the number of membership functions are formulated. The developed ANN
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and ANFIS models predict the current, power and thermal efficiency of the thermoelectric generator
system for waste heat recovery under the hot gas inlet temperatures and voltage load conditions.

2. Experimental Set-Up

The experimental set-up of the thermoelectric generator system for waste heat recovery is shown in
Figure 1. The thermoelectric generator system for waste heat recovery is designed with heat exchanger,
four cold fluid channels and 12 thermoelectric modules. The hot gas passes through the heat exchanger
and the cold-water flows through the cold fluid channels. The thermoelectric modules are arranged
between the heat exchanger body and the cold fluid channel to utilize the temperature difference
between the hot gas and cold water. The thermoelectric modules convert the temperature difference
of the hot gas and cold water into power using the Seebeck effect [20]. The heat exchanger and the
cold fluid channels are constructed with aluminum material, whereas the thermoelectric modules are
constructed with the skutterudite material. The heat exchanger is comprised of the frame with straight
fins and guide fins in the inlet and outlet diffuser sections to enable the uniform distribution of the hot
gas. The cold fluid channels are provided with the internal fins structure to enable the uniformity of
water. Four cold fluid channels with two at the top of the heat exchanger and two at the bottom of
the heat exchanger are arranged with three modules between each channel and heat exchanger. The
thermoelectric generator system for waste heat recovery is installed in the airtight chamber filled with
the argon gas at the pressure of 1 × 105 Pa. The electric heater supplies the hot gas at the required
temperature using the thermostat controller. The mass flow rate of the hot gas is measured by the
mass flow indicator with an accuracy of ±0.5% installed near the thermostat controller. The airtight
vacuum chamber provides the constant temperature and pressure controlled by the chamber pressure
regulator. In addition, the chamber pressure regulator indicates the inlet and outlet temperatures of
the hot gas. The constant temperature chiller supplies the cold water to the cold fluid channels at the
required temperature and pressure. The mass flow rate of the water is measured by the mass flow
indicator with an accuracy of ±0.5% installed on a tube which transfers the cold water from chiller to
the cold fluid channels. The temperatures of the hot gas at the inlet and outlet of the heat exchanger,
temperatures of the cold water at the inlet and outlet of the cold fluid channels, temperatures of
the thermoelectric modules and the chamber are measured using nine K-type thermocouples with
an accuracy ±0.1 ◦C. The thermocouples are connected to a KEYSIGHT 34970A data logger with an
accuracy of ±0.1% for monitoring the temperatures continuously. The thermoelectric modules are
connected to the KIKUSUI PLZ334L electronic loader to record the current, voltage and power data
with time. The accuracy of the electronic loader is ±0.1%, ±0.2% and ±0.6% for the current, voltage
and power measurements, respectively.
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The uncertainties of various measuring instruments and the measurement errors are considered in
the experimental data. The temperature, mass flow rate, voltage, current, power and thermal efficiency
are the experimentally predicted output data. Thus, uncertainties of the temperature, mass flow
rate, voltage and current as the independent parameters are calculated with errors of the measuring
instruments. The uncertainties of the power and thermal efficiency as the dependent parameters
are calculated based on the linearized fraction approximation as shown by Equation (1) [21]. The
uncertainties in the temperature, mass flow rate, voltage, current, power and thermal efficiency are
showed as ±0.24%, ±0.76%, ±1.27%, ±1.19%, ±1.74% and ±1.91%, respectively:

wr = [(
∂R
∂x1

w1)
2 + (

∂R
∂x2

w2)
2 + · · ·+ (

∂R
∂xn

wn)
2]

1
2 (1)

Here, R is the dependent parameter, wr is the uncertainty in the dependent parameter, x1, x2, . . . xn are
the independent parameters and w1, w2, . . . wn are the uncertainties in the independent parameters.

3. Numerical Method

The numerical analysis is conducted on the physical domain of the thermoelectric generator
system for waste heat recovery. The physical domain of the thermoelectric generator system for
waste heat recovery is comprised of the heat exchanger, cold fluid channels, thermoelectric modules
and fluid domains of the hot gas and water. The coupled numerical approach comprises the CFX
and the thermal electric solvers of ANSYS 19.1 commercial software is used to predict the current,
power and thermal efficiency of the thermoelectric generator system for waste heat recovery [4]. The
continuity, momentum, energy and thermoelectric coupling equations are solved using the coupled
numerical approach. The boundary conditions for solving governing equations are shown in Table 1.
The experimental voltage conditions with time are used as the high potential voltage conditions for
the numerical analysis. The low potential voltage is set to 0 V to ensure the flow of current from the
high potential to the low potential of the thermoelectric module. The tetrahedrons mesh structure
and fluid domains are used to solve the governing equations because of the complex geometrical
structures of the thermoelectric generator system for waste heat recovery with the presence of fins
and sharp corners. To verify the convergence of the predicted results, the grid dependency test is
carried out for five different grid element numbers. Figure 2 shows the grid dependency test for
the simulated power and thermal efficiency of the thermoelectric generator system for waste heat
recovery. As shown in Figure 2, the simulated power and thermal efficiency values are converged
within ±1% above a grid element number of 11,431,310. Therefore, considering the computational
time and the computational cost, the grid element number of 11,431,310 is selected as the final mesh
configuration for the thermoelectric generator system for waste heat recovery to predict its current,
power and thermal efficiency numerically. In numerical analysis, the density, specific heat, thermal
conductivity and dynamic viscosity of the hot gas are set as 1.19 kg/m3, 1005 J/k·◦C, 0.026 W/m·K and
1.8 × 10−4 kg/m·s, respectively. The density, specific heat, thermal conductivity and dynamic viscosity
of the water are set as 997 kg/m3, 4182 J/kg·◦C, 0.607 W/m·K and 8.9 × 10−4 kg/m·s, respectively. For
skutterudite, the density, specific heat and thermal conductivity are used as 7598 kg/m3, 350 J/kg·◦C
and 3.4 W/m·K, respectively. In addition, the Seebeck coefficient is set as 142.8 µV/K for p-leg and
−183.5 µV/K for n-leg [22]. The continuity, momentum and energy equations are expressed with
Equations (2) to (5) [23].

Continuity Equation
∂ρ

∂t
+∇·(ρU) = 0 (2)

Momentum Equation

∂(ρU)

∂t
+∇·(ρU ×U) = −∇p +∇τ+ SM (3)



Symmetry 2020, 12, 259 5 of 30

Stress tensor τ is expressed in terms of strain rate as follows:

τ = µ(∇U + (∇U)T
−

2
3
δ∇·U) (4)

Energy equation
∂(ρh)
∂t

+∇·(ρUh) = ∇·(λ∇T) + τ : ∇U + SE (5)

where ρ is the density (kg/m3), U is the average velocity (m/s), ∇ is the nabla operator, p is the static
pressure (Pa), τ is the stress tensor, SM is the momentum source, µ is the dynamic viscosity (Pa·s), h is
the enthalpy (J), λ is the thermal conductivity (W/m·K) and SE is the energy source.

To deal with the turbulence of the hot gas and cold water, the k-ε turbulence model [3] is used
with Equations (6) and (7):

∂(ρuik)
∂xi

=
∂
∂xi

[(
v +

vt

σk

)
∂k
∂xi

]
+ Pk − ρε (6)

∂(ρuiε)

∂xi
=

∂
∂xi

[(
v +

vt

σε

)
∂ε
∂xi

]
+ ρC1Sε− ρC2

ε2

k +
√

vε
(7)

where ui is the velocity component, k is the turbulence kinetic energy, xi is the cartesian co-ordinates, vt

is the turbulent eddy viscosity, σk is 1 based on reference [3], σε is 1.2 based on reference [3], Pk is the
shear production of the turbulent kinetic energy, ε is the dissipation rate of the turbulence energy and
S is the modulus of the mean rate of the strain tensor.

The thermoelectric coupling equations [24] of Equations (8) and (9) are calculated:

∇·(p·
→

J ) −∇·(k·∇T) =
→

J ·
→

E (8)

∇·(σ·α·∇T) +∇·(σ·∇∅) = 0 (9)

where p is the Peltier coefficient (V),
→

J is the electric current intensity (A/m2), k is the thermal

conductivity (W/m·K), ∇T is the temperature gradient,
→

E is the electric field intensity (V/m), σ is the
electrical conductivity (Ω−1

·m−1), α is the Seebeck coefficient (V/K), and∇∅ is the electric potential (J/C).
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Table 1. Boundary conditions.

Parameter Value

Hot gas (air) inlet temperature (◦C) 315.12, 419.26, 521.7, 621.61
Coolant (water) inlet temperature (◦C) 30

Hot gas (air) mass flow rate (kg/s) 0.018
Coolant (water) mass flow rate (kg/s) 0.075

High potential voltage (V) 0 to 10 V
Low potential voltage (V) 0

4. Artificial Intelligence Models

4.1. Artificial Neural Network (ANN) Modelling

The artificial neural network is the replica of the biological neural network which could be used
for the optimization, simulation, modeling, forecasting and performance prediction of various physical
systems [25]. The nonlinear relationship between the input and output variables with larger number
of data points could be mapped efficiently using the ANN technique [25]. The ANN consists of three
layers with the input layer, output layer and one or more than one hidden layer with a suitable number
of neurons in each layer [25,26]. The number of neurons in the input layer is equal to the number of
input parameters and number of neurons in the output layer is equal to number of output parameters.
The number of hidden layers and hidden neurons are decided based on the training error [27]. The
neurons of one layer are connected to the other layer using weights and the single weight value is
assigned between two neurons [28]. The ANN structure with three layers and various numbers of
neurons in each layer is trained using suitable training algorithm [29]. The training algorithm consists
of the back-propagation algorithm, training variants and transfer functions [26]. For the training, the
maximum training error and the maximum number of epochs are decided. During the training, the
weight values get adjusted to predict the desired values of output parameters. If the error between the
predicted output and the actual output is lower than the decided training error, the training is stopped;
otherwise, further training is done to achieve the desired output [30]. The neural network structure
with the desired prediction accuracy is selected as the optimum neural network structure.

In this study, six ANN models are developed to predict the performances of the thermoelectric
generator system for waste heat recovery. Figure 3 shows the formulated ANN structure to predict the
performance of thermoelectric generator system for waste heat recovery. The hot gas inlet temperature
and voltage load conditions are considered as the inputs to the ANN models for predicting the current,
power and thermal efficiency of the thermoelectric generator system for waste heat recovery. The
back-propagation training algorithm is used to train the six ANN models. The six models are the
combinations of three training variants of Levenberg–Marquardt (LM), Scaled Conjugate Gradient
(SCG) and Pola–Ribiere Conjugate Gradient (CGP), and two transfer functions of Tan-Sigmoidal and
Log-Sigmoidal and number of hidden neurons (N) of 10, 15, 20, and 25. The maximum number of
epochs is set to 1000 and the maximum training error is set to 10−6 for training to confirm the prediction
accuracy of the tested model for the thermoelectric generator system for waste heat recovery. The
experiments are conducted on the thermoelectric generator system for waste heat recovery at the hot
gas inlet temperatures and voltage load conditions to collect the data for training. A total of 931 data
points of the input and output parameters are used to train the six models. For each ANN model, the
training is done until the error becomes steady and the outputs predicted by that trained model are
recorded. The predicted output values of the current, power and thermal efficiency are compared
with the corresponding experimental values based on three statistical parameters of the coefficient
of determination (R2), root mean square error (RMSE), and coefficient of variance (COV). The ANN
model with the highest value of R2 and the lowest values of RMSE and COV, respectively, is selected
as the optimum ANN model to predict the current, power and thermal efficiency of the thermoelectric
generator system for waste heat recovery for the hot gas inlet temperatures range of 315.12 to 621.61 ◦C
and voltage load conditions range of 0 to 10 V.
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4.2. Adaptive Neuro-Fuzzy Interface System Modelling (ANFIS)

The ANFIS is one of the artificial intelligence techniques which is the combination of ANN and
fuzzy logic [30]. The nonlinear relationship between the input and output parameters with a larger
number of data points could be established accurately using ANFIS [30]. Like ANN, the ANFIS is also
used to predict and optimize the performances of the various physical systems [31]. The input and
output parameters needed to be related are imported in the ANFIS model in the form of neurons. The
data of each input and output parameter are shown in the form of various membership functions [31].
The type of membership function and number of membership functions are decided based on the
variation trend of the input and output data. The types of membership functions in the ANFIS model
are triangular, trapezoidal, gbell, gauss, gauss2, pi, dsig and psig [32]. In the ANFIS model, the input
and output data are connected by rules with the statements by showing the relationship between the
input and output data. The prediction of the output values for the various input conditions are decided
based on the rules. The ANFIS structure is trained using two algorithms of the back-propagation and
hybrid [33]. The maximum number of epochs and maximum error are set for the training of an ANFIS
model. During the training of ANFIS, the rules get adjusted to predict the desired output of the various
physical systems like solar systems. The training is continued until the desired accuracy is achieved.
The ANFIS model with the prediction value closest to the actual output is selected as the optimum
model [33]. The output variables are predicted from the optimum ANFIS model by importing the
input variables into the rule viewer [34].

Figure 4 shows the structure of formulated ANFIS model to predict the performance of the
thermoelectric generator system for waste heat recovery. The selected ANFIS model type is a
Takagi–Sugeno which has n number of inputs with only one output prediction [35]. Hence, in the
present ANFIS model, two input parameters of voltage and temperature are connected to one output
parameter of current, power and thermal efficiency. Seven ANFIS models are formulated to predict the
performances of the thermoelectric generator system for waste heat recovery and predict the current,
power and thermal efficiency of the thermoelectric generator system for waste heat recovery with
the hot gas temperatures and high potential voltage conditions. Seven membership functions of the
triangular, trapezoidal, gauss, gauss2, gbell, pi and dsig are used to formulate the ANFIS models, and
each ANFIS model is formulated with one type of the membership function. In each ANFIS model,
each type of membership function is used with the number of sets of 2, 3, 4 and 5. The ANFIS models
are trained for the same experimental data with sets of 931 data points used to train the ANN models.
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All ANFIS models are trained using the back-propagation algorithm for the maximum epochs of 1000
and maximum error of 10−6. The ANFIS models are trained until the training error becomes steady.
Once the training error converges, the output values are predicted in the rule viewer by importing the
input conditions of hot gas temperature and voltage conditions. The predicted values of the current,
power and thermal efficiency by each ANFIS model are compared with the corresponding experimental
values using three statistical parameters of R2, RMSE and COV. The ANFIS model with the optimum
values of three statistical parameters is considered as the best model to predict the current, power and
thermal efficiency of the thermoelectric generator system for waste heat recovery under the influence
of various hot gas inlet temperatures and voltage conditions.
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5. Data Reduction

The power generated by the thermoelectric modules [36] is expressed with Equation (10):

P = VI (10)

where P is the power (W) of the thermoelectric modules, V is the voltage (V) and I is the current (A).
The thermal efficiency of the thermoelectric generator system for waste heat recovery could be

calculated with Equation (11) as the ratio of the power generated by the thermoelectric modules (P) to
the heat transfer through the thermoelectric modules (

.
Q) [36]:

ηth =
P
.

Q
× 100% (11)

where ηth is the thermal efficiency (%) of the thermoelectric generator system for waste heat recovery
and

.
Q is the heat transfer (W) through the thermoelectric modules. The heat transfer through the

thermoelectric modules [37] is calculated using the Fourier’s law of heat conduction as shown by
Equation (12):

.
Q =

KA
t

∆T (12)

where K is the thermal conductivity (W/m·K), A is the surface area (m2), t is the module thickness (m)
and ∆T is the temperature difference (◦C) of the thermoelectric module.
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The coefficient of determination (R2), root mean square error (RMSE) and coefficient of variance
(COV) are calculated using Equations (13)–(15), respectively [38]:

R2 = 1−

∑n
m=1 (Xpre,m −Ymea,m)

2∑n
m=1 (Ymea,m)

2 (13)

RMSE =

√∑n
m=1 (Xpre,m −Ymea,m)

2

n
(14)

COV =
RMSE∣∣∣Ymea

∣∣∣ × 100 (15)

where R2 is the coefficient of determination, RMSE is the root mean square error, COV is the coefficient
of variance, n is the number of data points, Xpre,m is predicted the value of the output parameter at
data point m, Ymea,m is the experimental (actual) value of output parameter at data point m and Ymea is
the average value at all experimental data points.

6. Results and Discussion

6.1. Experimental Outputs of Current, Power and Thermal Efficiency

The current, power and thermal efficiency as the performance parameters of the thermoelectric
generator system for waste heat recovery are experimentally tested with the hot gas inlet temperatures
of 315.12 ◦C, 419.26 ◦C, 521.70 ◦C and 621.61 ◦C and the voltage load range of 0 to 10 V. During the
experiments, the voltage load is varied with time for each hot gas inlet temperature. Two experimental
data sets for the development of a numerical method, ANN models and ANFIS models are considered
as the training data set and testing data set of the thermoelectric generator system for waste heat
recovery. The training data set (first) with variations of the current, power and thermal efficiency of
thermoelectric generator system for waste heat recovery for hot gas inlet temperatures of 315.12 ◦C,
419.26 ◦C, 521.70 ◦C and 621.61 ◦C and voltage load range of 0 to 10 V is selected and the testing data
set (second) with the variation of current, power and thermal efficiency of thermoelectric generator
system for waste heat recovery for hot gas inlet temperature of 419.26 ◦C and voltage load range of 0 to
5.5 V is selected based on the experiments.

Figure 5 shows the variations of the current, power and thermal efficiency for the training and
testing data sets. For all hot gas inlet temperatures, the current of the thermoelectric generator system
for waste heat recovery is linearly decreased and the power and thermal efficiency of the thermoelectric
generator system for waste heat recovery show the parabolic variations with the voltage load of range
0 to 10 V for the training data set and 0 to 5.5 V for the testing data set, respectively. The current, power
and thermal efficiency of the thermoelectric generator system for waste heat recovery increase with the
increase of the hot gas inlet temperature from 315.12 ◦C to 621.61 ◦C. Therefore, the maximum and
average values of the current, power and thermal efficiency of the thermoelectric generator system for
waste heat recovery are increased with the increase of the hot gas inlet temperature. For the training
data set, the maximum current of 4.1, 7.13, 9.42 and 10.95 A and average current of 2.28, 3.90, 4.99 and
5.95 A, the maximum power of 3.40, 9.75, 17.55 and 24.8 W and average power of 1.94, 5.93, 11.10 and
15.22 W and the maximum efficiency of 1.28, 2.16, 2.87 and 3.39% and average efficiency of 0.72, 1.30,
1.81 and 2.07% are selected experimentally at the hot gas inlet temperatures of 315.12 ◦C, 419.26 ◦C,
521.70 ◦C and 621.61 ◦C, respectively. For the testing data set, the hot gas inlet temperature of 419.26 ◦C
is the same as the training data set, but the voltage load condition is different with time as shown in
Figure 5. Thus, for the testing data set at the hot gas inlet temperatures of 419.26 ◦C, the maximum
current is 8.1 A and the average current is 4.41 A. The maximum power is 11.4 W and the average
power is 6.95 W. The maximum efficiency is 2.35% and the average efficiency is 1.43%. As a result, the
current, power and thermal efficiency of the thermoelectric generator system for waste heat recovery
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at the hot gas inlet temperature of 419.26 ◦C are different for the training and testing data sets because
of the different voltage loads.Symmetry 2020, 12, x FOR PEER REVIEW 10 of 30 
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6.2. Prediction Results from the Numerical Method

The numerical simulation of the thermoelectric generator system for waste heat recovery at the
hot gas inlet temperatures of 419.26 ◦C, cold water temperature of 30 ◦C, hot gas mass flow rate of
0.018 kg/s and cold-water mass flow rate of 0.075 kg/s is performed. From the numerical simulation of
the thermoelectric generator system for waste heat recovery with various boundary conditions of the
hot gas and cold water, the hot and cold surfaces of the thermoelectric modules are simulated.

The temperature of the hot gas decreases with the direction from the inlet to the outlet of the
heat exchanger, but the temperature of the cold water increases as the cold water flows from the
inlet to the outlet of the cold-water channel. This is because the hot gas transfers the heat and the
cold water absorbs the heat from the thermoelectric modules. Therefore, the hot surface and cold
surface temperatures of the thermoelectric module are varied with locations because the temperature
distributions of the hot gas and cold water depend on the locations.

The temperature distributions of the hot and cold surfaces of the thermoelectric modules with
locations (x and y coordinates) at the hot gas inlet temperature of 419.26 ◦C are showed in Figure 6.
Figure 6 shows the temperature distributions of the hot and cold surfaces of the top six thermoelectric
modules and the corresponding bottom six thermoelectric modules. In addition, the hot surface
temperatures of the thermoelectric module near the inlet of the heat exchanger show higher than those
of the thermoelectric modules near the outlet of the heat exchanger. Thus, the current, power and
thermal efficiency results of the thermoelectric generator system for waste heat recovery are simulated
using the temperature distributions of the hot and cold surfaces of the thermoelectric modules and the
voltage load conditions of the testing data set.
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The comparisons of experimental and numerical results of the current, power and thermal
efficiency of the thermoelectric generator system for waste heat recovery for the testing data set are
shown in Figure 7. The error between the experimental and numerical values for the current of the
thermoelectric generator system for waste heat recovery is validated within 2% except for the initial
and end voltage conditions. In addition, the error between the experimental and numerical results for
the power and thermal efficiency of the thermoelectric generator system for waste heat recovery is
validated within 4% except for the initial and end voltage conditions.

The accuracy of numerical method for the current, power and thermal efficiency of the
thermoelectric generator system for waste heat recovery is shown in Table 2. The numerical results
of the current, power and thermal efficiency of the thermoelectric generator system for waste heat
recovery show a good agreement with the corresponding experimental results [3]. The selection
of the accurate boundary condition, meshing configuration with conduction and inflation effects,
discretization method and suitable solver result in closer agreement between the numerical and
experimental results of the thermoelectric generator system for waste heat recovery. Therefore, the
experimental approach of the thermoelectric generator system for waste heat recovery with high
manufacturing and installation costs, higher complexity and higher level of efforts could be replaced
with a numerical approach of the thermoelectric generator system for waste heat recovery.
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Table 2. The accuracy of numerical method for the current, power and thermal efficiency.

Parameter R2 RMSE COV

Current 0.99865 0.18633 4.22614
Power 0.99992 0.07032 1.01243

Thermal efficiency 0.99992 0.01422 0.99102

6.3. Training and Testing Data Sets for ANN and ANFIS Models

Figure 5 shows the training and testing data sets used to develop the ANN and ANFIS models
of the thermoelectric generator system for waste heat recovery. Using these experimental data of
both the hot gas inlet temperature and voltage condition as the input parameters and the current,
power and thermal efficiency as the output parameters of the thermoelectric generator system for
waste heat recovery, six ANN models and seven ANFIS models are formulated. As the training data
set for training the ANN and ANFIS models of the thermoelectric generator system for waste heat
recovery, a total of 931 data points of the mixtures of 225 data points at the hot gas inlet temperature of
315.12 ◦C, 234 data points at the hot gas inlet temperature of 419.26 ◦C, 236 data points at the hot gas
inlet temperature of 521.70 ◦C and 236 data points at the hot gas inlet temperature of 621.61 ◦C are
deducted from the experimental study. The training for the considered ANN and ANFIS models is
stopped when the training error converges. The converged training errors for the considered ANN
and ANFIS models are shown in Figure 8. To check the reliability and accuracy of the trained ANN
and ANFIS models of the thermoelectric generator system for waste heat recovery, the additional
experiment for obtaining the testing data set of 100 data is conducted at the hot gas inlet temperature
of 419.26 ◦C with the different voltage loads.
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Figure 8. The converged training errors for (a) ANN and (b) ANFIS models of thermoelectric generator
system for waste heat recovery.

The current, power and thermal efficiency of the thermoelectric generator system for waste heat
recovery are predicted by ANN and ANFIS models for the hot gas inlet temperature of 419.26 ◦C
and voltage loads of the testing data set. The predicted current, power and thermal efficiency of the
thermoelectric generator system for waste heat recovery from the ANN and ANFIS models for the
testing data set are compared with the corresponding experimental data of the testing data set. Based
on the degree of closeness between the experimental and predicted results of the current, power and
thermal efficiency of the thermoelectric generator system for waste heat recovery with ANN and
ANFIS models, the optimum ANN and ANFIS models with higher prediction accuracy are decided.

6.4. Prediction Results from ANN Models

The comparison of experimental and ANN predicted results of the current, power and thermal
efficiency of the thermoelectric generator system for waste heat recovery using an LM-TanSig algorithm
with the various numbers of the hidden neurons is shown in Figure 9a. The increase of the hidden
neurons number from 10 to 25 increases the prediction accuracy of the ANN model with an LM-TanSig
algorithm. The values of R2, RMSE and COV of LM-TanSig algorithm with 25 hidden neurons are
0.99998, 0.02163 and 0.49061, respectively for the current, 0.99997, 0.04111 and 0.59192, respectively, for
the power and 0.99996, 0.01050 and 0.73183, respectively, for the thermal efficiency.
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The comparison of experimental and ANN predicted results of the current, power and thermal
efficiency of the thermoelectric generator system for waste heat recovery using an LM-LogSig algorithm
with the various numbers of the hidden neurons is shown in Figure 9b. The ANN model for the current
and thermal efficiency of the thermoelectric generator system for waste heat recovery with LM-LogSig
algorithm and 25 hidden neurons shows the peak prediction accuracy and this prediction accuracy
decreases in an order with LM-LogSig algorithm of 20, 15 and 10 hidden neurons, respectively. The
values of R2, RMSE and COV for LM-LogSig algorithm and 25 hidden neurons are 0.99998, 0.02370
and 0.53755, respectively for the current and 0.99994, 0.01225 and 0.85347, respectively for the thermal
efficiency. For the power of the thermoelectric generator system for waste heat recovery, LM-LogSig
algorithm with 20 hidden neurons shows higher prediction accuracy than that with 25, 15 and 10 hidden
neurons, respectively. The values of R2, RMSE and COV for LM-LogSig algorithm with 20 hidden
neurons are 0.99997, 0.04632 and 0.66686, respectively for the power.

The comparison of experimental and ANN predicted results of the current, power and thermal
efficiency of the thermoelectric generator system for waste heat recovery using SCG-TanSig algorithm
with the various numbers of the hidden neurons is shown in Figure 9c. The ANN model for the
current of the thermoelectric generator system for waste heat recovery with SCG-TanSig algorithm
and 25 hidden neurons shows the peak prediction accuracy and this prediction accuracy decreases
in an order with SCG-TanSig algorithm of 10, 25 and 15 hidden neurons, respectively. The values of
R2, RMSE and COV for SCG-TanSig algorithm with 25 hidden neurons are 0.99992, 0.04524, 1.02613,
respectively for the current of the thermoelectric generator system for waste heat recovery. The
power and thermal efficiency of the thermoelectric generator system for waste heat recovery using the
SCG-TanSig algorithm with 20 hidden neurons shows higher prediction accuracy than that with 10, 25
and 15 hidden neurons, respectively. The values of R2, RMSE and COV for SCG-TanSig algorithm with
20 hidden neurons are 0.99971, 0.13652 and 1.96554, respectively, for the power and 0.99929, 0.04377
and 3.05105, respectively, for the thermal efficiency.

The comparison of experimental and ANN predicted results of the current, power and thermal
efficiency of the thermoelectric generator system for waste heat recovery using an SCG-LogSig algorithm
with the various numbers of the hidden neurons is shown in Figure 9d. The prediction accuracy for the
current of the thermoelectric generator system for waste heat recovery with the SCG-LogSig algorithm
decreases with 25, 15, 20 and 10 hidden neurons. The values of R2, RMSE and COV for SCG-LogSig
algorithm with 25 hidden neurons are 0.99996, 0.03138 and 0.71178, respectively, for the current. The
prediction accuracy for the power of the thermoelectric generator system for waste heat recovery with
SCG-LogSig algorithm decreases with 15, 10, 25 and 20 hidden neurons but prediction accuracy for the
thermal efficiency of the thermoelectric generator system for waste heat recovery with SCG-LogSig
algorithm decreases with 15, 25, 10 and 20 hidden neurons. The values of SCG-LogSig with 15 hidden
neurons are 0.99980, 0.11376 and 1.63783, respectively, for the power and 0.99958, 0.03359 and 2.34133,
respectively, for the thermal efficiency.

The comparison of experimental and ANN predicted results of current, power and thermal efficiency
of the thermoelectric generator system for waste heat recovery using the CGP-TanSig algorithm with
various numbers of hidden neurons is shown in Figure 9e. The prediction accuracy of the thermoelectric
generator system for waste heat recovery with the CGP-TanSig algorithm decreases with 20, 25, 10, and
15 hidden neurons for the current but 20, 10, 15 and 25 hidden neurons for the power, respectively. The
values of R2, RMSE and COV for CGP-TanSig algorithm with 20 hidden neurons are 0.99989, 0.05377
and 1.21965, respectively, for the current and 0.99945, 0.18629 and 2.68213, respectively, for the power.
In addition, the prediction accuracy for the thermal efficiency of the thermoelectric generator system
for waste heat recovery using CGP-TanSig algorithm with 25 hidden neurons is the most accurate and
decreases with 15, 20 and 10 hidden neurons, respectively. The values of CGP-TanSig algorithm with 25
hidden neurons are 0.99875, 0.05805 and 4.04596, respectively, for the thermal efficiency.

The comparison of experimental and ANN predicted results of current, power and thermal
efficiency of the thermoelectric generator system for waste heat recovery using the CGP-LogSig
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algorithm with various numbers of hidden neurons is shown in Figure 9f. The CGP-LogSig algorithm
with 25 hidden neurons predicts current values of the thermoelectric generator system for waste heat
recovery closer to the corresponding experimental current values of the thermoelectric generator
system for waste heat recovery with R2, RMSE and COV values of 0.99989, 0.05354 and 1.21437,
respectively. The CGP-LogSig algorithm with 20, 15, and 10 hidden neurons shows the decreasing
order of prediction accuracy for the current of the thermoelectric generator system for waste heat
recovery. The CGP-LogSig algorithm with 15, 20, 25 and 10 hidden neurons, respectively, shows
the decreasing order of prediction accuracy for the power of the thermoelectric generator system for
waste heat recovery and CGP-LogSig algorithm with 15, 25, 10 and 20 hidden neurons, respectively,
shows the decreasing order of prediction accuracy for the thermal efficiency of the thermoelectric
generator system for waste heat recovery. The R2, RMSE and COV values for CGP-LogSig algorithm
with 15 hidden neurons are 0.99953, 0.17188 and 2.47463, respectively, for power and 0.99848, 0.06391
and 4.45470, respectively, for the thermal efficiency.

The comparison of ANN models with various combinations of the training variants, transfer
functions and number of the hidden neurons is shown. The combination of LM training variant with
TanSig and LogSig transfer functions and all numbers of the hidden neurons show better accuracy than
that of SCG and CGP training variants with TanSig and LogSig transfer functions and all numbers of
hidden neurons to predict current, power and thermal efficiency of the thermoelectric generator system
for waste heat recovery. In particular, the ANN model with LM-TanSig training algorithm and 25 hidden
neurons shows the best prediction accuracy [29,39] and is suggested as the optimum model for predicting
the current, power and thermal efficiency of the thermoelectric generator system for waste heat recovery
for the hot gas temperature ranges of 315.12 to 621.61 ◦C and voltage load ranges of 0 to 10 V. The
accuracy of the current, power and thermal efficiency of the thermoelectric generator system for waste
heat recovery using the ANN model with the LM-TanSig algorithm and 25 hidden neurons are 0.99998,
0.99997 and 0.99996, respectively, as shown in Table 3. Table 3 shows the prediction accuracy of the
optimum ANN model with the LM-TanSig algorithm and various numbers of the hidden neurons for the
current, power and thermal efficiency of the thermoelectric generator system for waste heat recovery.
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thermal efficiency for (a) LM-TanSig algorithm, (b) LM-LogSig algorithm, (c) SCG-TanSig algorithm,
(d) SCG-LogSig algorithm, (e) CGP-TanSig algorithm, and (f) the CGP-LogSig algorithm with various
numbers of hidden neurons.

Table 3. The prediction accuracy of optimum ANN model with LM-TanSig algorithm and various
numbers of hidden neurons for current, power and thermal efficiency.

Parameter Number of Hidden Neurons R2 RMSE COV

Current 10 0.99986 0.06013 1.36373
15 0.99997 0.02578 0.58476
20 0.99998 0.02507 0.56860
25 0.99998 0.02163 0.49061

Power 10 0.99977 0.12180 1.75370
15 0.99993 0.06769 0.97459
20 0.99993 0.06609 0.95152
25 0.99997 0.04111 0.59192

Thermal efficiency 10 0.99809 0.07170 4.99773
15 0.99983 0.02126 1.48165
20 0.99981 0.02277 1.58688
25 0.99996 0.01050 0.73183

6.5. Prediction Results from ANFIS Models

The comparison of experimental and ANFIS predicted results of the current, power and thermal
efficiency of the thermoelectric generator system for waste heat recovery using the triangular
membership function is shown in Figure 10a. The triangular with 4-membership function shows
higher prediction accuracy with R2, RMSE and COV of 0.99998, 0.02209 and 0.50106, respectively
and the prediction accuracy decreases in order of triangular with 5-, 2- and 3-membership functions
for the current of the thermoelectric generator system for waste heat recovery. For the power of the
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thermoelectric generator system for waste heat recovery, the triangular with 4-membership function
shows a good agreement with the experimental results with R2, RMSE and COV of 0.99973, 0.13024 and
1.87522, respectively. The prediction accuracy of the triangular with 5- and 3-membership functions
shows a good agreement within ±5%, but the prediction accuracy of the triangular with 2-membership
function shows over ±15% from the corresponding experimental which are not a permissible limit.
In the case of the thermal efficiency of the thermoelectric generator system for waste heat recovery using
the triangular with 4-membership function shows the peak prediction accuracy and this prediction
accuracy decreases in an order with the triangular with 5- and 3-membership functions. The values
of R2, RMSE and COV for the thermal efficiency of the thermoelectric generator system for waste
heat recovery using the triangular with 4-membership function are 0.99968, 0.02955 and 2.05980,
respectively. The thermal efficiency of the thermoelectric generator system for waste heat recovery
using the triangular with a 2-membership function shows the errors over ±15% from the corresponding
experimental thermal efficiency as shown in Figure 10a.

The comparison of experimental and ANFIS predicted results of the current, power and thermal
efficiency of the thermoelectric generator system for waste heat recovery using trapezoidal membership
function is shown in Figure 10b. The prediction accuracy for the current and power of the thermoelectric
generator system for waste heat recovery using the trapezoidal with 5-membership function shows the
best. The values of R2, RMSE and COV for the trapezoidal with 5-membership function are 0.99998,
0.02333 and 0.52922, respectively, for the current and 0.99982, 0.10528 and 1.51577, respectively, for
the power. In the case of the thermal efficiency of the thermoelectric generator system for waste heat
recovery, the trapezoidal with a 4-membership function shows higher prediction accuracy than the
trapezoidal with 5-membership function and the values of R2, RMSE and COV for the trapezoidal with
4-membership function are 0.99978, 0.02424 and 1.68948, respectively, for thermal efficiency. However,
the current, power and thermal efficiency predicted by the trapezoidal with 2- and 3-membership
functions show the errors above ±15% from the experimental which are not within permissible limit.

The comparison of experimental and ANFIS predicted results of the current, power and thermal
efficiency of the thermoelectric generator system for waste heat recovery using a gbell membership
function is shown in Figure 10c. The prediction accuracy of the gbell with a 4-membership function
for the current of the thermoelectric generator system for waste heat recovery shows the best and
decreases with 5-, 3- and 2-membership functions. The values of R2, RMSE and COV for gbell with
4-membership function are 0.99998, 0.02266 and 0.51393, respectively, for the current. For the power
and thermal efficiency of the thermoelectric generator system for waste heat recovery, the gbell with
3-membership function shows a better agreement than gbell with 5- and 4-membership functions. The
values of R2, RMSE and COV for gbell with 3-membership function are 0.99996, 0.04812 and 0.69281,
respectively, for the power but 0.99994, 0.01241 and 0.86506, respectively for the thermal efficiency.
However, the prediction accuracy of the power and thermal efficiency of the thermoelectric generator
system for waste heat recovery using gbell with a 2-membership function show the errors above ±15%
from the corresponding experimental which are not the permissible limit.

The comparison of experimental and ANFIS predicted results of the current, power and thermal
efficiency of the thermoelectric generator system for waste heat recovery using a gauss membership
function is shown in Figure 10d. For the current, power and thermal efficiency of the thermoelectric
generator system for waste heat recovery, the prediction accuracy of the gauss with a 5-membership
function shows the best and decreases with 4-, 3- and 2-membership functions. The values of R2, RMSE
and COV for the gauss with 5-membership function are 0.99998, 0.02165 and 0.49110, respectively for
the current, 0.99997, 0.04429 and 0.63770, respectively, for the power and 0.99997, 0.00911 and 0.63516,
respectively, for the thermal efficiency. However, the current, power and thermal efficiency of the
thermoelectric generator system for waste heat recovery using gauss with 2-membership function
show the errors above ±15% from the corresponding experimental which are not a permissible limit.

The comparison of experimental and ANFIS predicted results of the current, power and thermal
efficiency of the thermoelectric generator system for waste heat recovery using a gauss 2-membership
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function is shown in Figure 10e. For the current and thermal efficiency of the thermoelectric generator
system for waste heat recovery, the gauss2 with 4-membership function shows higher prediction
accuracy than gauss2 with a 5-membership function, but the gauss2 with 5-membership function
shows higher prediction accuracy than gauss2 with 4-membership function for the power. The
values of R2, RMSE and COV for the gauss2 with 4-membership function are 0.99998, 0.02377 and
0.53902, respectively, for the current and 0.99992, 0.01437 and 1.0012, respectively, for the thermal
efficiency. In addition, the values of R2, RMSE and COV for gauss2 with a 5-membership function are
0.99992, 0.06965 and 1.00285, respectively, for the power. However, the current, power and thermal
efficiency of the thermoelectric generator system for waste heat recovery using gauss2 with 2- and
3-membership function show the errors above ±15% from the corresponding experimental which are
not the permissible limit.

The comparison of experimental and ANFIS predicted results of current, power and thermal
efficiency of the thermoelectric generator system for waste heat recovery using a pi membership
function is shown in Figure 10f. For the current, power and thermal efficiency of the thermoelectric
generator system for waste heat recovery, the pi with 5-membership function shows higher prediction
accuracy than pi with a 4-membership function. The values of R2, RMSE and COV for pi with a
5-membership function are 0.99998, 0.02469 and 0.55991, respectively, for the current, 0.99997, 0.04029,
and 0.58006, respectively, for the power and 0.99997, 0.00931, and 0.64890, respectively, for the thermal
efficiency. However, the current, power and thermal efficiency of the thermoelectric generator system
for waste heat recovery using pi with 2 and 3-membership functions show the errors above ±15% from
the corresponding experimental which are not a permissible limit.

The comparison of experimental and ANFIS predicted results of current, power and thermal
efficiency of the thermoelectric generator system for waste heat recovery using a dsig membership
function is shown in Figure 10g. For the current of the thermoelectric generator system for waste
heat recovery, dsig with a 4-membership function shows higher prediction accuracy than dsig with
a 5-membership function. In addition, for the power and thermal efficiency of the thermoelectric
generator system for waste heat recovery, dsig with a 5-membership function shows higher prediction
accuracy than dsig with 4-membership function. The values of R2, RMSE and COV for dsig with a
4-membership function are 0.99998, 0.02360 and 0.53534, respectively, for the current. In addition, the
values of R2, RMSE and COV for dsig with a 5-membership function are 0.99990, 0.07853 and 1.13067,
respectively, for the power and 0.99989, 0.01704 and 1.18732, respectively, for the thermal efficiency.
However, the current, power and thermal efficiency of the thermoelectric generator system for waste
heat recovery using dsig with 2 and 3-membership functions show the errors above ±15% from the
corresponding experimental, which are not a permissible limit.

The same number of the membership functions results in almost the same prediction cost. As the
number of the membership functions increases, it results in a higher prediction cost. When the
prediction accuracy plays a crucial role, the ANFIS model with a pi-5-membership function or a
gauss-5-membership function could be recommended to predict the current, power and thermal
efficiency of the thermoelectric generator system for waste heat recovery [40]. The prediction accuracy
of the ANFIS model for the current, power and thermal efficiency is shown in Table 4a for pi membership
function and Table 4b for gauss membership function, respectively. When the prediction cost plays a
crucial role, the ANFIS model with gbell-3-membership function could be suggested to predict the
current, power and thermal efficiency of the thermoelectric generator system for waste heat recovery as
shown in Table 4c. Table 4c shows the prediction accuracy of an ANFIS model with a gbell membership
function for the current, power and thermal efficiency of the thermoelectric generator system for waste
heat recovery. The proposed ANFIS model with pi-5 or gauss-5 and gbell-3 show better prediction
accuracy than the coupled numerical approach for the current, power and thermal efficiency of the
thermoelectric generator system for waste heat recovery [41].
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Figure 10. The comparison of experimental and ANFIS predicted results of current, power and
thermal efficiency for (a) triangular membership function, (b) trapezoidal membership function,
(c) gbell membership function, (d) gauss membership function, (e) gauss2-membership function, (f) pi
membership function, and (g) dsig membership function.

Table 4. (a) The prediction accuracy of ANFIS model with pi membership function for current, power
and thermal efficiency; (b) The prediction accuracy of ANFIS model with a gauss membership function
for current, power and thermal efficiency; (c) The prediction accuracy of ANFIS model with a gbell
membership function for current, power and thermal efficiency.

(a)

Parameter Number of Membership Functions R2 RMSE COV

Current 2 0.94053 1.23658 28.0468
3 0.96078 1.00416 22.7752
4 0.99997 0.02852 0.64682
5 0.99998 0.02469 0.55991

Power 2 0.83830 3.19468 45.9964
3 0.71781 4.22023 60.7620
4 0.99994 0.05948 0.85635
5 0.99997 0.04029 0.58006

Thermal efficiency 2 0.87063 0.58791 41.1021
3 0.96815 0.29262 20.3952
4 0.99994 0.01257 0.87619
5 0.99997 0.00931 0.64890
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Table 4. Cont.

(b)

Parameter Number of Membership Functions R2 RMSE COV

Current 2 0.99250 0.43925 9.96247
3 0.99998 0.02366 0.53671
4 0.99998 0.02254 0.51116
5 0.99998 0.02165 0.49110

Power 2 0.88660 2.67538 38.5195
3 0.99957 0.16457 2.36942
4 0.99988 0.08667 1.24784
5 0.99997 0.04429 0.63770

Thermal efficiency 2 0.88430 0.55769 38.8710
3 0.99967 0.03002 2.09204
4 0.99996 0.01056 0.73603
5 0.99997 0.00911 0.63516

(c)

Parameter Number of Membership Functions R2 RMSE COV

Current 2 0.99997 0.02820 0.63965
3 0.99998 0.02432 0.55166
4 0.99998 0.02266 0.51393
5 0.99998 0.02325 0.52728

Power 2 0.88847 2.65317 38.1999
3 0.99996 0.04812 0.69281
4 0.99990 0.08003 1.15220
5 0.99996 0.04865 0.70043

Thermal efficiency 2 0.90510 0.50507 35.2033
3 0.99994 0.01241 0.86506
4 0.99984 0.02086 1.45405
5 0.99987 0.01848 1.28804

Additionally, the developed ANN and ANFIS models could accurately predict the performances
like the current, power and thermal efficiency of the thermoelectric generator system for waste heat
recovery with less computational time and cost because the experimental and coupled numerical
approaches could be expensive and time consuming. Therefore, the proposed methodology to develop
the ANN and ANFIS models could be applicable to accurately predict the performances of the various
physical systems like solar based systems, refrigeration systems, heat exchanger systems, thermoelectric
coolers, etc.

7. Conclusions

The coupled numerical approach is investigated to predict the current, power and thermal
efficiency of the thermoelectric generator system for waste heat recovery. Six ANN and seven
ANFIS models are developed to predict the current, power and thermal efficiency of the thermoelectric
generator system for waste heat recovery using the hot gas inlet temperatures and the voltage conditions
as the inputs. Six ANN models with combinations of three training variants of Levenberg–Marquardt
(LM), Scaled Conjugate Gradient (SCG) and Pola–Ribiere Conjugate Gradient (CGP), two transfer
functions of Tan-Sigmodal and Log-Sigmoidal and the number of hidden neurons of 10, 15, 20 and 25
are compared. Seven ANFIS models are compared with seven types of the membership functions of
triangular, trapezoidal, gauss, gauss2, gbell, pi and dsig, and the number of the membership functions
of 2, 3, 4 and 5. The optimum ANN and ANFIS models are proposed from the comparison with
experimental data using three statistical parameters of the coefficient of determination (R2), root
mean square error (RMSE) and coefficient of variance (COV). The ANN model with back-propagation
algorithm, Levenberg–Marquardt training variant, Tan-Sigmoidal transfer function, and 25 hidden
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neurons is suggested as the optimum model based on optimum values of statistical parameters for the
prediction of the current, power and thermal efficiency of the thermoelectric generator system for waste
heat recovery. The ANFIS model with gbell membership function in a number of sets of 3 is suggested
as the optimum model based on optimum values of statistical parameters to predict the current,
power and thermal efficiency of the thermoelectric generator system for waste heat recovery with low
prediction cost and acceptable prediction accuracy. The ANFIS model with pi or gauss membership
function in the number of sets of 5 is suggested as the optimum model based on optimum values
of statistical parameters to predict the current, power and thermal efficiency of the thermoelectric
generator system for waste heat recovery with higher prediction accuracy. The optimum ANN and
ANFIS models show better prediction of the current, power and thermal efficiency of the thermoelectric
generator system for waste heat recovery with low computational time and cost than the coupled
numerical approach.
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