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Abstract: The innovation of germplasm resources and the continuous breeding of new varieties of
apples (Malus domestica Borkh.) have yielded more than 8000 apple cultivars. The ability to identify
apple cultivars with ease and accuracy can solve problems in apple breeding related to property rights
protection to promote the healthy development of the global apple industry. However, the existing
methods are inconsistent and time-consuming. This paper proposes an efficient and convenient
method for the classification of apple cultivars using a deep convolutional neural network with leaf
image input, which is the delicate symmetry of a human brain learning. The model was constructed
using the TensorFlow framework and trained on a dataset of 12,435 leaf images for the identification
of 14 apple cultivars. The proposed method achieved an overall accuracy of 0.9711 and could
successfully avoid the over-fitting problem. Tests on an unknown independent testing set resulted
in a mean accuracy, mean error, and variance of µacc = 0.9685, µε = 0.0315, and σ2 = 1.89025E− 4,
respectively, indicating that the generalization accuracy and stability of the model were very good.
Finally, the classification performance for each cultivar was tested. The results show that model had
an accuracy of 1.0000 for Ace, Hongrouyouxi, Jazz, and Honey Crisp cultivars, and only one leaf was
incorrectly identified for 2001, Ada Red, Jonagold, and Gold Spur cultivars, with accuracies of 0.9787,
0.9800, 0.9773, and 0.9737, respectively. Jingning1 and Pinova cultivars were classified with the lowest
accuracies, with 0.8780 and 0.8864, respectively. The results also show that the genetic relationship
between cultivars Shoufu 3 and Yanfu 3 is very high, which is mainly because they were both selected
from a red mutation of Fuji and bred in Yantai City, Shandong Province, China. Generally, this study
indicates that the proposed deep learning model is a novel and improved solution for apple cultivar
identification, with high generalization accuracy, stable convergence, and high specificity.

Keywords: Malus domestica Borkh.; deep learning; convolutional neural networks; cultivars
identification; leaves images

1. Introduction

The apple (Malus domestica Borkh.) originated in Europe, Asia, and North America [1–3]. As a
result of the strong adaptability and high tolerance of this species to different soil and climatic conditions,
and aligning with natural domestication and artificial breeding improvements, apple cultivars are now
grown on five continents [2,3]. To date, more than 8000 apple cultivars have been bred to cater to
specific demands, which vary greatly across the globe [4]. In 2018, the global production of apples—the
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second most popular fruit—was over 68.6 million tons, despite the frost disaster in China and Iran that
reduced it to the lowest level in eight years [5]. Furthermore, the global apple demand is increasing at
a robust pace, driven mainly by the increase in its daily consumption as a fresh fruit and its use in
medicine and the cosmetic industry as an essential ingredient. As it is affordable and has longstanding
associations with healthy lifestyles, its processed products such as juice, vinegar, cider, and jam are in
extremely high demand throughout the year, especially in America, Europe, Russia, and Egypt [6].

Apple germplasm resources are rich and widely distributed throughout the world, with a long
history of commercial cultivation. With the innovation of germplasm resources and the continuous
selection of new apple varieties, apple cultivars are frequently mixed, and the phenomenon of
homonymy is more serious than ever before. Currently, the ability to identify apple cultivars efficiently,
easily, and accurately is a continuous hot topic that has attracted the attention of breeding experts and
horticultural experts worldwide.

Traditionally, to classify a cultivar, gardeners or breeders have primarily relied on their own
intuition and expertise in on-site observation and analysis of the botanical characteristics of the fruit,
tree, branch, and leaf in orchards. However, concerns regarding this method include its lack of
objectivity, low efficiency, and unpredictable accuracy; furthermore, it is unquantifiable and unsuitable
for large-scale orchard work because it highly depends on personal empirical knowledge and cognition.
The other method relies on experts to systematically test the fruit’s physiological indicators in a
laboratory using a combination of physical, chemical, molecular, and biological technologies. However,
this approach is not only expensive and time-consuming, but also involves complicated operating
procedures and is incredibly unfriendly to common growers [7–9].

With the application of digital image processing technology and computer vision technology
in agriculture, many machine learning methods for plant classification using leaf images have been
proposed and studied such as the k-nearest neighbors (KNN), decision tree, support vector machine
(SVM), and naive Bayes (NB) [10–15]. However, a common and serious disadvantage is the need
to manually design and extract discriminative features before the classification of different plants.
Moreover, the features designed and extracted for a specific plant are not suitable for other plants,
so they must be redefined when the same method is applied to new cases. The processes of designing
and extracting features are difficult and strategic. Furthermore, although these methods have shown
good results with improved accuracy, they are susceptible to artificial feature selection and are not
robust or stable enough to meet the needs of actual scientific research and production. In recent years,
the convolutional neural network (CNN) has been developed as one of the best classification methods
for computer pattern recognition tasks [16–31] because discriminative features can be automatically
extracted and fused from a low layer to a high layer through multiple layers of convolutional operations.
The breakthrough application of the convolutional neural network in image-based recognition has
inspired its wide use in studies on plant classification and recognition in precision agriculture.

2. Related Works

Related research works include Mads Dyrmanna et al. [16], who designed a convolutional
neural network to classify 22 weed and crop species at early growth stages and achieved a total
classification accuracy of 86.2%. Hulya Yalcin et al. [17] proposed a convolutional neural network
structure to classify different crops using leaf images. They tested the performance of the method
on the TARBIL project dataset supported by the Turkish government, and the results confirmed its
effectiveness. Lee, Sue Han et al. [18] proposed a hybrid general organ convolutional neural network
(HGO-CNN) that performs classification using different numbers of plant views by optimizing the
context-dependence between views, and verified the performance of this method on the benchmark
dataset plantclef2015 [19]. Although these studies aimed to classify different plant species, they
were based on the common fact that their leaves have different colors and shapes, which makes the
classification task easier. In contrast, the leaves of apple cultivars are generally the same color and
similar in shape, so using these methods to classify apple cultivars with leaf images is exceedingly
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challenging and problematic. Sue H. L. et al. [20] proposed a method to extract leaf features using
a CNN and reported that different orders of venation are more representative features than shape
and color. Guillermo L. G. [21] proposed the use of a deep convolutional neural network (DCNN) to
classify three different legume species. Baldi A. [22] proposed a leaf-based back propagation neural
network for the identification of oleander cultivars. Although these three studies did not involve the
classification of apple cultivars, their achievements are important references for this study.

In summary, plant classification using a convolutional neural network with leaf image input has
become both a focus and challenge in precision agriculture, which has attracted extensive attention
from scholars worldwide, but is still in its infancy with few related research achievements, especially
on apple cultivar classification. Therefore, in this paper, we present a novel identification approach for
apple cultivars based on the deep convolutional neural network—a DCNN-based model—with apple
leaf image input.

The DCNN-based model must solve two tricky problems. First, insufficient apple leaf images taken
in natural environments can be a major obstacle in training the model to produce a high generalization
performance. Second, determining the best structure of the model is a technological barrier to success.

The main contributions of this paper can be summarized as follows:

• Sufficient apple leaf samples were obtained as research objects by choosing 14 apple cultivars, most
of which grow in Jingning County, Gansu Province, which is the second-largest apple production
area in the Loess Plateau of Northwest China. We took apple leaf images in the orchard under
natural sunlight conditions at a resolution of 3264 × 2448 and/or 1600 × 1200 from multiple angles
in automatic shooting mode to capture diverse apple leaf images to train the DCNN-based model.
In particular, the diversity of leaf images increased under various weather conditions by capturing
leaf images for 37 days from 15 July 2019 to 20 August 2019. This period included sunny, cloudy,
rainy (light rain, moderate rain, rain, heavy rain), and foggy days. Finally, a total of 12,435 leaf
images from 14 apple cultivars were obtained. This large number and wide range can enhance
the robustness of the DCNN-based model in the training process and ensure that it has a high
generalization capability.

• A novel deep convolutional neural network model with leaf image input was proposed for the
identification of apple cultivars through the analysis of the characteristics of apple cultivar leaves.
The convolution kernel size and number were adjusted, and a max-pooling operation after each
convolution layer was implemented; dropout was used after the dense layer to prevent the
over-fitting problem.

The remainder of this paper is organized as follows. In Section 3, the apple cultivars, the method of
acquiring apple leaf images, and the software and computing environment are introduced. In Section 4,
the construction of the novel deep convolutional neural network model is described. Section 5 analyzes
the experimental results in detail. Finally, this paper is concluded in Section 6.

3. Acquisition of Sufficient Apple Cultivar Leaf Images

3.1. Plant Materials and Method

This study was conducted in the orchard of the Research Institute of Pomology of Jingning County
(35◦28′ N, 104◦44′ E; elevation: 1600 m above sea level), located in Jingning County, Gansu Province,
NW China. The 14 apple cultivars that were chosen as research objects in this study (Table 1) mainly
grow in Jingning County, Gansu Province, which is the second-largest apple production area in the
Loess Plateau of Northwest China. The main rootstocks are M series and SH series dwarfing rootstocks.
More than 100 mature healthy leaves without mechanical damage, disease lesions, or insect pests
were randomly picked from the branches at the periphery (more than 1.0 m from the trunk) and the
inner bore (less than 0.5 m from the trunk) in four directions (east, west, south, and north) of the tree
crown. A total of 2711 leaves were picked. Details about each cultivar are shown in Table 1. All trees



Symmetry 2020, 12, 217 4 of 19

were exposed to uniform farming practices and measures, edaphic and health conditions, and light
intensity conditions. In particular, to increase the generalization performance of the DCNN-based
model proposed in this paper, we deliberately magnified the classification challenge by selecting leaves
with as many morphological differences as possible for each cultivar.

Table 1. The 14 apple cultivars used in this study.

Class ID Abbreviation Apple Cultivar Leaves Leaf Images

1 2001 2001 206 946
2 ACE Ace 195 938
3 ADR Ada Red 186 1029
4 FJMM Fujimeiman 210 982
5 HANF Hanfu 185 777
6 HRYX Hongrouyouxi 196 779
7 JN1 Jingning 1 176 817
8 JAZ Jazz 206 758
9 HOC Honey Crisp 186 899

10 PIN Pinova 207 879
11 JONG Jonagold 184 887
12 SHF3 Shoufu 3 174 1017
13 GOS Gold Spur 204 756
14 YANF3 Yanfu 3 196 971

Total 2711 12,435

3.2. Acquisition of Sufficient Apple Cultivar Leaf Images

An appropriate leaf image database plays a crucial role in this type of machine learning model [14].
Only leaf images that are taken in the natural environment can adequately test the generalization
performance of the classification/identification model. Immediately after a leaf was picked from the
tree, it was placed on the surface of a white piece of paper on the flat ground beside the fruit tree,
and images were taken immediately under natural sunlight conditions at an image resolution of 3264
× 2448 and/or 1600 × 1200 from multiple angles in automatic shooting mode. The digital color camera
used was a Nikon Coolpix B700 (60× optical zoom Nicol lens, 1/2.3-inch CMOS sensor), and the image
type was RGB 24-bit true color. In particular, the diversity of leaf images was increased by obtaining
images under various weather conditions: the test period in which the leaf images were captured was
37 days (from 15 July 2019 to 20 August 2019), during which there were 12 sunny days, 16 overcast
days, one day of light rain, one day of moderate rain, one day of heavy rain, five cloudy days, and one
foggy day (see www.weather.com.cn for details) [23]. On rainy days, the leaves had hardly been picked
and photographed when the rain stopped. Finally, 12,435 diverse leaf images from 14 apple cultivars
were obtained. The images were numbered with Arabic numerals starting from zero by cultivar Class
ID. The Class IDs of each cultivar are shown in Table 1, along with the number of leaves and images
for each cultivar. The size of the images was compressed to 512 × 512 to reduce the training time.

Examples of leaf images for all 14 cultivars are shown in Figure 1. The leaf images in this figure,
from left to right, correspond to the cultivars with Class IDs 1–14, as specified in Table 1. Figure 1 reveals
that apple leaves are generally very simple and similar to each other; they have an elliptical-to-ovate
shape and dimensions of about 4.5–10 and 3–5.5 cm in length and width, respectively, with a sharp
apex and round and blunt serrated edges. Due to these similarities, classifying apple cultivars using
leaf images is exceedingly complicated.

www.weather.com.cn
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Figure 1. Example leaf images of 14 apple cultivars: (a–n) correspond to Class IDs 1–14 in Table 1.

3.3. Software and Computing Environment

The experiment was conducted on a Lenovo 30BYS33G00 computer with an Intel 3.60 GHz CPU,
16 GB memory, and parallel speedup by the NVIDIA GeForce1080 GPU. The NVIDIA GeForce1080
GPU has 2560 CUDA cores and 8 GB of HBM2 memory. The core frequency is up to 1607 MHz,
and the floating-point performance is 10.6 TFLOPS. The DCNN-based model was implemented in
the TensorFlow framework with the tensorflow.keras interface [27]. More detailed configuration
parameters are presented in Table 2.

Table 2. Software and hardware environment.

Configuration Item Value

Type and Specification Lenovo 30BYS33G00
CPU Intel® Xeon® W-2123 CPU @ 3.60 GHz (8 CPUs)
GPU NVIDIA GeForce GTX 1080 8 GB

Memory 16 GB
Operating System Windows 10 Professional (64-bit)

Integrated Development Environment PyCharm Community 2019.2.3
Programming Language Python 3.7

Experimental Results Analyzing Software MATLAB R2010a

4. Generation of the Deep Convolutional Neural Network-Based (CNN-Based) Model for Apple
Cultivar Classification

A deep convolutional neural network (DCNN) is a deep supervised machine learning model
that is mainly composed of an input layer, convolution layer, pooling layer, activation function,
full connection layer, and output layer. By simulating the learning mechanism of the human brain,
DCNNs hierarchically process signals or data received in the input layer. After the input goes through
multilayer perception and learning, it enters the full connection layer, where the comprehensive
understanding acquired in the previous layers is fully connected to form the cognitive ability, which is
used to classify and identify the target, as detailed in Figure 2.
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4.1. Construct the Deep Convolutional Neural Networks-Based (DCNNs-Based) Model for Apple Cultivar
Identification with Leaf Image Input

Convolutional neural networks replace matrix multiplication with convolution, which is a special
linear operation. Through multilayer convolution operations, the complicated features of images can
be extracted from a low layer to a high layer. The front convolution layers capture local and detailed
features in the image, while the rear layers capture more complex and abstract features; after several
convolution layers, the abstract representation of the image at different scales is obtained.

There are many different convolution kernels in the same convolution layer; convolution kernels
are equivalent to a group of bases and can be used to extract image features at different depths
such as edges, lines, and angles. The weight parameters of a convolution kernel are shared by all
convolution operations in the same layer, but the weight parameters of different convolution kernels
are different from each other and serve as learnable parameters in DCNNs. In its local receptive field,
each convolution kernel with the same weight parameters convolves with the neuron output matrix of
the previous layer, and then a new neuron in this layer is created. By translating the local receptive field
with a fixed step, the process is repeated, another new neuron is obtained, and this repetition continues
until the neuron output matrix of this layer is obtained, which is the feature map (FM) corresponding
to this convolution kernel. The FMs corresponding to all convolution kernels are combined to form the
complete feature map output of this layer. The number of FMs is equal to the number of convolution
kernels in this layer. The output of the previous layer is the input of the next layer, the input of the
first convolution layer is the raw leaf image, and the output of the last layer is the input of the full
connection layer. The output feature map can be described by Equation (1):

yi
l = Wl∗xn×n

l−1 + bl, (1)

where yi
l is the ith neuron of the lth convolution layer, and bl is the bias. Wl represents the shared

weight matrix of a convolution kernel of n× n, and xn×n
l−1 represents the eigenvalues of the rectangular

region of n× n in the input feature map.
The number of convolution operations can be reduced by using pooling technology with

subsampling to reduce the size of the feature map obtained from the convolution layer. Generally,
mean-pooling can mitigate the increase in accuracy variance caused by the limitation of the local
receptive field, so more background information in the image is retained. On the other hand,
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max-pooling can reduce the deviation in the mean accuracy caused by errors in the convolution layer
parameters, so more texture information is retained. In this study, we focused more on preserving the
texture information of apple leaf images, so there was a max-pooling layer after each convolution layer.
This approach can lead to faster convergence and improved generalization performance [24].

When the feature map Yl of the lth convolution layer is passed to the max-pooling layer, the max
operation is applied to Yl to produce a pooled feature map Xl as the output. As shown in Equation (2),
the max operation selects the largest element:

Xl
j = max

i∈R j
Yl

i (2)

where R j represents the jth pooling region in feature map Yl; i is the index of each element within R j;
and Xl

j denotes the jth neuron of the lth pooled feature map [25].
The full connection layer, as the name implies, connects every neuron of the layer with all

the neurons of the previous layer to combine the features extracted from the front and obtain the
output, which is sent to the final classifier (such as the softmax classifier used in this study). That is,
the full connection layer itself no longer has the ability to extract features, but attempts to use existing
high-order features to complete the learning objectives.

In a convolutional neural network, the convolution operation is only a linear operation of weighted
sums, so it is necessary to introduce nonlinear elements to the network to solve nonlinear problems.
Therefore, an activation function, which is a nonlinear function, is included in the CNN. In this study, the
ReLU activation function is used for the output of every convolution layer, and is shown in Equation (3):

σ(x) = max(x, 0) (3)

When x < 0, its output is always 0. As its derivative is 1 when x > 0, it can maintain a continuously
decreasing gradient, which can alleviate the problem of the disappearing gradient and accelerate the
convergence speed.

In this study, the activation function used in the full connection layer was the softmax function,
which is mainly used for multiclassification problems. Softmax maps the outputs of multiple neurons to
the (0,1) interval, which can be regarded as the probability of belonging to a certain class. The softmax
function is shown in Equation (4), where vi is the ith component element in a vector v.

so f tmax(vi) =
evi∑

j

ev j
(4)

4.2. Specific Parameters of the DCNN-Based Model in This Study

This paper proposes a model based on a deep convolutional neural network to classify apple
cultivars using leaf image input. The model architecture and related parameters are shown in
Figure 3 and Table 3, respectively. The model consists of an input layer, six convolution layers, with
each followed by a max-pooling layer, one standard one-dimensional dense full connection layer,
one dropout process, and an output layer.

In the TensorFlow framework with the tensorflow.keras interface, constructing the DCNN-based
model for the classification of apple cultivars starts from the completion of its input layer by inputting
the raw leaf images from 14 cultivars into the model, and ends with the fulfillment of its output layer
by predicting the classification labels of leaf images.

The input format of the leaf image retains its original structure in a four-dimensional tensor as
[number of images trained in a batch, image height, image width, number of image channels]. In this
study, it was the float32 image of [32,512,512,3].
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The output result is a classification probability list with a length of 14 (P1, P2, P3, P4, P5, P6, P7,
P8, P9, P10, P11, P12, P13, P14), with each element in the list corresponding to the likelihood that the
leaf belongs to each of the 14 apple cultivars in Table 1. The maximum value in the list, pmax = max
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(P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, P11, P12, p13, P14), is the ultimate predicted classification label.
In this study, if the predicted label is consistent with the actual label, then this leaf image sample is
correctly classified/identified by the DCNN-based model.

Table 3. Related parameters of the DCNN-based model.

Type Patch Size/Stride Output Size

Convolution 3× 3/2 8× 512× 512
Pool/Max 2× 2/2 8× 256× 256

Convolution 3× 3/2 16× 256× 256
Pool/Max 2× 2/2 16× 128× 128

Convolution 3× 3/2 32× 128× 128
Pool/Max 2× 2/2 32× 64× 64

Convolution 3× 3/2 64× 64× 64
Pool/Max 2× 2/2 64× 32× 32

Convolution 3× 3/2 128× 32× 32
Pool/Max 2× 2/2 128× 16× 16

Convolution 3× 3/2 256× 16× 16
Pool/Max 2× 2/2 256× 8× 8

Full Connection - 512

The convolution layer of this model is represented by stage 1 in Figure 3. According to the features
of the apple leaf images, we specifically designed all the convolution kernels’ sizes in each convolution
layer as 3 * 3, stride = 1, pad = 1, which can gradually extract the features of the leaf image and ensure
that important features of the leaf image are not lost because of too large a convolution kernel size or
too large a stride. A max-pooling operation is applied after each convolution layer, with a sampling
pool size of 2 * 2, stride = 2, pad = 1. There are 2i+2 convolution kernels in the ith convolution layer
(i = 1,2, . . . , 6) (see Table 3 for more details).

The feature maps of the last convolution layer are flattened. The dense layer of the DCNN-based
model is a standard one-dimensional full connection layer with 512 neurons, which is adjusted to
predict 14 apple cultivars. A dropout operation is applied after the dense layer of the DCNN-based
model to mitigate the over-fitting problem by randomly discarding some neurons with a parameter of
0.3. The dense1 layer is the final layer with a 14-way softmax layer, in which the softmax activation
function is used to obtain the ultimate prediction as the output (see details in Figure 3).

The model is based on the TensorFlow framework: tr.nn.conv2d is used to realize the convolution
operation; tf.nn.max_pool is used to maximize the pooling operation; and the convolution layer is
activated by the ReLU activation function. The cost function of the model is defined by the function of
cross_entropy, which is minimized by the Adam optimization algorithm, with the super parameters
set to β1 = 0.9, β2 = 0.999; α = 0.001; and ε = 1.0e−8. The sparse_categorical_accuracy function is used
as the evaluation function in the proposed model.

4.3. Ten-Fold Cross-Validation

The performance of the model must be evaluated by a cross-validation experiment to ensure
that the learning model is reliable and stable. For a limited sample dataset, as in our case, 10-fold
cross-validation is usually used to evaluate or compare the performance of a model. In 10-fold
cross-validation, the sample dataset is randomly divided into 10 mutually exclusive subsets (i.e.,
D = D1 ∪D2 ∪ · · · ∪D10, Di ∩D j = ∅(i , j)). With D−Di as the training set and Di(i = 1, 2, · · · , 10)
as the validation set, the cross-validation process is repeated 10 times (10 folds), and the results from
the folds are then averaged for an evaluation of the model performance.
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5. Experimental Results and Analysis

We conducted experiments to comprehensively evaluate the classification performances of the
proposed DCNN-based model for apple cultivars.

5.1. Evaluation of the Accuracy of the DCNN-Based Model

Classification accuracy is a common index used to evaluate the performance of a classification
model, which is simply the rate of correct classifications, either for an independent test set, or using
some variation of the cross-validation idea.

5.1.1. Accuracy and Loss

The classification performance of the proposed DCNN-based model was evaluated on leaf images
from 14 apple cultivars. Table 1 presents the number of leaf images for each of the 14 apple cultivars.
The training set comprised 90% of the cultivar leaf images, which were chosen at random, and the
remaining 10% formed the validation set. The DCNN-based model was trained over 50 epochs.
Details about the accuracy acc from the 10-fold cross-validation are shown in Table 4, where acc is the
proportion of correctly classified samples to the total number of samples, as shown in Equation (5),
where xi is the total number of the ith apple cultivar leaf images and mi represents the number of
the ith apple cultivar leaf images that were correctly classified. As shown in Table 5, the highest acc
was 0.9932, the lowest acc was 0.9607, the mean was 0.9711, and the variance of acc was 1.1937e-2.
The results showed that the DCNN-based model proposed in this paper achieved a general satisfactory
classification accuracy that meets the requirements of many real production and scientific research
applications in precision agriculture.

acc =

n∑
i=1

mi

n∑
i=1

xi

(5)

Table 4. Leaf image features selected in other models.

No. Feature Expression

1 Mean Gray µ = 1
N∗N

∑
i

∑
j

p(i, j)

2 Gray Variance σ = ( 1
N∗N

∑
i

∑
j
(p(i, j) − µ)

2)
1
2

3 Skewness s = ( 1
N∗N

∑
i

∑
j
(p(i, j) − µ)

3)
1
3

4 Contrast c1 =
N−1∑
i, j=0

p(i, j;d,θ)(i− j)2

5 Correlation c2 =
N−1∑
i, j=0

p(i, j;d,θ)
(i−µi)( j−µ j)
√
σ j2σ j2

6 ASM c3 =
N−1∑
i=0

N−1∑
j=0

p(i, j;d,θ)
2

7 Homogeneity c4 =
N−1∑
i, j=0

p(i, j;d,θ)

1+(i− j)2

8 Dissimilarity c5 =
N−1∑
i=0

N−1∑
j=0

p(i, j;d,θ) ∗
∣∣∣i− j

∣∣∣
9 Entropy c6 = −

N−1∑
i=0

N−1∑
j=0

p(i, j;d,θ)∗ log(p(i, j;d,θ))
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Table 5. Comparison of the accuracies of different models.

Model
acc

Maximum Minimum Mean Variance

KNN 0.5852 0.3838 0.4636 3.6164e+1
SVM 0.4743 0.4594 0.4287 3.6814e-1

Decision Tree 0.5954 0.5763 0.5836 4.5833e-1
Naive Bayes 0.3930 0.3702 0.3837 5.5842e-1

DCNN-based model (proposed in this paper) 0.9932 0.9607 0.9711 1.1937e-2

The evolutionary curves of the accuracy and loss over 50 epochs are shown in Figure 4.
The proposed model began to converge after about 10 epochs, and it had satisfactory convergence after
20 epochs until finally reaching its optimal classification performance. The curve illustrates that the
model has a very good learning ability because, over the first 10 epochs, the accuracy rose rapidly,
and the loss decreased quickly, and after 10 epochs, the training process generally followed a relatively
stable upward trend. Furthermore, over the whole convergence, the accuracy fluctuated upward,
while the loss continued in a fluctuational decline, which indicates that the model has a continuous
learning ability without becoming trapped in a local optimal. Additionally, during the whole training
process, the training accuracy was slightly higher than the validation accuracy, and the training loss
was slightly lower than the validation loss, which shows that the model can successfully avoid the
over-fitting problem.
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5.1.2. Accuracy of the Proposed Model Compared with the Accuracy of Other Classical Machine
Learning Algorithms

To highlight the higher performance and greater advantages of the proposed DCNN-based model
compared with other classical machine learning models, we also trained K-nearest neighbors (KNN),
support vector machine (SVM), decision tree, and naive Bayes (NB) classifiers, with all parameters
configured to the default settings in scikit-learn of Python. An obvious disadvantage of these classical
machine learning models lies in the requirement to manually design and extract discriminative features
before classification. Therefore, we chose nine common image discriminative features for these
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classifiers, as shown in Table 4, where Mean Gray, Gray Variance, and Skewness are three gray features;
Contrast, Correlation, ASM, Homogeneity, Dissimilarity, and Entropy are six texture features, with each
corresponding to four eigenvalues in four directions of 0◦, 45◦, 90◦, and 135◦, which reflect the gray
distribution, information quantity, and texture thickness of the image from different angles. In total,
27 discriminative features were chosen. Details of the expression for each feature can be seen in the
last column of Table 4, where N represents the size of the image, namely, the total number of rows
and columns of pixels; i represents the position of the row where the pixel is located; j represents the
position of the column where the pixel is located; p(i, j) represents gray value of the pixel at the position
of ith row and jth column; θ represents four directions of 0◦, 45◦, 90◦, and 135◦; and d represents
distance between the central pixel and adjacent pixel. In this experiment, N = 512, i = 0, 1, · · · , 511,
j = 0, 1, · · · , 511, and p(i, j) ∈ [0, 255].

In contrast, the DCNN-based model does not require any extra work for designing and extracting
features. The detailed results for the DCNN-based model and the above classical models are shown in
Table 5. In this study, the evaluation criteria were the highest accuracy, the lowest accuracy, the mean
accuracy, and the variance of the accuracies from 10-fold cross-validation. It can be seen that, regardless
of the evaluation criterion used, the DCNN-based model was the best. The mean accuracy of the
DCNN-based model was 2.5 times that of NB and 1.7 times that of decision tree; in other words,
the DCNN-based model had the highest accuracy of the tested models. In addition, the accuracy
variance of the DCNN-based model was the smallest: it was three orders of magnitude lower than that
of KNN and one order of magnitude lower than that of the other models. That is, the DCNN-based
model had the most stable performance of the tested models.

The experimental results also show that the classical machine learning models depend largely on
features selected by experts beforehand to increase accuracy [26], whereas the DCNN-based model
is able to not only automatically extract the best discriminative features from multiple dimensions,
but also learns features layer by layer from low-level features (such as edges, corners, and color)
to high-level semantic features (such as shape and object). These capabilities improve the model’s
recognition performance on apple cultivar leaf images [26].

From the above two experimental results, we can conclude that the DCNN-based model proposed
in this paper can successfully classify apple cultivars, achieving a very high mean accuracy of 0.9711
and a very stable and reliable performance with an accuracy variance of 1.1937e-2. Compared with
the classification performance of KNN, SVM, decision tree, and naive Bayes machine learning models,
the classification performance of the proposed model is superior and has clear advantages over the others.

5.2. Evaluation of the Generalization Performance on an Independent and Identically Distributed Testing Set

5.2.1. Accuracy on an Independent and Identically Distributed Testing Dataset

Generally, it is more scientifically robust and reliable to evaluate or compare the generalization
performance of machine learning models by measuring their accuracy on an unknown dataset. For this
purpose, the testing set, training set, and validation set should differ from each other and be independent
and identically distributed. The generalization performance of a model should be comprehensively
evaluated by its accuracy acc, error ε(= 1−acc), and other indicators on the unknown testing set.
Therefore, in this study, 5% of the leaf images of each cultivar was randomly selected as the fixed testing
set for a total of 620 images, which were unknown to the DCNN-based model. Then, of the 11,815 leaf
images remaining after excluding the testing set, 90% of the data were chosen at random to form the
training set, and the remaining 10% formed the validation set, as detailed in Table 6. The DCNN-based
model proposed in this study was trained over 50 epochs on these images using 10-fold cross-validation.
The classification results and accuracy acci(i = 1, 2, . . . , 10), error εi(i = 1, 2, . . . , 10), mean accuracy

µacc =
n∑

i=1
acci, mean error µε =

n∑
i=1

εi, and error variance σ2 = 1
n−1

n∑
i=1

(εi − µε)
2 on the fixed unknown

independent testing set are shown in Table 7, in which the rows represent the 14 apple cultivars (the
number of leaf images for the cultivar is in parentheses), and the columns represent the 10 folds of the
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cross-validation test. The number of accurately predicted images for each of the 14 apple cultivars in
each fold is presented in detail in Table 8, in which with the third-last row represents the accuracy
acci(i = 1, 2, . . . , 10) of each fold, the second-last row represents the error εi(i = 1, 2, . . . , 10) of each
fold, the bottom row reports the mean accuracy µacc, mean error µε, and error variance σ2 of the 10
folds. The numbers in bold indicate the leaf images classified with 100% accuracy.

Table 6. Testing set, training set, and validation set.

Class Testing Set Training Set Validation Set

2001 47 809 90
ACE 47 802 89
ADR 50 881 98

FJMM 49 840 93
HANF 39 664 74
HRYX 39 666 74

JN1 41 698 78
JAZ 38 648 72

HOC 45 769 85
PIN 44 752 83

JONG 44 759 84
SHF3 50 870 97
GOS 38 646 72

YANF3 49 830 92
Total 620 10,634 1181

Table 7. Accuracy on the testing set.

Class
10-Fold Cross-Validation Tests

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

2001 (47) 45 46 47 47 46 46 41 47 44 46
ACE (47) 45 47 47 47 47 47 47 47 46 47
ADR (50) 50 50 50 50 50 50 50 50 50 49

FJMM (49) 48 49 45 46 48 47 49 47 47 45
HANF (39) 38 38 29 38 39 37 35 39 36 37
HRYX (39) 37 39 39 37 39 39 38 39 39 39

JN1 (41) 40 37 41 41 40 39 34 38 35 36
JAZ (38) 38 38 38 38 38 38 38 38 38 38

HOC (45) 44 44 42 45 45 42 44 45 43 45
PIN (44) 41 44 41 43 44 42 41 41 44 39

JONG (44) 44 41 44 44 42 44 43 44 44 43
SHF3 (50) 48 47 48 47 47 47 49 47 47 47
GOS (38) 38 38 29 38 38 37 37 38 38 37

YANF3 (49) 48 49 42 46 48 45 49 46 48 46
acc 0.9742 0.9790 0.9387 0.9790 0.9855 0.9677 0.9597 0.9774 0.9661 0.9581
ε 0.0258 0.0210 0.0613 0.0210 0.0145 0.0323 0.0403 0.0226 0.0339 0.0315

µacc = 0.9716 µε = 0.0284 σ2 = 1.89025E− 4

As reported in Table 7, for the Jazz cultivar, all 10 folds reached 100% accuracy (highlighted in
yellow); for the Ada Red cultivar, nine folds reached 100% accuracy (highlighted in blue); for the
Ace cultivar, eight folds reached 100% accuracy (highlighted in green); and for the Hongrouyouxi,
Jonagold, and Gold Spur cultivars, more than six folds reached 100% accuracy. Collectively, the mean
accuracy µacc = 0.9685, mean error µε = 0.0315, and their variance σ2 = 1.89025E-4 show that the
generalization accuracy and stability of the proposed DCNN-based model were very good on the
unknown independent testing set.
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Table 8. Confusion matrix of the classification results in our work.

2001 ACE ADR FJMM HANF HRYX JN1 JAZ HOC PIN JONG SHF3 GOS YANF3

2001 46 0 0 1 0 0 0 0 0 0 0 0 0 0
ACE 0 47 0 0 0 0 0 0 0 0 0 0 0 0
ADR 1 0 49 0 0 0 0 0 0 0 0 0 0 0

FJMM 1 0 0 45 1 0 0 0 0 0 0 1 0 1
HANF 0 0 0 0 37 0 0 0 0 0 0 0 0 2
HRYX 0 0 0 0 0 39 0 0 0 0 0 0 0 0

JN1 0 0 0 0 1 0 36 0 0 0 0 4 0 0
JAZ 0 0 0 0 0 0 0 38 0 0 0 0 0 0

HOC 0 0 0 0 0 0 0 0 45 0 0 0 0 0
PIN 0 0 0 0 0 0 0 0 3 39 2 0 0 0

JONG 1 0 0 0 0 0 0 0 0 0 43 0 0 0
SHF3 0 0 0 0 0 0 0 0 0 0 0 47 0 3
GOS 1 0 0 0 0 0 0 0 0 0 0 0 37 0

YANF3 0 0 0 0 0 0 0 0 0 0 0 3 0 46

5.2.2. Test for the General Error of the DCNN-Based Model on an Unknown Testing Set

Ten errors of the DCNN-based model on the unknown independent testing set (Table 7) are in line
with the normal distribution, and they can be regarded as independent samples of the generalization
error ε0, as defined in Equation (6):

τt =

√
k(µε − ε0)

σ
(6)

whereτt obeys the t distribution for k−1 degrees of freedom, as shown in Figure 5 (k = 10, signi f ican α = 0.05):
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For the hypothesis “µε = ε0” and significance α, we can calculate the maximum error as the critical
value that can be observed with a probability of 1− αwhen the mean error is ε0. If

∣∣∣µ− ε0
∣∣∣ is within the

range of the critical value [t−α
2

, t α
2
], then the hypothesis “µε = ε0” cannot be rejected, (i.e., the generalization

error is ε0, and the confidence degree is 1− α); otherwise, the hypothesis can be rejected.
The hypothesis “µε(= 0.0315) = ε0” with significance α = 0.05 was t-tested bilaterally. The critical

value calculated in MATLAB r2010a was 2.262, the associated probability was 0.8025, and the confidence
interval of the mean error was [0.0209,0.0399]. The results show that the associated probability is far
greater than the significance α = 0.05, so the hypothesis cannot be rejected: that is, the generalization
error ε0 of the model can be regarded as 0.0315.

5.2.3. Evaluation of Classification Performance in Each Cultivar

The confusion matrix of the classification results on the unknown independent testing set is shown
in Table 8. The 14 rows refer to the 14 apple cultivars, and the columns represent the resulting cultivars
to which the analyzed leaves were attributed by the proposed DCNN-based model. The fraction of
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accurately classified images for each apple cultivar is presented in bold on the diagonal in Table 8.
As the leaves of Ace, Hongrouyouxi, Jazz, and Honey Crisp cultivars have morphological characteristics
that are very prominent and different from the others, the identification rates for these cultivars were
100% (highlighted in yellow). For the 2001, Ada Red, Jonagold, and Gold Spur cultivars, only one
leaf was incorrectly identified, and their identification rates were 97.87%, 98%, 97.73%, and 97.37%,
respectively. As the leaves of Jingning 1 and Pinova cultivars are similar to the others and lack
prominent unique characteristics, the identification rates for these cultivars were the lowest of the 14
cultivars, with values of 87.80% and 88.64%, respectively. Furthermore, we can see mutual equivalent
morphological similarities between some cultivars. In fact, for some pairs of cultivars, the number
of leaves misclassified for one cultivar was equal to the number of misclassified leaves for the other
cultivar and vice versa (highlighted in blue). This was particularly evident for the cultivar pair Shoufu
3 and Yanfu 3: three leaves were wrongly attributed to the other cultivar. An analogous relationship
was discovered between the 2001 cultivar (one leaf was wrongly attributed to the Fujimeiman cultivar)
and the Fujimeiman cultivar (one leaf was wrongly identified as the 2001 cultivar). Furthermore,
although the accuracy for the Fujimeiman cultivar was not the lowest, four of its leaves were not
correctly identified and broadly misclassified as four different cultivars. All of these interesting results
offer important insights and inspirations that breeding experts can apply in their work for the selection
of new apple varieties.

The specific parameters that define the classification accuracy for each cultivar are the true positive
TP, false positive FP, true negative TN, and false negative FN [21], as detailed below.

The TP rate TPR = TP
TP+FN , also known as sensitivity, measures the proportion of positives that

are correctly classified as such, in machine learning, the TP rate is also known as the probability
of detection [24]. The TN rate TNR = TN

FP+TN , also known as specificity, measures the proportion
of negatives that are correctly identified as such. The FP rate FPR = FP

FP+TN , also known as the
fall-out or probability of false alarm [24], measures the proportion of positives that are incorrectly
identified as negatives, can also be calculated as “1 − specificity”. The accuracy rate A = TP+TN

TP+FP+TN+FN
measures the proportion of positives and negatives that are correctly identified as such; Precision
P = TP

TP+FP measures the correctly identified proportion of positives; and Recall R = TP
TP+FN measures

the correctly identified proportion of positives that are identified as such. Fβ_score =
(1+β2)∗P∗R
β2∗P+R , known

as the harmonic mean of P and R, measures the preference of attention on Precision or Recall: when
β > 1, R receives more attention than P and vice versa; in this study, β = 1. The macro accuracy

rate Amacro = 1
n

n∑
i=1

Ai, macro Precision Pmacro = 1
n

n∑
i=1

Pi, macro Recall Rmacro = 1
n

n∑
i=1

Ri, and macro

Fmacro
β_score =

(1+β2)∗Pmacro∗Rmacro
β2∗Pmacro+Rmacro

were used to measure the global average performance of the DCNN-based
model on the 14 cultivars in the testing set. The detailed accuracy of the DCNN model for each
apple cultivar is shown in Table 9. The values of R(= TPR) for ACE, ADR, HRYX, JAZ, and HOC
cultivars were greater than 0.98, and only the values of R(= TPR) for the JN1 and PIN cultivars were
less than 0.90. Additionally, Rmacro = 0.9586, which illustrates that the DCNN-based model was
sensitive for each cultivar, and the TNR of each cultivar was nearly equal to 1, which demonstrates
that the DCNN-based model had excellent specificity. The FPR was below 0.005 for 12 cultivars;
thus, the fall-out or probability of false alarm of the DCNN-based model was perfect for 86% of the
cultivars. The accuracy rate of each cultivar was sufficiently high—above 0.98 for all cultivars—and
Amacro = 0.9940: in other words, when leaves are mixed together, if we want to distinguish a specific
cultivar’s leaves from the others, the DCNN-based model can absolutely correctly identify the leaves
that belong to a specific cultivar and the leaves that do not belong to it, with such identified leaves
accounting for 99.40% of the total number leaves. Only the values of Precision P for Shoufu 3 and Yanfu
3 cultivars were slightly lower than 0.92, and the other cultivars were identified with high precision,
as reflected by Pmacro = 0.9628, which indicates that the model had a high precision for most of the
cultivars. For the Fβ_score of the cultivars, with Fβ_macro = 0.9607, we can draw the same conclusion as
that for Precision P.
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Table 9. Accuracy for each cultivar.

Class TP FP FN TN TPR TNR FPR A P R Fβ_score

2001 46 4 1 569 0.9787 0.9930 0.0070 0.9919 0.9200 0.9787 0.9485
ACE 47 0 0 573 1.0000 1.0000 0.0000 1.0000 1.0000 1.0000 1.0000
ADR 49 0 1 570 0.9800 1.0000 0.0000 0.9984 1.0000 0.9800 0.9899

FJMM 45 1 4 570 0.9184 0.9982 0.0018 0.9919 0.9783 0.9184 0.9474
HANF 37 2 2 579 0.9487 0.9966 0.0034 0.9935 0.9487 0.9487 0.9487
HRYX 39 0 0 581 1.0000 1.0000 0.0000 1.0000 1.0000 1.0000 1.0000

JN1 36 0 5 579 0.8780 1.0000 0.0000 0.9919 1.0000 0.8780 0.9351
JAZ 38 0 0 582 1.0000 1.0000 0.0000 1.0000 1.0000 1.0000 1.0000

HOC 45 3 0 572 1.0000 0.9948 0.0052 0.9952 0.9375 1.0000 0.9677
PIN 39 0 5 576 0.8864 1.0000 0.0000 0.9919 1.0000 0.8864 0.9398

JONG 43 2 1 574 0.9773 0.9965 0.0035 0.9952 0.9556 0.9773 0.9663
SHF3 47 8 3 562 0.9400 0.9860 0.0140 0.9823 0.8545 0.9400 0.8952
GOS 37 0 1 582 0.9737 1.0000 0.0000 0.9984 1.0000 0.9737 0.9867

YANF3 46 6 3 565 0.9388 0.9895 0.0105 0.9855 0.8846 0.9388 0.9109
Amacro = 0.9940 Pmacro = 0.9628 Rmacro = 0.9586 Fβ_macro = 0.9607

Hence, from all the above experiments, we can conclude that the DCNN-based model proposed
in this paper achieved a high enough performance on each cultivar, except for the Shoufu 3 and Yanfu
3 cultivars, mainly because of the highly similar morphological traits shared between this pair of
cultivars. The genetic relationship between the Shoufu 3 and Yanfu 3 cultivars is very high. Both were
selected from a red mutation of Fuji and bred in Yantai City, Shandong Province, China. The passport
details for these two cultivars are in Table 10.

Table 10. Passports for the Shoufu 3 and Yanfu 3 cultivars.

Class Platform No. Resource No. Origin Type

SHF3 1111C0003883000057 MAPUM6208260057
Xiaocaogou Horticultural
farm of Laizhou, Yantai
City, Shandong Province

Breeding variety

YANF 3 1111C0003883000006 MAPUM6208260006
Fruit and Tea Extension
Station of Yantai, Yantai
City, Shandong Province

Breeding variety

From the National Forest Germplasm Resources Platform of China.

6. Conclusions

This paper proposes a novel approach to identify apple cultivars using a deep convolution
neural network with leaf image input. No extra work is required for designing and extracting
discriminative features, and it can automatically discover semantic features at different depths and
enable an end-to-end learning pipeline with high accuracy. To provide sufficient apple cultivar leaf
images for training the model to obtain high generalization performance, we captured the images of
apple leaves in the orchard under natural sunlight conditions at a resolution of 3264 × 2448 and/or
1600 × 1200 from multiple angles in the automatic shooting mode. In particular, two main factors were
considered to increase the diversity of the leaf images: first, 1481 leaves were randomly picked from
the branches at the periphery and the inner bore in four directions (east, west, south, and north) of the
tree crown; second, the leaf images were captured over a period of 37 days, from 15 July 2019 to 20
August 2019, during which the weather conditions were variable. Finally, a total of 12,435 leaf images
for 14 apple cultivars were obtained. Furthermore, by analyzing the characteristics of apple cultivar
leaves, a novel model structure was designed by (i) setting all the convolution kernels to the same size
of 3 * 3 to prevent the loss of important features and to simplify the model; (ii) adding a max-pooling
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operation after each convolution layer to reduce the amount of computation; and (iii) introducing the
dropout operation after the dense layer to prevent the model from over-fitting.

The DCNN-based model was implemented in the TensorFlow framework on a GPU platform.
The test results on a dataset of 12,435 leaf images from 14 cultivars show that the proposed model,
with a mean accuracy of 0.9711 on 14 apple cultivars, is much better than several traditional
models. Its evolutionary curves show that the model effectively overcomes the over-fitting problem.
Furthermore, we performed comparative experiments to test the accuracy of the DCNN-based model
on an unknown independent dataset, and the mean accuracy, the mean error, and their variance were
µacc = 0.9685, µε = 0.0315, and σ2 = 1.89025E-4, respectively, which show that the generalization
accuracy and stability of the model proposed in this paper were very good on the unknown independent
testing set. Finally, we analyzed and compared the performance of the model on each cultivar in the
unknown independent dataset, and the results showed that an accuracy of 100.00% was achieved for
the b, f, h, and i cultivars, and only one leaf was incorrectly identified for the a, c, k, and m cultivars,
with accuracies of 0.9787, 0.9800, 0.9773, and 0.9737, respectively. The lowest accuracies were obtained
for the g and j cultivars, with 0.8780 and 0.8864, respectively. Finally, TPR = 0.9685, FPR = 0.0024, and
TNR = 0.9976 collectively indicate that the model generally has high precision and recall performance.

Future work will aim to identify apple cultivars in real time by studying other deep neural
network models such as Faster RCNN (Regions with Convolutional Neural Network), YOLO (You
Only Look Once), and SSD (Single Shot MultiBox Detector). Furthermore, hundreds and thousands of
leaf images of more apple cultivars from different planting areas need to be gathered to increase the
generalization performance and efficiency of the model on more apple cultivars. This presented model
will also be used to identify other fruit tree cultivars and even other plants.
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