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Abstract: Multigrid methods (MGMs) are used for discretized systems of partial differential equations
(PDEs) which arise from finite difference approximation of the incompressible Navier–Stokes
equations. After discretization and linearization of the equations, systems of linear algebraic equations
(SLAEs) with a strongly non-Hermitian matrix appear. Hermitian/skew-Hermitian splitting (HSS)
and skew-Hermitian triangular splitting (STS) methods are considered as smoothers in the MGM
for solving the SLAE. Numerical results for an algebraic multigrid (AMG) method with HSS-based
smoothers are presented.

Keywords: multigrid methods; Hermitian/skew-Hermitian splitting method; skew-Hermitian
triangular splitting method; strongly non-Hermitian matrix

1. Introduction

Mathematical modeling of hydrodynamics is the base for research of various natural phenomena,
technological processes, and environmental problems. The main equations describing this problem
are the Navier–Stokes equations. Development and research of effective numerical algorithms for
solving these equations and their practical realization is an actual task. The use of the MGM for
the numerical solution of the Navier–Stokes equations describing the motion of an incompressible
viscous fluid is discussed. Currently, various discretization methods for the corresponding differential
model are known. However, with any choice of the discretizing method, the problem of constructing
effective methods for solving large systems of algebraic equations—to which the discrete model is
reduced—arises. This problem is especially relevant in the nonstationary case, when multiple solutions
of the systems of algebraic equations are required at each discrete time step.

To discretize the system of two-dimensional Navier–Stokes equations on regular grids, we use
the finite difference method. The equations are considered in the natural variables “velocity-pressure”:

∂V
∂t

+ (V · ∇)V = −∇P + ν∆V, divV = 0, (1)
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where P/ρ is replaced by P (i.e., ρ is normalized at 1), P is the static pressure, V is the velocity vector,
and ν is the kinematic viscosity coefficient. At the initial moment of time and at the boundary of the
domain, the initial and boundary conditions are set, respectively.

Flow simulating is accompanied by a number of mathematical difficulties. One of the problems
in solving this system is the nonlinearity associated with convective terms in the equations, which can
lead to the appearance of oscillations of the solution in regions with large gradients. The main efforts
of the researchers were directed at overcoming the difficulties associated with the nonlinearity of the
Navier–Stokes system of equations.

One of the most time-consuming stages of the computational procedure is finding the solution
of the system of linear algebraic equations (SLAE). Modern application packages usually use the
linearization of the original equations, and Krylov subspace methods are used to solve the resulting
SLAEs. Despite the fact that these methods have proven themselves well, they have some problems in
cases of significant nonsymmetry of the SLAEs—associated, for example, with variable coefficients in
differential equations or using complex numerical boundary conditions. For time discretization of the
unsteady problem, we use an implicit difference scheme. Here, we do not specifically consider the
stages of discretization and linearization of the Navier–Stokes equations, but focus on solving SLAEs.
Given that the SLAEs resulting from the use of the implicit time schemes have a large dimension and a
sparse nonsymmetric matrix, we propose using the MGM to solve them.

Thus, we consider the iterative solution of the large sparse SLAE

Av = b, v, b ∈ Cn, (2)

where A ∈ Cn×n is a non-Hermitian and positive definite matrix.
Naturally, the matrix A can be split as

A = A0 + A1, (3)

where
A0 =

1
2
(A + A∗), A1 =

1
2
(A− A∗) (4)

and A∗ denotes the conjugate transpose of the matrix A. Positive definiteness of the matrix A means
that for all x ∈ Cn \ {0}, x∗A0x > 0. Here, x∗ denotes the conjugate transpose of the complex
vector x. Let in some matrix norm ||| · |||, |||A0||| << |||A1|||, then the matrix A is called a strongly
non-Hermitian one. This situation occurs in many real applications, such as the discretization of the
Navier–Stokes equations.

The Hermitian and skew-Hermitian splitting (HSS) iteration methods, based on HS splitting (3)
and (4), for solving large sparse non-Hermitian positive definite SLAE were firstly proposed in [1].
The HSS iteration method has been widely developed in [2–5] and others.

Then, we can split the skew-Hermitian part A1 of the matrix A ∈ Cn×n into

A1 = KL + KU , (5)

where KL and KU are the strictly lower and the strictly upper triangular parts of A1, respectively.
Obviously, that KL = −K∗U .

Based on the splitting (3)–(5) in [6–8] classes of skew-Hermitian triangular splitting (STS), iteration
methods for solving SLAE (2) have been proposed. The triangular operator of the STS uses only the
skew-Hermitian part of the coefficient matrix A. These methods have been further developed in [9–12].

The use of the multigrid method (MGM) with the STS-based smoothers for solving
convection–diffusion problems has been studied in [13]. The convergence of the MGM with the
STS-based smoothers has also been proved in this research. The local Fourier analysis of the MGM
with the triangular skew-symmetric smoothers has been performed in [14]. The results of numerical
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experiments for convection–diffusion problems with large Peclet numbers by the geometric MGM
have been presented in both researches.

In [15], it was shown that the MGMs with the HSS-based smoothers converge uniformly for
second-order nonselfadjoint elliptic boundary value problems. This happens if the mesh size of the
coarsest grid is sufficiently small, but independent of the number of the multigrid levels.

2. Multigrid Methods

The MGMs are proving themselves as very successful tools for solving the SLAE associated with
discretization of partial differential equations (PDEs).

The main idea of the MGM has been proposed by R.P. Fedorenko in [16]. Then, A. Brandt [17],
W. Hackbusch [18], and other researchers showed the efficiency of the multigrid approach and extended
Fedorenko’s idea.

The multigrid technique is based on two principles: error smoothing and coarse grid correction.
The smoothing property is fundamental for the MGM. It is connected with fast damping high-frequency
Fourier components of an initial error in decomposition on the basis from eigenvectors.

There exist two approaches in the MGM: geometric multigrid and algebraic multigrid methods.
Geometric multigrid methods were critical to the early development of the MGM and still play an

important role today. Nevertheless, there are classes of problems for which geometric techniques are
too difficult to apply or cannot be used at all. These classes can be solved by the algebraic multigrid
(AMG) methods, as introduced in [19,20].

The MGM is not a fixed algorithm. Rather, there is a multigrid technique that defines its scope.
The efficiency of the MGM depends on the adjustment of its components to the considered problem [21].
The key to this is the correct choice of its components and effective interaction between smoothing and
coarse-grid correction [22]. We need to use special iteration methods as smoothers for the MGM and
nonstandard course-grid correction to a good approximation of the smooth error components.

The smoothing method is the central component of the multigrid algorithm; it is the most
dependent part of the MGM on the type of the problem being solved. The role of smoothing methods is
that they should not so much reduce the total error as smooth it (namely, suppress the high-frequency
harmonics of the error) so that the error can be well approximated on a coarse grid.

Standard smoothing methods are linear iteration methods, for example, the Gauss–Seidel method.
An alternative is the following methods:

• Richardson’s Iterative method;
• Gauss–Jacobi method;
• Symmetric Gauss–Seidel method;
• Gauss–Seidel Alternate Direction method;
• Gauss–Seidel method with black and white ordering;
• Four-color Gauss–Seidel method;
• Iteration zebra method;
• Incomplete factorization method;
• Specially adapted SOR.

The MGMs can be used as solvers as well as preconditioners. The MGMs have been widely used
for complicated nonsymmetric and nonlinear systems, like the Lame equations of elasticity or the
Navier–Stokes problems.

3. Smoothers Based on the HSS and the STS Iteration Methods

A particular problem when using the MGM is the choice of smoothers. There are a number of
iteration methods that can be used as smoothers, but not all of them are effective for solving strongly
non-Hermitian SLAEs. The behavior of the HSS and the STS iteration methods is similar to the behavior
of the Gauss–Seidel method, which quickly damps the high-frequency harmonics of the error, slowing
down in the future. We give the formulas of these iteration methods.
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The HSS iteration method [1]: Given an initial guess v(0), for k = 0, 1, 2, ... until {v(k)}
convergence, compute

{
(αI + A0)v(k+

1
2 ) = (αI − A1)v(k) + b,

(αI + A1)v(k+1) = (αI − A0)v(k+
1
2 ) + b,

where α is a given positive constant and I is an identity matrix.
Bai, Golub, and Ng [1] proved that the HSS iteration method converges unconditionally to the

exact solution of the SLAE (2). Moreover, the upper bound of the contraction factor depends on the
spectrum of A0 but is independent of the spectrum of A1.

We can rewrite the HSS iteration method in the following form:

v(k+1) = G(α)v(k) + B(α)−1b,

where

G(α) = B(α)−1(B(α)− A)

and

B(α) =
1

2α
(αI + A0)(αI + A1).

The STS iteration method [6,8]: Given an initial guess v(0) and two positive parameters ω and τ.
For k = 0, 1, 2, ... until {v(k)} convergence, compute

v(k+1) = G(ω, τ)v(k) + τB(ω)−1b,

where

G(ω, τ) = B(ω)−1(B(ω)− τA),

ω and τ are two acceleration parameters, and B(ω) is defined by

B(ω) = Bc + ω((1 + j)KL + (1− j)KU), j = ±1

with Bc ∈ Cn×n a prescribed Hermitian matrix.
For the STS method a convergence analysis, optimal choice of parameters and an accelerating

procedure have presented in [8]. As it was mentioned above, smoothers in the MGMs should have
a smoothing effect on the error of approximation. It was shown in [14] that the skew-Hermitian
triangular iteration methods have such properties. Therefore, these methods can be used as smoothers
in the MGMs.

4. Numerical Experiments

A wide class of CFD (Computational Fluid Dynamics) problems is associated with solving the
equations of motion of a viscous incompressible fluid with a predominance of convective transfer. As a
model, we consider the problem of internal single-phase chemically homogeneous flows, which are
described by the unsteady Navier–Stokes equations in the domain Ω with a solid boundary Γ. At the
initial stages of the development of CFD, preference was given to explicit methods that were used to
solve stationary and nonstationary Navier–Stokes equations. Recently, increased attention has been
paid to implicit methods. This is primarily due to the insufficient computational efficiency of explicit
methods in solving the equations of motion of a viscous fluid using small difference grids. From the



Symmetry 2020, 12, 233 5 of 12

point of view of computational linear algebra, the matrices obtained at each time step when integrating
unsteady equations using implicit schemes (after linearization) are nonselfadjoint and require special
iterative methods for their effective solution. Therefore, in this research, we suggest using the AMG
with special smoothers to solve such SLAEs.

So, we consider the model unsteady Navier–Stokes problem

∂V
∂t

+ (V · ∇)V = −∇P + ν∆V, (6)

divV = 0, (7)

or
∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

+
∂P
∂x
− 1

Re

(
∂2u
∂x2 +

∂2u
∂y2

)
= 0, (8)

∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

+
∂P
∂y
− 1

Re

(
∂2v
∂x2 +

∂2v
∂y2

)
= 0, (9)

∂u
∂x

+
∂v
∂y

= 0, (10)

u (x, y, t) = 0, v (x, y, t) = 0 on Γ,
u (x, y, 0) = 0, v (x, y, 0) = 0,

P (x, y, 0) = ξx− 1
2 ξ, ξ = const,

where ν is the kinematic viscosity coefficient; Re = UL/ν is the Reynolds number, where U is a
characteristic velocity of the flow and L is a characteristic length scale; V = (u(x, y, t), v(x, y, t)) is the
velocity vector; P is the static pressure; the initial pressure distribution is given by a linear function.
The initial conditions are taken to be zero. At the boundary, no-slip conditions are accepted. It means
that at a solid boundary, the fluid will have zero velocity relative to the boundary. There are no
mass forces in the formulation; motion is determined only by the boundary and initial conditions for
the velocity field as well as the initial pressure distribution. For convenience, only square domain
Ω = (0, 1)× (0, 1) will be considered. We assume that the fluid motion occurs in the time interval
[0, T]. Therefore, the equations are considered in the domain Ω× (0, T) with the boundary Γ× [0, T].
The Navier–Stokes equations with the introduced boundary conditions have a solution determined up
to an arbitrary constant for pressure, therefore, an agreement was adopted on the next normalization∫

Ω P(x, y, t)dxdy = 0, ∀t.
The most common approach to solving the Navier–Stokes equations in natural variables

essentially uses the replacement of the difference continuity equation by the difference Poisson equation
for pressure. Following this approach, first the difference equations are constructed that approximate
the mass and momentum conservation equations and then, by algebraic transformations, the Poisson
equation for determining the pressure is derived. This equation is used in the calculations instead of
the continuity equation.

First, the equations of motion and continuity (6) and (7) are rewritten in schematic form [23]:

∂V
∂t

+∇P = R, (11)

where R contains all convective and diffusive forces,

R = −(V · ∇)V +
1

Re
∆V, (12)

divV = 0. (13)
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We fix the time step δt and introduce a discrete time grid tn = nδt, n ≥ 0 and denote the
approximation to f (tn, x, y) as f (n). Then, the fully implicit scheme will have the form

1
δt
(V(n+1) −V(n)) +∇P(n+1) = R(n+1), (14)

R(n+1) = −(V(n+1) · ∇)V(n+1) +
1

Re
∆V(n+1), (15)

divV(n+1) = 0, (16)

V(n+1)|Γ = 0. (17)

The Poisson equation for pressure is obtained by taking the divergence from both sides of the
Equation (14), taking into account the continuity Equation (16):

∆P(n+1) − divR(n+1) = div
V(n)

δt
. (18)

But following [23], at this moment, the Poisson Equation (18) does not need to be created. Instead,
we need to do a discretization. In addition, the continuity Equation (16) is first discretized before
substituting the discrete version of (14). To approximate the problem in space, the finite difference
method is used. Let the equations in discrete form be given by

DhV(n+1)
h = 0, (19)

1
δt
(V(n+1)

h −V(n)
h ) + GhP(n+1)

h = R(n+1)
h , (20)

V(n+1)
h |Γ = 0, (21)

where Dh and Gh are the discrete div and∇ operator, respectively. Then, Vh, Ph and Rh are the discrete
grid functions corresponding with V, P, and R. After discretization of (16), the number of velocity
unknowns equals the number of discrete momentum equations. The number of pressure unknowns
is equal to the number of discrete continuity equations, since both are equal to the number of grid
cells [23]. Our approach uses the idea of [23], but it differs in implementation.

The uniform grid Ω is introduced in the domain Ω with steps h1 and h2; h1 = 1/N1, h2 = 1/N2,
where N1, N2 are the number of cells in each direction. The grid cells are positioned such that the cell
faces coincide with the boundary Γ of Ω. The discretization in space of the Navier–Stokes equations
is performed on MAC (Marker and Cell) [24] (staggered) grids when pressure P and velocities in
two-dimensional problems are determined on three grids shifted relative to each other. So, P is
located in the center of each cell, the x-component velocity u is on the middle points of vertical
faces, the y-component velocity v is on the middle points of horizontal faces. For the MAC-method,
the solution advanced in time by solving the momentum equation with the best current estimate of
pressure distribution. Such a solution initially would not satisfy the continuity equation unless the
correct pressure distribution was used. The pressure is improved by numerically solving the Poisson
equation with estimated velocity field. We rewrite the equation for pressure in the following form:

∆P =
d

dx

(
−
(

u
∂u
∂x

+ v
∂u
∂y

)
+

1
Re

(
∂2u
∂x2 +

∂2u
∂y2

))
+ (22)

+
d

dy

(
−
(

u
∂v
∂x

+ v
∂v
∂y

)
+

1
Re

(
∂2v
∂x2 +

∂2v
∂y2

))
− ∂

∂t

(
∂u
∂x

+
∂v
∂y

)
.
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We now introduce the grid sets and the corresponding spaces:

D1 = {xij = ((i + 1/2)h1, jh2) : i = 0, ..., N1 − 1, j = 0, ..., N2},

D2 = {xij = (ih1, (j + 1/2)h2) : i = 0, ..., N1, j = 0, ..., N2 − 1},

D3 = {xij = (ih1, jh2) : i = 1, ..., N1 − 1, j = 1, ..., N2 − 1}.

Let Vh = V1,h ×V2,h be the linear space of vector functions defined on D1 × D2 and vanishing at
the corresponding grid boundaries, and Ph is the space of functions defined on D3 and orthogonal to
unity. Thus,

V1,h = {uij = u(xij) : xij ∈ D1, u0,j = uN1−1,j = ui,0 = ui,N2 = 0},

V2,h = {vij = v(xij) : xij ∈ D2, v0,j = vN1,j = vi,0 = vi,N2−1 = 0},

Ph = {Pij = P(xij) : xij ∈ D3, ∑
ij

h1h2Pij = 0}.

Variables are denoted by a single set of indices, despite the fact that different variables are
calculated at different grid nodes. As a result, the indices i, j refer to a set of three mismatched points.

The term R(n+1) in (15) contains the nonlinear terms. So, for treating this nonlinearity, Newton
linearization around the old time level is used. For example, we want to linearize a nonlinear term
u(n+1)φ

(n+1)
x , then

u(n+1)φ
(n+1)
x = u(n)φ

(n+1)
x + u(n+1)φ

(n)
x − u(n)φ

(n)
x + O(δt2). (23)

The expression in the right-hand side of (23) is linear in the variables at the new time level and
possesses a discretization error O(δt2).

Let D =
∂u
∂x

+
∂v
∂y

in (22) be the local dilation term, and other terms with velocity field determined

from the solution of momentum equation with a provisional estimate of pressure P′ = (
f ′1
f ′2
), counter,

and D(n+1)
ij be set equal to zero. That is, the correction of pressure is required to compensate for

nonzero dilation at the n iterative level. The Poisson equation is then solved for the revised pressure
field. The improved pressure is then used in the momentum equation for better solution at time step.
If the dilation (divergence of velocity field) is not zero, the cyclic process of solving the momentum
equation and Poisson equation is repeated until the velocity field is divergence free.

Thus, our computational scheme can be represented as follows:

1. Velocity field components u′ = u(n+1) and v′ = v(n+1) are determined by solving the implicit
momentum equation with P′, and for treating nonlinearity, the Newton linearization around the
old time level is used.

u(n+1)
ij − u(n)

ij

δt
+

u(n)
ij

u(n+1)
ij − u(n+1)

i−1,j

h1

+ u(n+1)
ij

u(n)
ij − u(n)

i−1,j

h1

− u(n)
ij

u(n)
ij − u(n)

i−1,j

h1

+

+

v(n)ij

u(n+1)
ij − u(n+1)

i,j−1

h2

+ v(n+1)
ij

u(n)
ij − u(n)

i,j−1

h2

− v(n)ij

u(n)
ij − u(n)

i,j−1

h2

− (24)

− 1
Re

u(n+1)
i+1,j − 2u(n+1)

ij + u(n+1)
i−1,j

h2
1

+
u(n+1)

i,j+1 − 2u(n+1)
ij + u(n+1)

i,j−1

h2
2

 = f ′1,
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v(n+1)
ij − v(n)ij

δt
+

u(n)
ij

v(n+1)
ij − v(n+1)

i−1,j

h1

+ u(n+1)
ij

v(n)ij − v(n)i−1,j

h1

− u(n)
ij

v(n)ij − v(n)i−1,j

h1

+

+

v(n)ij

v(n+1)
ij − v(n+1)

i,j−1

h2

+ v(n+1)
ij

v(n)ij − v(n)i,j−1

h2

− v(n)ij

v(n)ij − v(n)i,j−1

h2

− (25)

− 1
Re

v(n+1)
i+1,j − 2v(n+1)

ij + v(n+1)
i−1,j

h2
1

+
v(n+1)

i,j+1 − 2v(n+1)
ij + v(n+1)

i,j−1

h2
2

 = f ′2,

u(n+1)
ij − u(n+1)

i−1,j

h1
+

v(n+1)
ij − v(n+1)

i,j−1

h2
= 0. (26)

2. The Poisson equation with estimated velocity field components u′ = u(n+1) and v′ = v(n+1) is
solved for the revised pressure field P = P(n+1).

1
h2

1

(
P(n+1)

i+1,j − 2P(n+1)
i,j + P(n+1)

i−1,j

)
+

1
h2

2

(
P(n+1)

i,j+1 − 2P(n+1)
i,j + P(n+1)

i,j−1

)
=

=
1
δt

u(n+1)
ij − u(n+1)

i−1,j

h1
+

v(n+1)
ij − v(n+1)

i,j−1

h2

+

+
1
h1

−u(n+1)
ij

v(n+1)
ij − v(n+1)

i−1,j

h1

− v(n+1)
ij

v(n+1)
ij − v(n+1)

i,j−1

h2

+

+
1

Reh1

u(n+1)
i+1,j − 2u(n+1)

ij + u(n+1)
i−1,j

h2
1

+
u(n+1)

i,j+1 − 2u(n+1)
ij + u(n+1)

i,j−1

h2
2

+

+
1
h2

−u(n+1)
ij

v(n+1)
ij − v(n+1)

i−1,j

h1

− v(n+1)
ij

v(n+1)
ij − v(n+1)

i,j−1

h2

+

+
1

Reh2

v(n+1)
i+1,j − 2v(n+1)

ij + v(n+1)
i−1,j

h2
1

+
v(n+1)

i,j+1 − 2v(n+1)
ij + v(n+1)

i,j−1

h2
2

 .

Revised velocity field components u and v are determined by solving the implicit momentum
equation with revised pressure P. Process of solving the momentum equation and Poisson equation is
repeated until the velocity field is divergence free. Thus, at each time step in solving the Navier–Stokes
equation, we need to solve SLAE with nonsymmetric matrices that are solved by the AMG method
with HSS smoothers.

There are two coarsening approaches in the AMG: RS and PMIS algorithms. Coarsening splits
initial grid on C-points and F-points—coarse and fine grid points, respectively. The RS (Ruge-Stuben)
algorithm [25] is a traditional coarsening approach. The RS algorithm is based on two heuristic criteria
that achieve optimal convergence and minimal computational cost. The first criterion provides the
achievement of good convergence, as the effective coarsening scheme should allow to accurately
interpolate a smooth error. Then, it is desirable that each F-point (Fine-grid point) has as many
strongly influencing C-points (Coarse-grid points) as possible [26]. The criterion, provided minimal
computational cost for different levels of V-cycle, requires that the set of C-points is the maximum
subset of all F-points, to obtain more accurate interpolation, provided that no C-point is strongly
dependent on another C-point (the set is maximum and independent), since such points would have
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increased the computational costs without providing visible benefits of interpolation [26]. In general,
as the convergence is increased, the computational costs of the V-cycle decrease. Therefore, the first
criterion is strictly observed and the second one is guidance. The RS algorithm has two passes. The first
pass splits the full grid in C and F points; the second one ensures strict implementation of the first
criterion [26]. PMIS (parallel changes independent set), the algorithm of coarsening, is based on the
same principles as the RS algorithm except that a heuristic criterion is not strictly observed, i.e., F-F
connections without a common C-point are permitted. Unlike the RS coarsening, the PMIS is not
sequential. However, the precision may be deteriorated because an insufficient number of points
reduces the accuracy of interpolation [26].

Numerical experiments have been done using the PMIS-algorithm. In Tables 1 and 2 , we give
the number of AMG-iterations with the HSS-based smoother on the different grids, where α is the
parameter of the HSS iteration method. For comparison, we give the AMG calculations when the
Gauss–Seidel method is used as the smoothing procedure. In our implementations, all iterations are
started from the zero vector, and terminated when

‖r(p)‖2

‖r(0)‖2
≤ 10−6,

where r(p) = b− Av(p) is the residual vector of the SLAE (2) at the current iterate v(p) and r(0) is the
initial residual. Our comparisons are done for the number of iteration steps and the elapsed CPU time
(in seconds, in parentheses). The abbreviation “n.c.” in Table 2 means “no convergence”.

The experiments are run in MATLAB (version R2018b) with a machine precision of 10−16.
From Tables 1 and 2, it follows that the AMG methods with the HSS-smoother have fast

convergence speed for all tested values of the viscosity coefficient (ν = 10−1 ÷ 10−5) on all used
grids, while the AMG with the Gauss–Seidel smoother does not converge for ν = 10−4, 10−5 on all
considered grids, and does not converge on the grids 260× 260 and 520× 520 nodes for all values of
the viscosity coefficient. For all tests, the AMG+HSS (Algebraic multigrid method with Hermitian/
Skew-Hermitian Splitting smoother) outperforms the AMG+GS (Algebraic multigrid method with
Gauss–Seidel smoother) with respect to both number of iteration steps and CPU time. Moreover,
the number of iteration steps and CPU time increase with increasing grid size for both methods.

From the data shown in the Table 1, an increase in the number of iterations with an increase in the
mesh size follows. However, this relates to some features of the algebraic approach in MGM (more
precisely, the PMIS algorithm in the AMG). The traditional (a scalable) approach in the AMG (RS
algorithm) works well for problems arising from the discretization of PDEs in two spatial dimensions.
For many two-dimensional problems, a solver can be obtained with the number of iterations, regardless
of the size of the problem n, as well as the solution time per iteration, linearly proportional to n. For the
RS algorithm, the convergence factor is separated from unity and does not depend on the size of the
problem n. But when using regular AMG interpolation in combination with PMIS, AMG convergence
worsens depending on the size of the problem. This results in a loss of scalability [27]. However,
when traditional AMG algorithms are applied to three-dimensional (3D) problems, numerical tests
show [27] that in many cases scalability is lost. However, the number of iterations may remain constant.
The computational complexity and size of the stencil can increase significantly, which will lead to an
increase in execution time and memory usage. In addition, the PMIS algorithm allows for natural
parallelization, unlike the RS algorithm. These properties of the PMIS algorithm seem promising to us
for the further study of the three-dimensional Navier–Stokes equations using parallel computing.
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Table 1. Algebraic multigrid (AMG)+(HSS) Hermitian/skew-Hermitian splitting iterations with
different ν.

Grid ν = 10−1 ν = 10−2 ν = 10−3 ν = 10−4 ν = 10−5

60× 60 25 (21.20) 26 (21.59) 29 (26.20) 30 (26.54) 21 (14.15)
120× 120 40 (64.50) 45 (67.70) 54 (94.60) 40 (59.20) 37 (51.50)
180× 180 54 (152.61) 50 (151.52) 64 (161.82) 49 (126.85) 35 (97.51)
260× 260 85 (192.70) 93 (197.20) 82 (191.52) 83 (197.26) 58 (126.7)
520× 520 90 (282.51) 97 (290.58) 90 (286.26) 92 (286.85) 85 (252.21)

Table 2. Algebraic multigrid (AMG)+(GS) Gauss–Seidel iterations with different ν.

Grid ν = 10−1 ν = 10−2 ν = 10−3 ν = 10−4 ν = 10−5

60× 60 26 (32.57) 46 (42.51) 54 (114.85) n.c. n.c.
120× 120 57 (83.82) 64 (122.61) 83 (160.50) n.c. n.c.
180× 180 59 (162.36) 82 (185.38) 85 (192.20) n.c. n.c.
260× 260 n.c. n.c. n.c. n.c. n.c.
520× 520 n.c. n.c. n.c. n.c. n.c.

Table 3 shows the number of iteration steps and CPU time of the AMG+HSS method depending
on the value α, when ν = 10−5. For the AMG+HSS method, the optimal (experimental) parameter
value that reduces the number of iterations depends on the size of the grid. As the grid size increases,
the value of α, which provides the best convergence, decreases. Numerical experiments showed that
for parameter values less than 0.2, the AMG+HSS method diverges.

Table 3. (AMG)+(HSS) iterations with different α, ν = 10−5.

Grid α = 0.2 α = 0.3 α = 0.4 α = 0.6 α = 0.8 α = 0.9 α = 1.0

60× 60 29 (26.84) 24 (21.51) 21 (14.15) 42 (40.61) 54 (58.86) 56 (68.22) 65 (84.20)
120× 120 40 (61.50) 39 (64.67) 37 (51.50) 45 (67.52) 56 (94.60) 57 (94.20) 82 (162.85)
180× 180 52 (114.2) 35 (97.51) 42 (129.20) 67 (14.82) 84 (165.84) 86 (175.21) 91 (196.21)
260× 260 58 (126.7) 65(171.58) 65 (187.21) 82 (192.64) 84 (194.54) 91 (194.60) 95 (197.22)
520× 520 82 (251.26) 84(251.84) 85 (252.21) 92 (260.52) 93 (262.42) 94 (282.52) 97 (290.21)

Thus, the numerical experiments have showed that the HSS-based smoothers can be effectively
used for the AMG, in which the stage of coarse-grid correction can be considered as a kind of
accelerating procedure of the HSS methods.

5. Conclusions

In our previous theoretical and numerical studies of the MGM with the STS-based smoothers,
the stationary (and nonstationary) linear diffusion–convection equation with dominant convection
was considered as a test problem [13,14]. All theoretical results and calculations were performed
using geometric MGM. Here, we first use the HSS-method as the smoother in the algebraic MGM
for solving the unsteady Navier–Stokes equations. It is supposed to further prove the theoretically
smoothing properties of the HSS iteration methods and to prove the convergence of the MGM with
the corresponding smoothers. In addition, theoretical and numerical results should be obtained for
the MGM with the STS-based smoothers for the Navier–Stokes problem. The PMIS algorithm was
not chosen by us by chance. Preliminary testing of it on this model problem showed its robustness.
In addition, the PMIS algorithm allows for natural parallelization, unlike the RS algorithm. These
properties of the PMIS algorithm seem promising to us for the further study of the three-dimensional
Navier–Stokes equations using parallel computing.



Symmetry 2020, 12, 233 11 of 12

Author Contributions: Conceptualization, G.M.; methodology, G.M., T.M.; validation, E.A.; writing—original
draft preparation, T.M., Z.-Q.W.; writing—review and editing, T.M.; software, V.B. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by RFBR, grant N19-51-53013 GFENa, and Ministry of Science and Higher
Education of the Russian Federation (basic part, project N1.5169.2017/8.9).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

Abbreviations

The following abbreviations are used in this manuscript:

MGM Multigrid Method
SLAE Systems of Linear Algebraic Equations
AMG Algebraic Multigrid
HSS Hermitian/Skew-Hermitian Splitting
STS Skew-Hermitian Triangular Splitting
PDE Partial Differential Equations
CFD Computational Fluid Dynamics
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