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Abstract: This investigated the time-dependent, two-dimensional biomagnetic fluid (blood) flow
(BFD) over a stretching sheet under the action of a strong magnetic field. Blood is considered a
homogeneous and Newtonian fluid, which behaves as an electrically conducting magnetic fluid
that also exhibits magnetization. Thus, a full BFD formulation was considered by combining both
the principles of magnetization and the Lorentz force, which arise in magnetohydrodynamics and
ferrohydrodynamics. The non-linear governing equations were transformed by using the usual
non-dimensional variables. The resulting system of partial differential equations was discretized
by applying a basic explicit finite differences scheme. Moreover, the stability and convergence
analysis were performed to obtain restrictions that were especially for the magnetic parameters,
which are of crucial importance for this problem. The acquired results are shown graphically and
were examined for several values of the dimensionless parameters. The flow and temperature
distributions were increased as the values of the magnetic parameters were increased. With the
progression in time, the flow profile and temperature distribution were also increased. It is hoped
that the results of this problem will be used for high targeting efficiency toward determining the
maximum values of magnetic field for which accurate flow predictions could be made using a very
simple numerical scheme.

Keywords: biomagnetic fluid dynamics (BFD); stretching sheet; finite difference method; stability
and convergence analysis

1. Introduction

Nowadays, analysis of biomagnetic fluid dynamics (BFD) is more attractive due to the potential
biomedical applications. Several applications have been proposed, especially for the medical sciences
and bioengineering, including cell separation for magnetic devices, drug delivery using magnetic
particles for the treatment of cancer tumors, hyperthermia, and the reduction of bleeding during
surgeries [1–7].

The biofluids, whose flow is influenced by the magnetization and Lorentz force within an
external magnetic field, are called biomagnetic fluids. One common biomagnetic fluid is blood, which
possesses the properties of a magnetic fluid because of the red blood cells (RBCs). RBCs contain a
high concentration of hemoglobin molecules, a form of iron oxide that constitutes a magnetic dipole
that is influenced by a magnetic field. Thus, it has been verified [8] that blood could be considered a
magnetic fluid. The most important characteristic of a biomagnetic fluid is basically determined by the
magnetization force, which also determines how much the magnetic field is affecting the magnetic fluid.
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The impact of the magnetization on the flow behavior of blood has been studied by few researchers.
The first investigated BFD flows are found in Haik et al. [8]. This BFD model is compatible with the
basis of ferrohydrodynamics (FHD) where the induced electric current is considered negligible and
the flow is isothermal [9,10]. However, blood is an electrically conducting fluid due to the plasma,
which contains ions. Tzirtzilakis [11] proposed an extended BFD model that considers the electrical
conductivity of blood. In that study, he adopted both magnetohydrodynamics (MHD) and FHD
principles, considering both magnetization and polarization; in addition, he included the energy
equation for the investigation of biomedical applications like magnetic hyperthermia.

Crane, in 1970, studied for the first time the classical physical problem of the stretching sheet and
presented the solution in an analytical form [12]. Anderson and Valnes [13] demonstrated the impact
of a magnetic field that was produced by a magnetic dipole on a ferrofluid passing a stretching sheet.
The effect of radiation and magnetization on the ferrofluid passing a stretching sheet was analyzed
by Zeeshan et al. [14]. The heat transfer flow of a heated biomagnetic fluid over a nonlinear system
was studied by Tzirtzilakis and Kafoussias [15]. Tzirtzilakis and Tanoudis [16] investigated the blood
flow through a stretching sheet where they considered blood as a Newtonian fluid. Murtaza et al. [17]
studied a steady, incompressible viscous biomagnetic fluid under the effect of an external magnetic
field gradient. They considered that the magnetization M is a linear combination of the magnetic field
strength H and temperature T. Finally, Ali et al. [18] reported the MHD flow with a stagnation point in
the presence of magnetization.

Blood flows in the whole body through capillaries, arteries, and veins. Capillaries carry the blood
through the skin and muscles, arteries carry the blood away from the heart, and veins carry the blood
toward the heart. Also, we know skins, muscles, arteries, and veins are stretched continuously, and
we say that skin and muscles are a stretching surfaces, whereas arteries and veins are a stretching
cylinders. Based on the abovementioned analyses, many researchers have conducted their research
work evaluting a stretching sheet [15–19].

Albeit a classical physical problem, the analysis of an unsteady stretching sheet is an important
topic of ongoing basic research. Das et al. [20] reported the unsteady MHD flow over a stretching sheet
and observed that this induced more entropy in the presence of metallic nanoparticles. The unsteady
MHD stretching sheet flow was also investigated in three-dimensions by considering velocity and
thermal slip boundary conditions [21]. Misra et al. [22] discussed a MHD viscoelastic fluid, which
is also electrically conducting, and proposed some applications related to medical sciences, such
as hemodynamics.

In the present article, we study unsteady biomagnetic fluid flow over a stretching sheet within the
influence of an applied magnetic field generated by a magnetic dipole. Here, we are interested in the
flow problem like the one studied before [17] with the consideration of time dependency. Moreover,
in the present paper, the mathematical problem is solved using a numerical treatment of the initial
set of partial differential equations in conjunction with the previous studies [17], where a similarity
problem governed by a system of governing equations with corresponding boundary conditions was
solved numerically. For the numerical solution of this problem, we used the finite differences method
(FDM) [23]. The stability and convergence analysis were also conducted to determine restrictions for
the application of FDM for the values of the magnetic parameters, which are of crucial importance for
the flow field. It is hoped that the present study provides some insight of a basic BFD flow configuration
for a particularly predicted range of the parameters using a very simple FDM numerical methodology.

2. Mathematical Model of the Flow

We consider the time-dependent (unsteady), laminar and incompressible viscous fluid (blood)
flow past a stretching sheet with velocity u = cx, where c > 0 is a constant. The Cartesian coordinate
x is measured along the stretching surface and the coordinate y is normal to the stretching surface.
The flow takes place at y ≥ 0. We also assume that the sheet temperature is Tw and Tc is the ambient
temperature, where Tw < Tc. A constant pressure gradient ∂p

∂x and ∂p
∂y is applied toward the X and
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Y directions. We also assume that length of the sheet is l, and the distance between the ambient
temperature and the sheet temperature is h. A magnetic dipole that creates a magnetic field is situated
below the sheet and the origin of the Cartesian coordinate system (see Figure 1). The magnetic field of
the dipole gives rise to a magnetic field of sufficient strength to saturate the biomagnetic fluid. When
the biomagnetic fluid enters and leaves the region where the locally applied magnetic field acts and
where the gradient of the magnetic field strength is high, the force due to the magnetization, as well as
the Lorentz force, arises.
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Under the above circumstances, we consider the governing equations, which are valid for the
extended BFD model [11,17,24]:

∂u
∂x
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∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

= −
1
ρ

∂p
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+
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(3)

ρCp

(
∂T
∂t + u∂T

∂x + v∂T
∂y

)
+ µ0T ∂M

∂T

(
u∂H
∂x + v∂H

∂y

)
− σB2u2 = k

(
∂2T
∂x2 + ∂2T

∂y2

)
+µ

[
2
[(
∂u
∂x

)2
+

(
∂v
∂y

)2
]
+

(
∂v
∂x + ∂u

∂y

)2
] (4)

subject to the following initial and boundary conditions:

t ≤ 0 : u = 0, v = 0, T = Tc everywhere (5)

t > 0 : u = u(y), v = 0, T = T(y) at x = 0 and 0 ≥ y ≥ h
u = U0 = cx, v = 0, T = Tw at y = 0 and 0 ≥ x ≥ l

u = 0, v = 0, T = Tc at y = h(as y→∞) or x = L(as x→∞)y→∞

 (6)

Here, the velocity components are q = (u, v), p is the pressure, and the other problem parameters,
namely ρ,µ, σ, k, cp are called the biomagnetic fluid density, viscosity, electrical conductivity, thermal
conductivity, and specific heat at a constant pressure, respecitvely. Also B,µ0, H are called the magnetic
induction, permeability of the free space, and magnetic field strength intensity, respectively, where
(B = µ0H =>

(
Bx, By

)
= µ0(Hx, Hy)).
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The additional terms in the Navier–Stokes equations −σB2
yu + σBxByv and −σB2

xv + σBxByu
represent the Lorentz force per unit volume toward the x and y directions, respectively, and the term
represents the Joule heating. For the energy equation, the Joule heating is considered to arise mainly
due to the primary velocity u. The abovementioned terms appear due to the electrical conductivity and
are well known in MHD [11]. Also, the additional terms of the Naiver–Stokes equations µ0M∂H

∂x and
µ0M∂H

∂y represent the magnetic force due to polarization. The additional term of the energy equation

µ0T ∂M
∂T

(
u∂H
∂x + v∂H

∂y

)
represents the thermal conductivity per unit volume.

A magnetic dipole produces a magnetic field, whose magnetic scalar is discussed by Andersson
and Valnes [13]:

V(x, y) =
α

2π
x

x2 + (y + d)2 (7)

The magnitude ‖H‖ = H of the magnetic field intensity is that produced by a magnetic dipole [13]

H(x, y) =
(
H2

x + H2
y

) 1
2 =

γ

2π
1

x2 + (y + d)2 (8)

where γ = α and Hx, Hy are the components of the magnetic field
→

H =
(
Hx, Hy

)
given by:

Hx(x, y) = −
dv
dx

=
γ

2π
x2
− (y + d)2(

x2 + (y + d)2
)2 (9)

Hy(x, y) = −
dv
dy

=
γ

2π
2x(y + d)(

x2 + (y + d)2
)2 (10)

and the gradients are given by:

∂H
∂x

= −
γ

2π
2x

(y + d)4
and

∂H
∂y

=
γ

2π

− 2

(y + d)3 +
4x2

(y + d)5

 (11)

H is the magnetic field strength intensity, which is given by the relation:

H(x, y) =
γ

2π

 1

(y + d)2 −
x2

(y + d)4

 (12)

Various relations giving the magnetization M of a biomagnetic fluid are described in
Matsuki et al. [25]. Here we use a relation for magnetization involving a combination of H and T:

M = KH(Tc − T) (13)

where K is a constant called the pyromagnetic coefficient.
The magnetic field strength intensity given by Equation (12) can also be achieved by considering

the magnetic field generated by a magnetic dipole and taking the expansion of the derivatives close to
the origin of the Cartesian system. Clearly, this formulation is valid only very close to the magnetic
source and the induced currents are considered negligible to affect the magnetic field itself. These
assumptions concerning the mathematical model are described in detail in Tzirtzilakis [11].

3. Mathematical Formulation

The physical problem described by the governing Equations (1)–(4) subject to the boundary
conditions in Equations (5) and (6) were solved using the finite difference method. In order to initiate
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the solution procedure, we needed to convert the physical problem to the non-dimensional form. Here
the following quantities are introduced:

X =
xU0

ν
, Y =

yU0

ν
, U =

u
U0

, V =
v

U0
, P =

p

ρU2
0

, H =
H
H0

Hx =
Hx

H0
, Hy =

Hy

H0
, T =

Tc − T
Tc − Tw

, τ =
tU2

0

ν

Now after converting to the dimensionless quantities in Equations (1)–(4), the governing equations
are transformed to their dimensionless form as follows:

∂U
∂X

+
∂V
∂Y

= 0 (14)

∂U
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+ U
∂U
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+ V
∂U
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∂V
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)(
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[
2
{(
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)2
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(
∂V
∂Y

)2
}
+

(
∂V
∂X + ∂U

∂Y

)2
]  (17)

The corresponding boundary conditions are also transformed to:

τ ≤ 0 : U = 0, V = 0, T = 0 everywhere (18)

τ > 0 : U = 0, V = 0, T = 0 at X = 0
U = 1, V = 0, T = 1 at Y = 0

U = 0, V = 0, T = 0 as Y→∞

 (19)

where Pr =
µcp

k is the Prandtl number, Ec =
U2

0
cp(Tc−Tw)

is the Eckert number, ε = Tc
Tc−Tw

is the

dimensionless temperature parameter, MF =
µ0KH2

0(Tc−Tw)

ρU2
0

is the ferromagnetic (FHD) parameter and

MM =
σµ2

0H2
0ν

ρU2
0

is the magnetohydrodynamic (MHD) parameter.

For the MHD parameter we have that MM =
σµ2

0H2
0ν

ρU2
0

=
σB2

0h2

νρ
ν2

h2U2
0
= Ha2

Re2 , where Ha is the Hartman

number known in MHD [26], which express the ratio of the Lorentz forces to the viscous forces. Thus,
given that the Re number expresses the ratio of the inertial forces to the viscous forces, the MHD
parameter expresses the square of the ratio of the Lorentz forces to the inertial forces. Furthermore,
by following analogous considerations in accordance with Davidson [26], we find out that the FHD
parameter expresses the ratio of the magnetization forces to the inertial forces. Note that when
magnetic parameters MF = MM = 0, then the physical problem is reduced to a simple hydrodynamic
fluid problem.

4. Numerical Method

In Section 4, the non-linear partial differential Equations (14)–(17) subject to the boundary
conditions in Equations (18) and (19) are treated numerically for the velocity and temperature using
the explicit finite differences scheme of Callahan and Marner [27], which is conditionally stable.

In order to solve this problem, we first acquired the difference equation. The boundary layer
region was separated into a grid or mesh of lines parallel to the X and Y axes.
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We assumed that the maximum length of the plate was Xmax(= 100) and Ymax(= 10)
corresponding to X→∞ and Y→∞ . The grid spacing number was m = 600 and n = 600, as shown in
Figure 2. The mesh sizes were considered to be ∆X = 0.166(0 < X < 100) and ∆Y = 0.016(0 < Y < 10)
with a time step ∆τ = 0.0001.
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Let U′, V′ and T′ be the new values of U, V and T, respectively, at the end of the time step.
Applying the explicit finite difference approximation, the following relations are obtained:
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By substituting the above relations into Equations (14)–(17), the following Equations are obtained:
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Ui, j−Ui−1, j

∆X + Vi, j
Ui, j+1−Ui, j

∆Y = −P1 +
(

Ui+1, j−2Ui, j+Ui−1, j

(∆X)2 +

Ui, j+1−2Ui, j+Ui, j−1

(∆Y)2

)
+ MFH ∂H

∂X T
′

i, j −MMH
2
yUi, j + MMHxHyVi, j

 (21)
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V
′

i, j−Vi, j

∆τ + Ui, j
Vi, j−Vi−1, j

∆X + Vi, j
Vi, j+1−Vi, j

∆Y = −P2 +
(

Vi+1, j−2Vi, j+Vi−1, j

(∆X)2 +

Vi, j+1−2Vi, j+Vi, j−1

(∆Y)2

)
+ MFH ∂H

∂Y T
′

i, j −MMH
2
xVi, j + MMHxHyUi, j

 (22)

T
′

i, j−Ti, j

∆τ + Ui, j
Ti, j−Ti−1, j

∆X + Vi, j
Ti, j+1−Ti, j

∆Y + εMFEcH
(
Ui, j

∂H
∂X + Vi, j

∂H
∂Y

)
−MMEcH

2
U2

i, j

−MFEcHTi, j

(
Ui, j

∂H
∂X + Vi, j

∂H
∂Y

)
= 1

Pr

(
Ti+1, j−2Ti, j+Ti−1, j

(∆X)2 +
Ti, j+1−2Ti, j+Ti, j−1

(∆Y)2

)
−

Ec

[
2
{(

Ui, j−Ui−1, j
∆X

)2
+

(
Vi, j+1−Vi, j

∆Y

)2
}
+

(
Vi, j−Vi−1, j

∆X +
Ui, j+1−Ui, j

∆Y

)2
]


(23)

with the corresponding initial and boundary conditions:

U0
i, j = V0

i, j = T
0
i, j = 0 (24)

Un
0, j = Vn

0, j = T
n
0, j = 0

Un
i,0 = 1, Vn

i,0 = 0, T
n
i,0 = 1

Un
i,l = 0, Vn

i,l = 0, T
n
i,l = 0 where l→∞

 (25)

where the subscripts i and j represent the space, and the superscript n represents time. Initially, at τ = 0,
we considered that the values of U, VandT were known. For any time step, the coefficients Ui, j and Vi, j
appearing in the Equations (20)–(23) behave as constants. For any time step ∆τ, the new temperature

and velocities T
′

, U′, and V′ may be obtained by using the continuous process of Equations (20)–(23).
This scheme is repeated until the convergence criteria is attained.

5. Stability and Convergence Analysis

The analysis of the convergence and stability provide the necessary basis for the wide range of
research on efficient finite difference schemes for problems in mathematical physics. Since the equations
are solved using an explicit method, we need to discuss the stability and convergence analysis. The
stability and convergence analysis may seem a trivial procedure; however, it is required for every
numerical simulation and usually provides restrictions of the values of the physical parameters for
which a convergent solution is attained. For this analysis, the stability criteria were established by
using fixed mesh sizes as follows.

Equation (20) was ignored since it is not time dependent. For any time τ, we expanded U, V, and
T using Fourier series, such that the terms U, V, and T become:

U : ψ1(τ)eiαXeiβY

V : ψ2(τ)eiαXeiβY

T : θ(τ)eiαXeiβY

 (26)

Now, Equation (26) can be written after any time step as follows:

U : ψ
′

1(τ)e
iαXeiβY

V : ψ
′

2(τ)e
iαXeiβY

T : θ′(τ)eiαXeiβY

 (27)

By substituting Equations (26) and (27) into Equations (21)–(23), and regarding the coefficients U
and V as being constant over any time step, after simplification, we can rewrite the Equations as:

ψ
′

1 = A1ψ1 + B1ψ2 + C1θ
′ (28)
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ψ
′

2 = A2ψ1 + B2ψ2 + C2θ
′ (29)

θ′ = A3ψ1 + B3ψ2 + C3θ (30)

Again, using Equation (30) in Equations (28) and (29), we obtain:

ψ
′

1 = A4ψ1 + B4ψ2 + C4θ

ψ
′

2 = A5ψ1 + B5ψ2 + C5θ

where,
A4 = A1 + C1A3, B4 = B1 + C1B3, C4 = C1C3

and A5 = A2 + C2A3, B5 = B2 + C2B3, C5 = C2C3.
Hence, Equations (28)–(30) can be expressed in matrix notation as follows:

ψ
′

1
ψ
′

2
θ
′

 =


A4 B4 C4

A5 B5 C5

A3 B3 C3



ψ1

ψ2

θ


That is η

′

= Tη, where:

η
′

=


ψ
′

1
ψ
′

2
θ
′

, T =


A4 B4 C4

A5 B5 C5

A3 B3 C3

and η =


ψ1

ψ2

θ


For the analysis of the stability condition, it is necessary to determine the eigenvalues of the

amplification matrix T. Since the matrix is third order, it is very difficult to determine the eigenvalues.
As an approximation to bypass the above complexity, we considered that the time difference ∆τ was
very small and tended to zero.

Under this consideration:

B4 → 0, C4 → 0, A5 → 0, C5 → 0, A3 → 0, B3 → 0

and the amplification matrix becomes:

T =


A4

0
0

0
B5

0

0
0

C3


After this simplification of the matrix T, we obtain the following eigenvalues:

λ1 = A4, λ2 = B5, λ3 = C3

For the stability analysis, the following conditions for |λn| ≤ 1, n = 1, 2, 3 must be satisfied:

|A4| ≤ 1, |B5| ≤ 1, |C3| ≤ 1 for all α and β

Now we consider:

a = U
∆τ
∆X

, b = |V|
∆τ
∆Y

, c = 2
∆τ

(∆X)2 , d = 2
∆τ

(∆Y)2

where the coefficients a, b, and c are real and non-negative. It has been demonstrated that the maximum
modulus of A4, B5andC3 occurs when α∆X = mπ and β∆Y = nπ, where m and n are integers, and
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hence A4, B5andC3 are real. When the values of both m and n are odd integers, then the values of
|A4|, |B5|and|C3| are greater.

To satisfy the condition |C3| ≤ 1, the highest negative value is C3 = −1, therefore one stability
condition is:

U
∆τ
∆X

+ |V|
∆τ
∆Y

+
2
Pr

 ∆τ

(∆X)2 +
∆τ

(∆Y)2

− 1
2

MFEcH
(
U
∂H
∂X

+ V
∂H
∂Y

)
∆τ ≤ 1

Therefore, the stability conditions of the method are:

U
∆τ
∆X

+ |V|
∆τ
∆Y

+
2
Pr

 ∆τ

(∆X)2 +
∆τ

(∆Y)2

− 1
2

MFEcH
(
U
∂H
∂X

+ V
∂H
∂Y

)
∆τ ≤ 1 (31)

U ∆τ
∆X + |V| ∆τ∆Y + 2

(
∆τ

(∆X)2 +
∆τ

(∆Y)2

)
+ 1

2 MMH
2
y∆τ+ 1

2 MFH ∂H
∂X

[
MMEcH

2
U+

εMFEcH ∂H
∂X + Ec

(
8U

(∆X)2 +
4U

(∆Y)2

)]
(∆τ)2

≤ 1

 (32)

U ∆τ
∆X + |V| ∆τ∆Y + 2

(
∆τ

(∆X)2 +
∆τ

(∆Y)2

)
+ 1

2 MMH
2
x∆τ+ 1

2 MFH ∂H
∂Y

[
εMFEcH ∂H

∂Y

+Ec

(
8V

(∆Y)2 +
4V

(∆X)2 −
8U

∆X.∆Y

)]
(∆τ)2

≤ 1

 (33)

Using the initial condition, U = V = T = 0 at τ = 0, we determined the stability and convergence
criteria of the method to be Pr ≥ 0.733, MF ≤ 1.73× 108, and MM ≤ 2.1× 104. (Appendix A).

6. Results and Discussion

6.1. Justification of the Grid Space

To verify the independence of the obtained results on the grid used, i.e., from the grid m × n
toward the X and Y directions, respectively, the code was run with a different space grids, namely
m = n = 200, m = n = 300, m = n = 400, m = n = 500, m = n = 600, m = n = 700, and m = n = 750.
It was found that the grid independency was achieved at about m = n = 600 where minor changes
were observed in comparison with the solution attained for m = n = 750. A characteristic grid
independency check is pictured in Figure 3 where the velocity no longer changed for m = n = 600 and
denser grids.
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6.2. Steady-State Solution

For the steady-state solution, calculations were repeated up to non-dimensional time τ = 25.
The major changes in the prime variables occurred up to the dimensionless time τ = 10, and minor
changes occurred for τ = 10 to 25. Thus, the solution for dimensionless time τ = 25 was considered
the steady-state solution for this problem. Figure 4 shows a representative solution of the U velocity
profile for different time steps and for grid points m = 600, n = 600. It was found that the velocity
increased gradually as the time increased, until the steady-state (τ = 25) condition was attained. For
the steady-state solutions of all quantities presented, a check similar to the one mentioned above was
performed to ensure that the solution depicted was indeed a steady-state solution.
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6.3. Estimation of Parameters

For the solution procedure, we needed to assign some numerical values to the problem parameters.
Since we adopted blood as the fluid in question, we considered the fluid to hold the properties of blood
with a density ρ = 1050 kg m−3 and viscosity µ = 3.2 × 10−3kg m−1 s−1, flowing with a maximum
velocity U0 = 1.22 × 10−2ms−1 [16]. Also, we took σ = 0.8sm−1 [28], cp = 3.9 × 103Jkg−1K−1, and
k = 0.5 Jm−1s−1K−1 [17]. The sheet temperature was considered to be Tw = 37 ◦C, while the ambient
temperature was Tc = 41 ◦C. Using these values, we calculated the dimensionless temperature number
to be ε = 78.5 and the Prandtl number to be Pr = 25.

Now, we rewrite the ferromagnetic (MF) and magnetohydrodynamic numbers (MM) as

MF =
µ0KH2

0(Tc − Tw)

ρU2
0

=
µ0H0KH0(Tc − Tw)

ρU2
0

=
B0M0

ρU2
0

and

MM =
σµ2

0H2
0ν

ρU2
0

=
σB2

0ν

ρU2
0

(34)

where B0 and M0 are the magnetic induction number and magnetization number, respectively. For pure
blood, it has been found that the saturation magnetization of 60 Am−1 is attained for a magnetic field
strength above 6 T [8,11]. It is possible to attain order of magnitudes greater magnetization artificially,
i.e., via the addition of magnetic nanoparticles, using much lower magnetic field strengths, such as 1 T
or even less. The electrical conductivity of blood could also be artificially increased, and thus, the range
of values of MF and MM could vary significantly depending on the specific application. For the present
case, we considered some reference values of the magnetic field induction B0, and we considered
MF and MM as determined by Equation (34). It is apparent that someone could arrive at totally
different values depending on a specialized application, such as reinforcing polarization or electrical
conductivity, by adding magnetic nanoparticles or electrolytes, respectively. Some corresponding
values of ferromagnetic (MF) and magnetohydrodynamic (MM) numbers with a reference magnetic
induction are given in Table 1.

Table 1. Reference magnetic field induction and corresponding values of MF and MM.

ReferenceMagneticFieldFlux(
→

B) Magnetohydrodynamic Number (MM) Ferromagnetic Number (MF)

2 T 0.000062 767.8
4 T 0.00025 1535.5
6 T 0.00056 2303.5
8 T 0.001 3071.2
9 T 0.0013 3455.1

10 T 0.0016 3839.2

Considering the above case scenario of the physical problem, as well as the above
analysis of the magnetic numbers, we derived representative values for the Eckert number
Ec = 9.5 × 10−9; Prandtl number Pr = 25; magnetohydrodynamic (MHD) number MM =

0, 0.0016, 0.001, 0.00056, 0.00025, 0.000062; and ferromagnetic (FHD) number MF =

0, 3839.2, 3071.2, 2303.5, 1535.5, 767.8. We found that the abovementioned stability analysis gave
the restrictions for the parameters, which were Pr ≥ 0.733, MF ≤ 1.73 × 108, and MM ≤ 2.1 × 104.
Thus, the values adopted for the above case scenario of the physical problem were well below
the values of the ferromagnetic (MF) and magnetohydrodynamic (MM) numbers required for the
validity of the numerical method stability. However, as it has already been noted, these limiting
values of the ferromagnetic (MF) and magnetohydrodynamic (MM) numbers should kept in mind
for the investigation of BFD flow problems where the polarization is controlled by the addition of
magnetic nanoparticles.
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In order to assess the validity and accuracy of the numerical results, we computed the Nusselt
number for the steady-state condition with MF = 0, MM = 0, H = Hx = Hy = P = Ec = 0, and
compared them with Khan et al. [29] in Table 2 and observed that our results were in excellent
agreement with those of Khan et al. [29]. Therefore, we conclude that our observation method was
accurate in light of this comparison.

Table 2. Comparison of the Nusselt number for different values of Pr with MF = 0, MM = 0, H = Hx =

Hy = P = Ec = 0.

Pr Present Result Khan et al. [29]

0.2 0.1689 0.1694
0.7 0.4524 0.4544
2 0.909 0.9109
7 1.8930 1.8960

20 3.3532 3.3541

The effect of the magnetohydrodynamic and ferromagnetic parameters on the velocities U and
V, and the temperature distribution T are shown in Figures 5–7. It is observed from Figures 5–7 that
the fluid primary velocity and temperature distribution decreased with the increase of the MHD and
FHD parameter, whereas the corresponding secondary velocities increased. This fact was due to the
presence of a magnetic field, which is also called the Kelvin force, which acts against the flow. This
resistive force slows down the fluid velocity component.
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This abovementioned phenomenon pictured in Figures 5 and 6, i.e., the decrease of the primary
velocity with the simultaneous increase of the corresponding secondary ones as the magnetic field
strength intensity increased, has also been observed in numerous BFD studies [11,13,15,17]. The
increase in the secondary velocity was maximized at about Y = 1, and after that point, begins to decay,
forming a bell-shaped distribution. For BFD problems of internal flows, it is a generally found that the
formation of a vortex close to the area of the application of the magnetic field depends on the geometry
of the physical plane and the magnetic field strength and gradient [11]. It seems that this vortex-like
phenomenon tends to appear in the analogous stretching sheet boundary layer problems, emerging
with an increase of the secondary velocity close to the magnetic source. This increase is always local,
and finally, the secondary velocity distribution decays, forming a characteristic bell-shaped distribution
through the boundary layer [13,15,17]. Moreover, Figures 5 and 6 depict the distributions of the
primary and secondary velocities for various magnetic field strengths for τ = 0.1, apart from that of
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τ = 15, which corresponds to the steady state. It was found that, as the time elapsed, the effect of
the magnetic field on the flow was analogous to that observed on the final, steady state. Clearly, for
a specific τ, the primary velocity u was reduced with the induction of the magnetic field intensity,
whereas the secondary velocity v rose and was increased as the magnetic field strength also increased.

The variation of the dimensionless temperature T with Y is pictured in Figure 7. The dimensionless
temperature was generally reduced at the area of the boundary layer as the magnetic field strength
increased. It was apparent that the decrease of the dimensionless temperature meant an increase of the
corresponding dimensional one. For greater values of the magnetic field in the steady state and for 1 <

Y < 3, the dimensionless temperature had small negative values, which meant that the dimensional
temperature was greater than that of the corresponding hydrodynamic case. This phenomenon was
enhanced as the time passed toward the steady state. For smaller times, as for τ = 0.1, the temperature
variation was confined in a smaller region in the boundary layer. Specifically, for τ = 0.1, the region of
variation of the dimensionless temperature was Y < 1. Generally, the application of the magnetic field,
at any time, had the influence of dropping the dimensionless temperature more rapidly than in the
corresponding hydrodynamic case.

Another important flow characteristic concerning stretching sheet flow problems are the missing
slope, which is also known as a skin friction and the rate of heat transfer coefficient as defined by the
following relations [12,13,15,17]:

C fx = − 2τw

ρ(cx)2 , where τw = µ ∂u
∂y

∣∣∣∣
y=0

is the wall shear stress, and Nux = x
Tc−Tw

∂T
∂y

∣∣∣∣
y=0

, where Nux is

the local Nusselt number.
Using the non-dimensional variables from Section 2, we concluded that the above quantities can

be written as:
C fx = −2c ∂U

∂Y

∣∣∣
Y=0 and Nux = X ∂T

∂Y

∣∣∣∣
Y=0

, where we can define ∂U
∂Y

∣∣∣
Y=0 as the dimensionless wall

shear parameter and ∂T
∂Y

∣∣∣∣
Y=0

as the dimensionless wall heat transfer parameter.

The change of the dimensionless wall shear parameter − ∂U
∂Y

∣∣∣
Y=0, for the steady state, is shown in

Figure 8. Here, we observed that the wall shear parameter varied nonlinearly with the distance X,
regardless of the application of the magnetic field. We also observed that the values of the wall shear
parameter increased as the strength of magnetic field increased. For grater values of the magnetic
field strength, the values of this coefficient for X > 2 increased by more than 100% compared to the
hydrodynamic case. This was justified because the application of the magnetic field for this kind of
problems generally involves rising forces opposing the main flow direction; this also coincides with
previously published results [13,15–17].
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The variation of the wall heat transfer parameter for various values of magnetic field strength for
the steady state is pictured in Figure 9. Generally, the variation of the wall heat transfer parameter
with X was a nonlinear reduction. The increase of the magnetic field resulted in an increase of the wall
heat transfer parameter. It seems that the increase of the dimensionless wall shear parameter observed
in Figure 8 was related to an analogous increase of the dimensionless wall heat transfer parameter. For
the steady state and for approximately X > 2, the increase of this coefficient was also beyond 150% for
greater values of the magnetic field strength.
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These results were extensive enough and the addition of two-dimensional results had nothing to
add as far as the solution of the physical problem itself was concerned. If one observes the solution
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with respect the second direction, for these values of the parameters, it was shown that the solution
actually follows a similar pattern. Therefore, it is concluded that adding the solution toward the
second dimension had nothing to add other than complexity. On the other hand, the results were
presented as one dimensional because for this type of problem, the majority of the derived results are
one dimensional. Therefore, if the reader wants, they could perform calculations comparing the present
results with results obtained from a reduced problem as described by a system of ordinary differential
equations along with the corresponding boundary conditions as was used when the one-dimensional
reduction was applied.

7. Conclusions

The BFD unsteady stretching sheet flow was studied. The numerical treatment was made using
an explicit finite difference method (EFDM) with an elaborated stability and convergence analysis. The
values of the key parameters corresponding to a physical case scenario were well in the range required
for the stability and convergence of the numerical scheme. The computations for the steady state have
shown the following:

1. The fluid primary velocity and temperature distribution decreased in the area of the boundary
layer with the simultaneous increase of the MHD and FHD parameters, whereas the corresponding
secondary velocities were increased.

2. The increment of the magnetic field resulted in a reduction of the skin friction coefficient on the
wall, whereas the heat transfer on the wall was increased.

3. With a greater elapsing of time (τ), the velocity and temperature profiles were found to
be enhanced.
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Nomenclature

(u, v) Velocity components in the x, y direction (m·s−1)

(x, y) Cartesian coordinates (m)

p Fluid pressure (N·m−2)
→

M Magnetization (A·m−1)
→

H Magnetic field intensity (A·m−1)
→

B Magnetic induction ( Tesla , T)
T Fluid temperature inside the boundary layer (K)

Tc Fluid temperature far away from the sheet (K)

Tw Temperature of the sheet (K)

(U, V)
Dimensionless velocity components in the x and y
directions

P Dimensionless pressure
T Dimensionless temperature
t Time (s)
ρ Density of fluid ( kg·m−3)

ν Kinematic viscosity (m2
·s−1)

µ Dynamic viscosity (kg·m−1s−1)

µ0 Magnetic permeability (N·A−2)

σ Electrical conductivity (s·m−1)
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cp Specific heat constant pressure (g·kg−1K−1)

k Thermal conductivity ( g·m−1s−1K−1)

Pr Prandtl number (dimensionless)
Ec Eckert number (dimensionless)
ε Dimensionless Curie temperature
MF Ferromagnetic interaction parameter (dimensionless)
MM Magnetohydrodynamic parameter (dimensionless)
τ Dimensionless time

Appendix A

Applying the explicit finite difference approximation into Equations (15)–(17), the following Equations
are obtained:

U′i, j−Ui, j

∆τ + Ui, j
Ui, j−Ui−1, j

∆X + Vi, j
Ui, j+1−Ui, j

∆Y = −P1 +
(

Ui+1, j−2Ui, j+Ui−1, j

(∆X)2 +

Ui, j+1−2Ui, j+Ui, j−1

(∆Y)2

)
+ MFH ∂H

∂X T
′

i, j −MMH
2
yUi, j + MMHxHyVi, j

 (A1)

V′i, j−Vi, j

∆τ + Ui, j
Vi, j−Vi−1, j

∆X + Vi, j
Vi, j+1−Vi, j

∆Y = −P2 +
(

Vi+1, j−2Vi, j+Vi−1, j

(∆X)2 +

Vi, j+1−2Vi, j+Vi, j−1

(∆Y)2

)
+ MFH ∂H

∂Y T
′

i, j −MMH
2
xVi, j + MMHxHyUi, j

 (A2)

T′i, j−Ti, j

∆τ + Ui, j
Ti, j−Ti−1, j

∆X + Vi, j
Ti, j+1−Ti, j

∆Y + εMFEcH
(
Ui, j

∂H
∂X + Vi, j

∂H
∂Y

)
−MMEcH

2
U2

i, j

−MFEcHTi, j

(
Ui, j

∂H
∂X + Vi, j

∂H
∂Y

)
= 1

Pr

(
Ti+1, j−2Ti, j+Ti−1, j

(∆X)2 +
Ti, j+1−2Ti, j+Ti, j−1

(∆Y)2

)
−

Ec

[
2
{(

Ui, j−Ui−1, j

∆X

)2
+

(
Vi, j+1−Vi, j

∆Y

)2
}
+

(
Vi, j−Vi−1, j

∆X +
Ui, j+1−Ui, j

∆Y

)2
]


(A3)

For any time τ, we expand U, V and T by Fourier series, then the terms U, V and T become

U : ψ1(τ)eiαXeiβY

V : ψ2(τ)eiαXeiβY

T : θ(τ)eiαXeiβY

 (A4)

Now Equation (26) can be written after any time step

U : ψ
′

1(τ)e
iαXeiβY

V : ψ
′

2(τ)e
iαXeiβY

T : θ′(τ)eiαXeiβY

 (A5)

By substituting (4) and (5) in Equations (1)–(3), regarding the coefficients U and V as constant over any time
step, after simplification we rewrite the equations

ψ1
′(τ)−ψ1(τ)

∆τ + Uψ1(τ)
1−e−iα∆X

∆X + Vψ1(τ)
eiβ∆Y
−1

∆Y = −P1e−iαXe−iβY + MFH ∂H
∂Xθ

′(τ)+

2ψ1(τ)
(

cosα∆X−1
(∆X)2 +

cos β∆Y−1
(∆Y)2

)
−ψ1(τ)MMH

2
y +ψ2(τ)MMHxHy

 (A6)

ψ2
′(τ)−ψ2(τ)

∆τ + Uψ2(τ)
1−e−iα∆X

∆X + Vψ2(τ)
eiβ∆Y
−1

∆Y = −P2e−iαXe−iβY + MFH ∂H
∂Y θ

′(τ)+

2ψ2(τ)
(

cosα∆X−1
(∆X)2 +

cos β∆Y−1
(∆Y)2

)
−ψ2(τ)MMH

2
x +ψ1(τ)MMHxHy

 (A7)
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θ′(τ)−θ(τ)
∆τ + Uθ(τ) 1−e−iα∆X

∆X + Vθ(τ) e−iβ∆Y
−1

∆Y + MFEcHε
(
ψ1(τ)

∂H
∂X +ψ2(τ)

∂H
∂Y

)
−

MFEcHθ(τ)
(
U ∂H
∂X + V ∂H

∂Y

)
+ MMEcH

2
Uψ1(τ) =

2
Pr
θ(τ)

(
cosα∆X−1
(∆X)2 +

cos β∆Y−1
(∆Y)2

)
−

MFEcHθ(τ)
(
U ∂H
∂X + V ∂H

∂Y

)
+ MMEcH

2
Uψ1(τ) =

2
Pr
θ(τ)

(
cosα∆X−1
(∆X)2 +

cos β∆Y−1
(∆Y)2

)
−

Ec

[
2Uψ1(τ)

(
1−e−iα∆X

∆X

)2
+ 2Vψ2(τ)

(
eiβ∆Y
−1

∆Y

)2
+ Vψ2(τ)

(
1−e−iα∆X

∆X

)2
+

Uψ1(τ)
(

eiβ∆Y
−1

∆Y

)2
+ 2Uψ2(τ)

(
1−e−iα∆X

∆X

)(
eiβ∆Y
−1

∆Y

)]



(A8)

Now we rewrite the Equations (6)–(8) and we have

ψ′1 = A1ψ1 + B1ψ2 + C1θ′ (A9)

ψ′2 = A2ψ1 + B2ψ2 + C2θ
′ (A10)

θ′ = A3ψ1 + B3ψ2 + C3θ (A11)

Again, using Equation (11) in (9) and (10), we get

ψ′1 = A4ψ1 + B4ψ2 + C4θ

ψ′2 = A5ψ1 + B5ψ2 + C5θ

Here,
A4 = A1 + C1A3, B4 = B1 + C1B3, C4 = C1C3

and
A5 = A2 + C2A3, B5 = B2 + C2B3, C5 = C2C3

where

A4 = 1− U∆τ
∆X

(
1− e−iα∆X

)
−

V∆τ
∆Y

(
eiβ∆Y

− 1
)
+

[
2∆τ
(∆X)2 (cosα∆X − 1) + 2∆τ

(∆Y)2 (cos β∆Y − 1)

−MMH
2
y∆τ−MFH ∂H

∂X

[
MMEcH

2
U + εMFEcH ∂H

∂X + Ec

(
2U

(∆X)2

(
1− e−iα∆X

)2
+

U
(∆Y)2

(
eiβ∆Y

− 1
)2

)]
(∆τ)2

]


(A12)

B4 =
(
MMHxHy −

P1
V

)
∆τ−MFH ∂H

∂X

[
εMFEcH ∂H

∂Y + Ec

(
V

(∆X)2

(
1− e−iα∆X

)2
+

2V
(∆Y)2

(
eiβ∆Y

− 1
)2

)
+ 2U

(∆X.∆Y)

(
1− e−iα∆X

)(
eiβ∆Y

− 1
)]
(∆τ)2

 (A13)

C4 =
[
MFH ∂H

∂X

(
1− U∆τ

∆X

(
1− e−iα∆X

)
−

V∆τ
∆Y

(
eiβ∆Y

− 1
)
+ MFEcH

(
U ∂H
∂X + V ∂H

∂Y

)
∆τ+

1
Pr

(
2∆τ
(∆X)2 (cosα∆X − 1) + 2∆τ

(∆Y)2 (cos β∆Y − 1)
)]

∆τ

 (A14)

A5 =
(
MMHxHy −

P2
U

)
∆τ−MFH ∂H

∂X

(
MFEcH

2
U + εMFECH ∂H

∂X )(∆τ)2

−MFH ∂H
∂X

(
EC

(
2U

(∆X)2

(
1− e−iα∆X

)2
+ U

(∆Y)2

(
eiβ∆Y

− 1
)2

))
(∆τ)2

 (A15)

B5 = 1− U∆τ
∆X

(
1− e−iα∆X

)
−

V∆τ
∆Y

(
eiβ∆Y

− 1
)
+

[
2∆τ
(∆X)2 (cosα∆X − 1) + 2∆τ

(∆Y)2 (cos β∆Y − 1)
]
−

MMH
2
x∆τ−MFH ∂H

∂Y

(
εMFECH ∂H

∂Y

)
(∆τ)2

−MFH ∂H
∂Y

[
Ec

(
V

(∆X)2

(
1− e−iα∆X

)2
+

MMH
2
x∆τ−MFH ∂H

∂Y

(
εMFECH ∂H

∂Y

)
(∆τ)2

−MFH ∂H
∂Y

[
Ec

(
V

(∆X)2

(
1− e−iα∆X

)2
+

2V
(∆Y)2

(
eiβ∆Y

− 1
)2

)
+ 2U

∆X∆Y

(
1− e−iα∆X

)(
eiβ∆Y

− 1
)]
(∆τ)2


(A16)
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C5 = MFH ∂H
∂Y

(
1− U∆τ

∆X

(
1− e−iα∆X

)
−

V∆τ
∆Y

(
eiβ∆Y

− 1
)
+ MFEcH

(
U ∂H
∂X + V ∂H

∂Y

)
∆τ

)
∆τ

+MFH ∂H
∂Y

(
1
Pr

(
2∆τ
(∆X)2 (cosα∆X − 1) + 2∆τ

(∆Y)2 (cos β∆Y − 1)
))

∆τ

 (A17)

A3 = −

MFEcH
2
U + εMFEcH

∂H
∂X

+ EC

 2U

(∆X)2

(
1− e−iα∆X

)2
+

U

(∆Y)2

(
eiβ∆Y

− 1
)2

∆τ (A18)

B3 = −
(
εMFECH ∂H

∂Y +
[
Ec

(
V

(∆X)2

(
1− e−iα∆X

)2
+ 2V

(∆Y)2

(
eiβ∆Y

− 1
)2

)
+

2U
∆X∆Y

(
1− e−iα∆X

)(
eiβ∆Y

− 1
)])

∆τ

 (A19)

C3 = 1− U∆τ
∆X

(
1− e−iα∆X

)
−

V∆τ
∆Y

(
eiβ∆Y

− 1
)
+ MFEcH

(
U ∂H
∂X + V ∂H

∂Y

)
∆τ+

1
Pr

(
2∆τ
(∆X)2 (cosα∆X − 1) + 2∆τ

(∆Y)2 (cos β∆Y − 1)
)

 (A20)

Hence Equations (9)–(11) can be expressed in matrix notation and these Equations are ψ
′

1
ψ′2
θ′

 =
 A4 B4 C4

A5 B5 C5
A3 B3 C3


 ψ1
ψ2
θ


That is

η′ = Tη

where η′ =

 ψ
′

1
ψ′2
θ′

, T =

 A4 B4 C4
A5 B5 C5
A3 B3 C3

 and η =

 ψ1
ψ2
θ

.
For the analysis of stability condition, it is necessary to determine the eigenvalues of the amplification matrix

T. Since the matrix is third order it is very difficult to determine the eigenvalues. To ignore the above complexity,
we consider that the time difference ∆τ is very small and tends to zero.

Under this consideration,

B4 → 0, C4 → 0, A5 → 0, C5 → 0, A3 → 0, B3 → 0

and the amplification matrix becomes

T =

 A4
0
0

0
B5
0

0
0

C3


After this simplification of the matrix T, we get the following eigenvalues,

λ1 = A4,λ2 = B5,λ3 = C3

For stability analysis, the following conditions for |λn| ≤ 1, n = 1, 2, 3 must be satisfied.
That is |A4| ≤ 1, |B5| ≤ 1, |C3| ≤ 1 for all αandβ
Now we consider

a = U
∆τ
∆X

, b = |V|
∆τ
∆Y

, c = 2
∆τ

(∆X)2 , d = 2
∆τ

(∆Y)2

Thus
B5 = 1− 2

(
a + b + c + d + 1

2 MMH
2
x∆τ+ 1

2 MFH ∂H
∂Y

[
εMFECH ∂H

∂Y +

Ec

(
8V

(∆Y)2 +
4V

(∆X)2 −
8U

∆X∆Y

)]
(∆τ)2

)
C3 = 1− 2

(
a + b +

1
Pr

(c + d) −
1
2

MFEcH
(
U
∂H
∂X

+ V
∂H
∂Y

)
∆τ

)
The coefficients a, b, c are real and non-negative. Demonstrated that the maximum modulus of A4, B5andC3

occurs when α∆X = mπ and β∆Y = nπ, where m and n are integer and hence A4, B5andC3 A4, B5andC3 are real.
When the value of both m and n are odd integers then the value of |A4|, |B5|and|C3| |A4|, |B5|, |C3| are greater.
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To satisfy the condition |C3| ≤ 1, the highest negative value is C3 = −1, therefore one stability condition is

2
(
a + b +

1
Pr

(c + d) −
1
2

MFEcH
(
U
∂H
∂X

+ V
∂H
∂Y

)
∆τ ≤ 2

)
That is

U
∆τ
∆X

+ |V|
∆τ
∆Y

+
2
Pr

 ∆τ

(∆X)2 +
∆τ

(∆Y)2

− 1
2

MFEcH
(
U
∂H
∂X

+ V
∂H
∂Y

)
∆τ ≤ 1

Likewise, the second and third conditions are |A4| ≤ 1, |B5| ≤ 1, required that

U ∆τ
∆X + |V| ∆τ∆Y + 2

(
∆τ

(∆X)2 +
∆τ

(∆Y)2

)
+ 1

2 MMH
2
y∆τ+ 1

2 MFH ∂H
∂X

[
MMEcH

2
U + εMFEcH ∂H

∂X

+Ec

(
8U

(∆X)2 +
4U

(∆Y)2

)]
(∆τ)2

≤ 1

and
U ∆τ

∆X + |V| ∆τ∆Y + 2
(

∆τ
(∆X)2 +

∆τ
(∆Y)2

)
+ 1

2 MMH
2
x∆τ+ 1

2 MFH ∂H
∂Y

[
εMFEcH ∂H

∂Y

+Ec

(
8V

(∆Y)2 +
4V

(∆X)2 −
8U

∆X.∆Y

)]
(∆τ)2

≤ 1

Therefore, the stability conditions of the method are:

U
∆τ
∆X

+ |V|
∆τ
∆Y

+
2
Pr

 ∆τ

(∆X)2 +
∆τ

(∆Y)2

− 1
2

MFEcH
(
U
∂H
∂X

+ V
∂H
∂Y

)
∆τ ≤ 1 (A21)

U ∆τ
∆X + |V| ∆τ∆Y + 2

(
∆τ

(∆X)2 +
∆τ

(∆Y)2

)
+ 1

2 MMH
2
y∆τ+ 1

2 MFH ∂H
∂X

[
MMEcH

2
U+

εMFEcH ∂H
∂X + Ec

(
8U

(∆X)2 +
4U

(∆Y)2

)]
(∆τ)2

≤ 1

 (A22)

U ∆τ
∆X + |V| ∆τ∆Y + 2

(
∆τ

(∆X)2 +
∆τ

(∆Y)2

)
+ 1

2 MMH
2
x∆τ+ 1

2 MFH ∂H
∂Y

[
εMFEcH ∂H

∂Y

+Ec

(
8V

(∆Y)2 +
4V

(∆X)2 −
8U

∆X.∆Y

)]
(∆τ)2

≤ 1

 (A23)

Using the initial condition, U = V = T = 0 at = τ = 0, we have the stability and convergence criteria of the
method to be Pr ≥ 0.733, MF ≤ 1.73 × 108 and MM ≤ 2.1× 104.
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