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Abstract: The aim of this study was to define a new operator. This operator unify and modify
many known operators, some of which were introduced by the author. Many properties of this
operator are given. Using this operator, two new classes of special polynomials and numbers
are defined. Many identities and relationships are derived, including these new numbers and
polynomials, combinatorial sums, the Bernoulli numbers, the Euler numbers, the Stirling numbers,
the Daehee numbers, and the Changhee numbers. By applying the derivative operator to these
new polynomials, derivative formulas are found. Integral representations, including the Volkenborn
integral, the fermionic p-adic integral, and the Riemann integral, are given for these new polynomials.
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1. Introduction

Special polynomials, special numbers, special functions, and operators are widely used in
mathematics, physics, and engineering. Our motivation was to construct new classes special
polynomials and numbers with the help of an operator. By applying a derivative operator and
p-adic integrals to these new special polynomials, many interesting identities, relations, and formulas
were found. The results of this paper include some well-known special numbers, such as the Bernoulli
numbers, the Cauchy numbers, the Euler numbers, the Stirling numbers, the Daehee numbers, and the
Changhee numbers.

The following notations and definitions are used throughout this paper: Let

N = {1, 2, 3, . . .}, N0 = N∪ {0}.

Let Z denote the set of integers, R denote the set of real numbers, and C denote the set of
complex numbers.

0n =

{
1, (n = 0)
0, (n ∈ N)

and (
λ

0

)
= 1 and

(
λ

v

)
=

λ(λ− 1) · · · (λ− v + 1)
v!

=
(λ)v

v!
(v ∈ N, λ ∈ C)

(cf. [2–38]).
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The Bernoulli numbers of first kind Bn are defined by:

t
et − 1

=
∞

∑
n=0

Bn
tn

n!
, (1)

where |t| < 2π (cf. [2–38]).
The Euler numbers of first kind En are defined by:

2
et + 1

=
∞

∑
n=0

En
tn

n!
,

where |t| < π (cf. [2–38]).
The Euler polynomials of second kind E∗n (x) are defined by:

2
et + e−t etx =

∞

∑
n=0

E∗n (x)
tn

n!
,

where |t| < π
2 . For x = 0, we have:

E∗n = E∗n (0) ,

which denotes the Euler numbers of the second kind (cf. [2–38]).
Let k ∈ N0 . The Stirling numbers of the second kind S2(n, k) are defined by:(

et − 1
)k

k!
=

∞

∑
n=0

S2(n, k)
tn

n!
, (2)

Using Equation (2), we have S2(n, k) = 0 if n < k or k < 0 (cf. [2–38]).
The Stirling numbers of the first kind S1(n, k) are defined by:

(log(1 + t))k

k!
=

∞

∑
n=0

S1(n, k)
tn

n!
. (3)

Using Equation (3), we have S1(n, k) = 0 if k > n or k < 0 (cf. [2–38]).
The λ-array polynomials Sn

k (x; λ) are defined by:

1
k!

etx (λet − 1
)k

=
∞

∑
n=0

Sn
k (x; λ)

tn

n!
(4)

(cf. [2,6,30]).
The Bernoulli numbers of the second kind (or the Cauchy numbers of the first kind) bn(0) are

defined by:
t

log(1 + t)
=

∞

∑
n=0

bn(0)
tn

n!
. (5)

The numbers bn(0) are also given by:

bn(0) =
∫ 1

0
(u)n du (6)

(cf. [26] (p. 116)).
The central factorial numbers of the second kind T(n, k) are defined by:

1
(2k)!

(
et + e−t − 2

)k
=

∞

∑
n=0

T(n, k)
t2n

(2n)!
(7)
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(cf. [4,8,9]).

Operators Oλ [ f ; a, b] and Tλ [ f ; a, b]

Let a, x ∈ R and
Ea [ f ] (x) = f (x + a)

(cf. [1,2,9,11,27,36,37]). The operators Oλ [ f ; a, b] and Tλ [ f ; a, b] are as follows, respectively:

Oλ [ f ; a, b] (x) = λEa [ f ] (x) + Eb [ f ] (x), (8)

and

Tλ [ f ; a, b] (x) =
Oλ [ f ; a, b] (x)

a + b + 1
, (9)

where λ, a, and b are real parameters. (cf. [1]). In [1], the following special cases of the operator
Tλ [ f ; a, b] were provided. These special cases have many different applications in mathematics,
engineering, etc.:

1
2

T1 [ f ; 0, 0] (x) = I [ f ] (x), (Identity Operator)

−2T−1 [ f ; 1, 0] (x) = ∆ [ f ] (x), (Forward Difference Operator)

I [ f ] (x) +
1
2

T1 [ f ;−1,−1] (x) = ∇ [ f ] (x), (Backward Difference Operator)

T1 [ f ; 1, 0] (x) = M [ f ] (x), (Means Operator)

−T−1

[
f ;

1
2

,−1
2

]
(x) = δ [ f ] (x), (Central Difference Operator)

1
2

T1

[
f ;

1
2

,−1
2

]
(x) = µ [ f ] (x), (Averaging Difference Operator)

−(2a + b + 1)T−1 [ f ; a + b, a] (x) = ∆bEa [ f ] (x), (a 6= b, Gould Operator)

−2T−λ [ f ; 1, 0] (x) = ∆λ [ f ] (x).

For details about the above operators and their applications, see [1,3–36].
The remainder of this paper is structured as follows: Section 2 outlines a new finite operator is

defined. Some properties of this operator are given. In Section 3, using this new operator, two new
classes of special polynomials and numbers are defined. The derivative formulas for these new
polynomials are given. In Section 4, some integral representations related to the Volkenborn integral,
the fermionic p-adic integral, and the Riemann integral for these new polynomials are given. Using
these integral representations, many new identities and formulas are derived including the Bernoulli
numbers, the Euler numbers, the Stirling numbers, the Daehee numbers, and the Changhee numbers.
Finally, Section 5 provides the conclusions.

2. A New Operator

In this section, we define a new operator that modifies the operators Oλ [ f ; a, b] and Tλ [ f ; a, b].
Some properties of this operator are given.

Let a and b be real parameters. Let λ and β be real or complex parameters. A new operator
Yλ,β [ f ; a, b] is defined by:

Yλ,β [ f ; a, b] (x) = λEa [ f ] (x) + βEb [ f ] (x). (10)

Some special values of this operator are given as follows:

Yλ,β [ f ; a, b] (x) = βO λ
β
[ f ; a, b] (x)
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and
Yλ,β [ f ; a, b] (x) = β (a + b + 1) Tλ

β
[ f ; a, b] (x)

(cf. [1]).
Y−λ,1 [ f ; 1, 0] (x) = −∆λ f (x) = −λ f (x + 1) + f (x)

(cf. [2]).
Y1,0 [ f ; a, 0] (x) = Ea [ f ] (x).

Y1,−1 [ f ; a, 0] (x) = ∆a [ f ] (x) = f (x + a)− f (x),

where ∆a denotes the forward difference operator.

Y1,−1 [ f ; 0,−b] (x) = O−b [ f ] (x)

= (Y1,−1 [ f ; b, 0]Y1,0 [ f ;−b, 0]) [ f ] (x)

= (Y1,−1 [ f ; b, 0]Y1,0 [ f ; 0,−b]) [ f ] (x)

=
(

Eb − I
)

E−b [ f ] (x)

= f (x)− f (x− b),

where O−b denotes the backward difference operator.

Y1,−1

[
f ;

a
2

,− a
2

]
(x) = δa [ f ] (x)

=
(

E
a
2 − E−

a
2

)
[ f ] (x)

= f
(

x +
a
2

)
− f

(
x− a

2

)
,

where δa denotes the central difference operator.

Y1,−1

[
f ;

a
2

,− a
2

]
= (Y1,−1 [ f ; a, 0])Y1,0

[
f ;− a

2
, 0
]

= (Y1,−1 [ f ; 0,−a])Y1,0

[
f ;

a
2

, 0
]

= δa [ f ]

(cf. [2–36]). The Gould operator is:

Y1,0 [ f ; a + b, 0]−Y1,0 [ f ; a, 0] = Ga,b [ f ] ,

where a 6= b (cf. [25]).

a∆1 =
Y1,0 [ f ; a, 0]− I [ f ]

a
(cf. [11] (p. 27, Equation (1.17))).

The operator O [ f ] is provided by Goldstine [11] (p. 128). Applying this operator to f (x) = E∗n(x),
we have:

O [ f ] (x) =
Y1,0 [ f ; 1, 0] (x) + f (x)

2
= xn,

where n ∈ N0. Therefore,

m−1

∑
k=0

(−1)kkn =
1
2

m−1

∑
k=0

(−1)k (Y1,0 [ f ; 1, 0] (k) + f (k))

=
1
2
(E∗n(0)− (−1)mE∗n(m)) ,
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(cf. [11] (p. 136)).
Let,

Yk
λ,β [ f ; a, b] = Yλ,β [ f ; a, b]

(
Yk−1

λ,β [ f ; a, b]
)

(11)

where k ∈ N.
By applying the operator in Equation (10) k-times to the function f , and using Equation (11),

we obtain:

Yk
λ,β [ f ; a, b] (x) =

k

∑
j=0

(
k
j

)
λk−jβj f (x + jb + (k− j)a). (12)

Remark 1. Substituting b = 0 and β = −1 into (12), we have:

Yk
λ,−1 [ f ; 1, 0] (x) =

k

∑
j=0

(
k
j

)
λk−j(−1)j f (x + (k− j)a)

= ∆k
λ [ f ] (x)

(cf. [2] (p. 155, Equation (29))).

Remark 2. Substituting f (x) = xn, b = 0, and β = −1 into Equation (12), the polynomials
Yk

λ,−1 [x
n; 1, 0] (0) reduce to λ-array polynomials Sn

k (x; λ):

Yk
λ,−1 [x

n; 1, 0] (x) = ∆k
λ [x

n] (x)

= Sn
k (x; λ)

(cf. [2] (p. 155)).

Substituting a = 1
2 , b = − 1

2 , λ = 1 and β = −1 into Equation (12), we have:

δ [ f ] (x) = Yk
1,−1

[
f ;

1
2

,−1
2

]
(x) =

k

∑
j=0

(−1)j
(

k
j

)
f
(

x− j +
k
2

)
.

Substituting f (x) = xn (n ∈ N0) into the previous equation, we have:

Yk
1,−1

[
xn;

1
2

,−1
2

]
(x) =

k

∑
j=0

(−1)j
(

k
j

)(
x− j +

k
2

)n
. (13)

Let:
Yj

λ,β [ f ; a, b] (0) = Yj
λ,β [ f ; a, b] (x) |x=0 .

Substituting x = 0 into Equation (13), we obtain:

T(n, k) =
1
k!
Yk

1,−1

[
xn;

1
2

,−1
2

]
(0). (14)

where n, k ∈ N0 and:

δ [ f ] (0) = Yk
1,−1

[
xn;

1
2

,−1
2

]
(0).

Equation (14) is also provided in ([4] Equation (2.8)), [20,32].

3. New Families of Special Polynomials and Numbers

In this section, we define two new classes of special polynomials and numbers.
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Substituting f (x) =
n
∑

l=1
dl xl (n ∈ N0 and dl ∈ R) into (12), we define a new class of special

polynomials as follows:

Pn(x, k; a, b; λ, β, d) =
n

∑
l=1

dlYk
λ,β

[
xl ; a, b

]
(x),

where,
d = (d1, d2, ..., dn).

Therefore,

Pn(x, k; a, b; λ, β, d) =
k

∑
j=0

(
k
j

)
λk−jβj

n

∑
l=1

(x + jb + (k− j)a)ldl . (15)

Observe that for β = 1, Equation (15) is unification of Equation (21) in [1]. Using Equation (15),
we obtain:

Pn(x, k; a, b; λ, β, d) =
k

∑
j=0

(
k
j

)
λk−jβj

n

∑
l=1

dl

l

∑
v=0

(
l
v

)
xv(jb + (k− j)a)l−v

After some elementary calculations, we obtain:

Pn(x, k; a, b; λ, β, d) =
n

∑
l=1

l

∑
v=0

(
l
v

)
dl xvYk

λ,β

[
xl−v; a, b

]
(0).

With the help of the previous equation, a new class of special numbers can now be defined as follows:

y5(n, k; a, b; λ, β) =
n

∑
l=1

dlYk
λ,β

[
xl ; a, b

]
(0).

Combining the above definition with Equation (12), we have:

y5(n, k; a, b; λ, β) =
k

∑
j=0

(
k
j

)
λk−jβj

n

∑
l=1

dl(jb + (k− j)a)l . (16)

Observe that for β = 1, Equation (16) is unification of Equation (22) in [1].
By applying the derivative operator dk

dxk to Equation (15), we obtain the derivative formula for
polynomials Pn(x, k; a, b; λ, β) as follows:

dk

dxk {Pn(x, k; a, b; λ, β, d)} =
k

∑
j=0

(
k
j

)
λk−jβj

n

∑
l=1

(l)k(x + jb + (k− j)a)l−kdl .

Combining the above equation with the following well-known formula (cf. [26]):

(y)k =
k

∑
j=0

S1(k, j)yj, (17)

we obtain a derivative formula for the polynomials Pn(x, k; a, b; λ, β) by the following theorem:

Theorem 1. Let n ∈ N and k ∈ N0 with k ≤ n. Then, we have:

dk

dxk {Pn(x, k; a, b; λ, β, d)} =
k

∑
j=0

(
k
j

)
λk−jβj

n

∑
l=1

dl

k

∑
m=0

S1(k, m)lm(x + jb + (k− j)a)l−k. (18)
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We now define another class of special polynomials as follows:

Qn (x; a, b; λ, β) =
n

∑
j=0

(
x
j

)
Yj

λ,β [ f ; a, b] (0). (19)

In Equation (19), we assume that the values f (0) and f (mb + (j−m)a) are finite.
Using Equation (19), we obtain:

Qn (x; a, b; λ, β) =
n

∑
j=0

j

∑
m=0

(
x
j

)(
j

m

)
λj−mβm f (mb + (j−m)a). (20)

Some special values of the polynomials Qn (x; a, b; λ, β) are given as follows:
Substituting n = 2, f (y) = ey, and

Yj
λ,β [e

y; a, b] (0) =
j

∑
m=0

(
j

m

)
λj−mβmemb+(j−m)a

into Equation (19), we have:

Q2 (x; a, b; λ, β) = 1 + x
1

∑
m=0

(
1
m

)
λ1−mβmemb+(1−m)a

+x2
2

∑
m=0

(
2
m

)
λ2−mβmemb+(2−m)a.

Therefore,

Q2 (x; a, b; λ, β) = 1 +
(

λea + βeb −
(

λea + βeb
)2
)

x +
(

λea + βeb
)2

x2. (21)

Substituting λ = 1, β = −1, and b = −a into (21), we have:

Q2 (x; a,−a; 1,−1) = 1 + 2x (sinh(a)− cosh(2a) + 1) + 4x2 sinh2(a)

= 1 + 2x
(

sinh(a)− 2 sinh2(a)
)
+ 4x2 sinh2(a).

Substituting λ = 1, β = −1, and b = a into (21), we have:

Q2 (x; a, a; 1,−1) = 1 + 2xe2a.

Substituting a = 0 into the aforementioned equation, we have:

Q2 (x; 0, 0; 1,−1) = 1 + 2x.

Substituting f (x) = xn, a = λ = 1 and β = −1 and b = 0 into Equation (20), we obtain:

Qn (x; 1, 0; 1,−1) =
n

∑
j=0

(
x
j

)
j!S2(n, j). (22)

Therefore,
Qn (x; 1, 0; 1,−1) = xn. (23)

Combining Equations (22) and (17), we obtain the following corollary:
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Corollary 1. Let n ∈ N0. Then, we have:

Qn (x; 1, 0; 1,−1) =
n

∑
j=0

j

∑
l=0

S2(n, j)S1(j, l)xl . (24)

Derivative Formula for Polynomials Qn (x; a, b; λ, β)

Here, we provide a derivative formula for the polynomials Qn (x; a, b; λ, β).
Taking derivative of Equation (19) with respect to x, and using the following well-known

derivative formula for the function (x
n) (cf. [24,33]):

d
dx

{(
x
n

)}
=

(
x
n

) n−1

∑
m=0

1
x−m

,

we obtain:

d
dx
{Qn (x; a, b; λ, β)} =

d
dx

{
n

∑
j=0

(
x
j

)
Yj

λ,β [ f ; a, b] (0)

}

=
n

∑
j=1

Yj
λ,β [ f ; a, b] (0)

j!
(x)j

j−1

∑
m=0

1
x−m

.

After some elementary calculations in the above equation, we arrive at the following theorem:

Theorem 2. Let n ∈ N. Then, we have:

d
dx
{Qn (x; a, b; λ, β)} =

n

∑
j=1

(
x
j

)
Yj

λ,β [ f ; a, b] (0)
j−1

∑
m=0

1
x−m

. (25)

4. Integral Representations for the Polynomials Qn (x; a, b; λ, β)

In this section, we provide the Riemann integral and p-adic integrals representations for the
polynomials Qn (x; a, b; λ, β). Using these integrals representations, many new identities and formulas
are derived including combinatorial sums, the Bernoulli numbers, the Euler numbers, the Stirling
numbers, the Daehee numbers, and the Changhee numbers.

4.1. Riemann Integral Formulas of Polynomials Qn (x; a, b; λ, β)

Here, we provide some integral formulas for Qn (x; a, b; λ, β) polynomials. Using these formulas,
some new identities and combinatorial sums are derived including the Stirling numbers and the
Bernoulli numbers of the second kind.

Integrating Equation (20) from 0 to 1 and using ( refLamdaFun-1p), we obtain:

1∫
0

Qn (x; a, b; λ, β) dx =
n

∑
j=0

j

∑
m=0

(
j

m

) bj(0)λj−mβm f (mb + (j−m)a)
j!

.

Integrating Equations (22)–(24) from 0 to 1, we obtain:

1∫
0

Qn (x; 1, 0; 1,−1) dx =
n

∑
j=0

S2(n, j)bj(0), (26)
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1∫
0

Qn (x; 1, 0; 1,−1) dx =
1

n + 1
, (27)

and
1∫

0

Qn (x; 1, 0; 1,−1) dx =
n

∑
j=0

j

∑
l=0

1
l + 1

S2(n, j)S1(j, l). (28)

Combining Equations (26) and (28), we arrive at the following theorem:

Theorem 3. Let n, k ∈ N0. Then, we have:

n

∑
j=0

j

∑
l=0

1
l + 1

S2(n, j)S1(j, l) =
n

∑
j=0

S2(n, j)bj(0). (29)

Remark 3. Considering the method reported by Simsek and Cakic [34], using the orthogonality relation of the
Stirling numbers, Equation (29) reduces to the following well-known relation:

n

∑
j=0

S2(n, j)bj(0) =
1

n + 1
(30)

(cf. [5,7,9,12,25,26,34–37]). Additionally, by combining (26) with (27), we obtain Equation (30).

4.2. p-Adic Integrals Formulas of the Polynomials Qn (x; a, b; λ, β)

Here, by applying p-adic integrals to the polynomials Qn (x; a, b; λ, β), many p-adic integral
formulas are derived. Using these p-adic integral formulas, some new combinatorial sums including
the Bernoulli numbers, the Euler numbers, the Stirling numbers, the Daehee numbers, and the
Changhee numbers are given.

We need the following definitions and notations for p-adic integrals:
Let Zp and Qp denote the set of p-adic integers and the set of p-adic rational numbers, respectively.

Let Cp denote the field of p-adic completion of algebraic closure of Qp. Let f : Zp → Cp be a uniformly
differentiable function. C1(Zp → Cp) denotes a set of uniformly differentiable functions.

Let f ∈ C1(Zp → Cp). The Volkenborn integral of the function f on Zp is defined by:

∫
Zp

f (x) dµ1 (x) = lim
N→∞

1
pN

pN−1

∑
x=0

f (x) , (31)

where µ1 (x) denotes the Haar distribution:

µ1 (x) =
1

pN

(cf. [16,18,19,27,32,38]).
The fermionic p-adic integral of the function f is defined by:

∫
Zp

f (x) dµ−1 (x) = lim
N→∞

pN−1

∑
x=0

(−1)x f (x) , (32)

where:
µ−1 (x) = (−1)x

(cf. [17–19] see also [21,32]).
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Some p-adic integrals formulas are given as follows:

Bn =
∫
Zp

xndµ1 (x) , (33)

(cf. [16,17,27,32]). ∫
Zp

(
x
n

)
dµ1 (x) =

(−1)n

n + 1
=

Dn

n!
, (34)

where Dn denotes the Daehee numbers (cf. [14,27,32]).

En =
∫
Zp

xndµ−1 (x) (35)

(cf. [17]). ∫
Zp

(
x
n

)
dµ−1 (x) = (−1)n2−n =

Chn

n!
, (36)

where Chn denotes the Changhee numbers (cf. ([15] Theorem 2.3), [32]).
By applying the Volkenborn integral to Equation (20), using Equations (33) and (34), we obtain

the following results, respectively:

∫
Zp

Qn (x; a, b; λ, β) dµ1 (x) =
n

∑
j=0

j

∑
m=0

(
j

m

)
(−1)j

j + 1
λj−mβm f (mb + (j−m)a), (37)

∫
Zp

Qn (x; a, b; λ, β) dµ1 (x) =
n

∑
j=0

j

∑
m=0

(
j

m

)Dj

j!
λj−mβm f (mb + (j−m)a), (38)

and ∫
Zp

Qn (x; a, b; λ, β) dµ1 (x) =
n

∑
j=0

j

∑
m=0

1
j!

j

∑
l=0

(
j

m

)
S1 (j, l) Blλ

j−mβm f (mb + (j−m)a). (39)

Combining Equations (37) and (39), we obtain the following theorem:

Theorem 4. Let n ∈ N0. Then, we have:

n

∑
j=0

j

∑
m=0

(
j

m

)
(−1)j

j + 1
λj−mβm f (mb + (j−m)a)

=
n

∑
j=0

j

∑
m=0

1
j!

j

∑
l=0

(
j

m

)
S1 (j, l) Blλ

j−mβm f (mb + (j−m)a).

Combining Equations (38) and (39), we obtain the following theorem:

Theorem 5. Let n ∈ N0. Then we have

n

∑
j=0

j

∑
m=0

(
j

m

)Dj

j!
λj−mβm f (mb + (j−m)a) (40)

=
n

∑
j=0

j

∑
m=0

1
j!

j

∑
l=0

(
j

m

)
S1 (j, l) Blλ

j−mβm f (mb + (j−m)a).
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Substituting a = 1, b = 0, λ = 1, β = −1 into (40), we arrive at the following result:

Corollary 2. Let n ∈ N0. Then, we have:

n

∑
j=0

j

∑
l=0

BlS2(n, j)S1(j, l) =
n

∑
j=0

S2(n, j)Dj. (41)

Remark 4. Using the orthogonality relation of the Stirling numbers, Equation (41) reduces to the following
well-known formula:

Bn =
n

∑
j=0

S2(n, j)Dj

(cf. [14,26,32,34]).

By applying the fermionic p-adic to Equation (20), using Equations (35) and (36), we obtain the
following results, respectively:

∫
Zp

Qn (x; a, b; λ, β) dµ−1 (x) =
n

∑
j=0

j

∑
m=0

(
j

m

)
(−1)j

2j λj−mβm f (mb + (j−m)a), (42)

∫
Zp

Qn (x; a, b; λ, β) dµ−1 (x) =
n

∑
j=0

j

∑
m=0

(
j

m

)
λj−mβm f (mb + (j−m)a)Chj

j!
, (43)

and ∫
Zp

Qn (x; a, b; λ, β) dµ−1 (x) =
n

∑
j=0

j

∑
m=0

1
j!

j

∑
l=0

(
j

m

)
S1 (j, l) Elλ

j−mβm f (mb + (j−m)a). (44)

Combining Equations (42) and (44), we arrive at the following theorem:

Theorem 6. Let n ∈ N0. Then, we have:

n

∑
j=0

j

∑
m=0

(
j

m

)
(−1)j

2j λj−mβm f (mb + (j−m)a)

=
n

∑
j=0

j

∑
m=0

1
j!

j

∑
l=0

(
j

m

)
S1 (j, l) Elλ

j−mβm f (mb + (j−m)a).

Combining Equations (42) and (44), we obtain the following theorem:

Theorem 7. Let n ∈ N0. Then, we have:

n

∑
j=0

j

∑
m=0

(
j

m

)
λj−mβm f (mb + (j−m)a)Chj

j!
(45)

=
n

∑
j=0

j

∑
m=0

1
j!

j

∑
l=0

(
j

m

)
S1 (j, l) Elλ

j−mβm f (mb + (j−m)a).

Substituting a = 1, b = 0, λ = 1, β = −1 into Equation (45), we obtain the following corollary:
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Corollary 3. Let n ∈ N0. Then, we have:

n

∑
j=0

j

∑
l=0

ElS2(n, j)S1(j, l) =
n

∑
j=0

S2(n, j)Chj. (46)

Remark 5. Using the orthogonality relation of the Stirling numbers, Equation (46) reduces to the following
well-known formula:

En =
n

∑
j=0

S2(n, j)Chj

(cf. [12,15,26,32,34]).

5. Conclusions

This paper introduced a new operator and new two classes of special polynomials and numbers.
Many properties of this new operator, polynomials, and numbers were outlined. Using this operator,
some special values of these special numbers and polynomials were derived. Many fundamental
properties of these numbers and polynomials were investigated. p-adic integrals and the Riemann
integral representations for these polynomials were provided. Using these integral representations,
identities and formulas were derived including combinatorial sums, the Bernoulli numbers, the Euler
numbers, the Stirling numbers, the Daehee numbers, and the Changhee numbers. The results of this
paper may potentially be used in mathematics, physics, and engineering.
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