

Article

MDPI

Preparation of Enantiomerically Enriched *P*-Stereogenic Dialkyl-Arylphosphine Oxides via Coordination Mediated Optical Resolution

Bence Varga and Péter Bagi *

Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary; varga.bence@mail.bme.hu

* Correspondence: pbagi@mail.bme.hu

Received: 12 December 2019; Accepted: 14 January 2020; Published: 2 February 2020

Table of Contents

1. General methods (instruments)	. S2
2. Preparation of the metal complexes of $(-)$ - O , O' -dibenzoyl- $(2R$, $3R$)-tartaric acid	l S3
3. Supplementary Resolution Procedures	. S3
4. Spectroscopic data of the scalemic dialkyl-arylphosphine oxides (1-7) prepared	dS5
5. HPLC traces of the optically active dialkyl-arylphosphine oxides (1-7)	. S7
6. References	S14

1. General methods (instruments)

The (-)-O,O'-dibenzoyl and(-)-O,O'-di-p-toluoyl-(2R,3R)-tartaric acids, calcium oxide, cobalt(II) acetate, copper(II) acetate and nickel(II) acetate were purchased from Sigma Aldrich Ltd. The phosphine oxides (1-7) were synthesized as described in the literature [1-6].

The solvents were purchased from commercial sources, and they were used without further purification.

The ³¹P, ¹³C, ¹H NMR spectra were taken on a Bruker AV-300 or DRX-500 spectrometer operating at 121.5, 75.5 and 300 or 202.4, 125.7 and 500 MHz, respectively.

The chemical shifts (δ) are given in parts per million (ppm). The chemical shifts (δ) for ¹H and ¹³C in CDCl₃ and referenced to 7.26 and 77.16 ppm, respectively. 85% Solution of H₃PO₄ was the external reference for ³¹P NMR chemical shifts.

Coupling constants are expressed in Hertz (Hz). The following abbreviations are used: s = singlet, d = doublet, t = triplet, q = quadruplet, m = multiplet, dd = doublet of doublets, dt = doublet of triplets, dq = doublet of quadruplets.

The exact mass measurements were performed using an Agilent 6230C TOF LCMS System with Agilent Jet Stream source in positive ESI mode (Buffer: ammonium-formate in water / acetonitrile; Drying gas: 325 °C; Capillary: 3000 V; Fragmentor 100 V).

Thin layer chromatography (TLC) was performed on Merck pre-coated Silica gel 60 F₂₅₄ aluminium plates with realization by UV irradiation.

The enantiomeric excess (*ee*) values were determined by chiral HPLC on a Perkin Elmer Series 200 instrument equipped with Phenomenex Lux ® 5µm Cellulose-1 or Phenomenex Lux ® 5µm Cellulose-2 or Phenomenex Lux ® 5µm Amylose-2 column (250 × 4.6 mm ID, a mixture of hexaneethanol as the eluent with a flow rate of 0.8 mL/min, UV detector α = 254 nm). The exact chromatographic parameters are detailed in Supplementary Table 1.

Optical rotations were determined on a Perkin-Elmer 241 polarimeter.

R1, R2	Temperature (°C)	Hexane : Ethanol ratio	Retention time 1 (min)	Enantiomer 1	Retention time 2 (min)	Enantiomer 2
Me, Et (1) ^a	13	50:50	6.8	(<i>S</i>)	8.1	(<i>R</i>)
Me, Pr (2) ^b	10	90:10	17.9	(<i>R</i>)	20.1	<i>(S)</i>
Et, Pr (3) ^b	10	90:10	13.2	(<i>R</i>)	14.7	<i>(S)</i>
Me, Bu (4) ^b	20	50:50	5.5	(<i>R</i>)	6.1	<i>(S)</i>
Me, <i>i</i> -Pr (5) ^b	20	85:15	10.0	(<i>S</i>)	11.6	(<i>R</i>)
Me, <i>c</i> -Hex (6) ^b	20	85:15	11.8	(S)	13.7	(R)
Me, <i>t</i> -Bu (7) ^c	20	85:15	5.6	(R)	6.1	(<i>S</i>)

Supplementary Table 1. HPLC parameters for the *ee* determination of dialkyl-arylphosphine oxides (1-7).

 a Phenomenex Lux \circledast 5 μm Cellulose-2 column.

^b Phenomenex Lux ® 5μm Amylose-2 column

^c Phenomenex Lux ® 5μm Cellulose-1 column

2. Preparation of the metal complexes of (-)-O,O'-dibenzoyl-(2R,3R)-tartaric acid

To a solution of 1.0 g (2.66 mmol) of DBTA H₂O in 3.0 mL of ethanol and 0.30 mL of water was added 1.33 mmol of CaO (0.074 g) or MgO (0.053 g) or Co(OAc)₂ (0.33 g) or Cu(OAc)₂ (0.24 g) or Ni(OAc)₂ (0.23 g). The mixture was refluxed until it became clear. The solution was cooled to room temperature, and the solvent was evaporated. The residue was dried *in vacuo* over KOH, to give 0.92 g (92%) of Ca(H-DBTA)₂, 0.87 g (89%) of Mg(H-DBTA)₂, 0.97 g (94%) of Co(H-DBTA)₂, 0.88 g (86%) of Cu(H-DBTA)₂ and 0.92 g (90%) of Ni(H-DBTA)₂.

3. Supplementary Resolution Procedures

3.1. Resolution of ethyl-phenyl-propylphosphine oxide (3) with a resolving agent prepared prior to the resolution (Representative Procedure)

0.096 g (0.13 mmol) of Ca(H-DBTA)₂ [(*R*,*R*)-8] prepared as described above was dissolved in 0.29 mL of boiling ethanol, and then a solution of 0.050 g (0.26 mmol) of racemic ethyl-phenyl-propylphosphine oxide (**3**) in 0.29 mL of hot ethyl acetate was added. Colorless crystalline diastereomeric complex of (*S*)-**3**·Ca(H-DBTA)₂ appeared upon cooling the reaction mixture to 25°C. After standing at 25°C for 24 hours, the crystals were filtered, washed with a mixture of 0.10 mL of ethanol and 0.10 mL of ethyl acetate, to give 0.10 g (83%) of (*S*)-**3**·Ca(H-DBTA)₂ with a *de* of 44% (Table 1, Entry 1; Supplementary Table 1, Entry 1).

Resolution of racemic ethyl-phenyl-propylphosphine oxide (**3**) was performed according to this representative procedure when the following resolving agents were used: Mg(H-DBTA)₂, Co(H-DBTA)₂, Cu(H-DBTA)₂ and Ni(H-DBTA)₂. The conditions and the results are shown in Supplementary Table 2.

Supplementary Table 2. Resolution of ethyl-phenyl-propylphosphine oxide (**3**) with the acidic Ca²⁺, Mg²⁺, Co²⁺, Cu²⁺ and Ni²⁺-salts of *O*,*O*'-dibenzoyl-(2*R*,3*R*)-tartaric acid.

Entry	Resolving agent	Eq.	Solvents ^a	Diastereomeric complex ^b	Yield ^{c,g} (%)	ee ^{d,g} (%)	S ^{e,g} (-)	Abs. Config. ^f
1	Ca(H-DBTA)2	0.5	3×EtOAc/3×EtOH	(3)·Ca(H-DBTA) ₂	83	44	0.36	(S)
2	Mg(H-DBTA)2	0.5	3×EtOAc/3×EtOH	no complex	-	-	-	-
3	Cu(H-DBTA)2	0.5	3×EtOAc/3×EtOH	no complex	-	-	-	-
4	Ni(H-DBTA)2	0.5	3×EtOAc/3×EtOH	no complex	-	-	-	-
5	Co(H-DBTA)2	0.5	3×EtOAc/3×EtOH	no complex	-	-	-	-

^aMixture of solvents for crystallization and recrystallizations [mL of solvent/g of resolving agent]. ^bRatio of phosphine oxide and resolving agent was determined by ¹H NMR. ^cYield of the diastereomer was calculated based on the half of racemic phosphine oxide that is regarded to be 100% for each antipode.

^dDetermined by HPLC using a chiral stationary phase.

^eResolving capability, also known as the Fogassy parameter [S (-) = (Yield [%] /100)×(ee [%]/100)].

^fAbsolute configuration of phosphine oxides was determined by comparing the specific rotation with the literature data.

^gResults obtained after the first crystallization are shown. The diastereomeric complexes were not purified.

3.2. Effect of the crystallization time on resolution of ethyl-phenyl-propylphosphine oxide (3) with 1 eq. in situ prepared Ca(H-DBTA)2 [(R,R)-8]

The resolution experiments were performed according to the representative procedure detailed in the manuscript (Section 2.2). The crystallization of the (S)-**3**·Ca(H-DBTA)₂ diastereomer was changed from 4-72 h. The conditions and results are detailed in Supplementary Table 3.

Supplementary Table 3. Effect of the crystallization time on resolution of ethyl-phenyl-propylphosphine oxide (3) with 1 eq. *in situ* prepared Ca(H-DBTA)₂ [(R,R)-8].

Entry	Crystallization	Solvents ^a	Diastereomeric	Yield ^{c,g}	ee ^{d,g} (%)	S ^{e,g}	Abs.
	time		complex	(%)		(-)	Config. ⁴
1	4 h	3×EtOH/3×EtOAc/0.3×H2O	(3)·Ca(H-DBTA) ₂	79	63	0.50	(S)
2	24 h	3×EtOH/3×EtOAc/0.3×H2O	(3)·Ca(H-DBTA) ₂	79	74	0.58	(S)
3	72 h	3×EtOH/3×EtOAc/0.3×H2O	(3)·Ca(H-DBTA) ₂	76	72	0.55	<i>(S)</i>
-	a .						

^{a-g}See Supplementary Table 2 for footnotes.

4. Spectroscopic data of the scalemic dialkyl-arylphosphine oxides (1-7) prepared

Ethyl-methyl-phenylphosphine-oxide [(*R*)-1] (Table 3, Entry 1)

³¹P NMR (CDCl₃) δ 39.2; ¹H NMR (CDCl₃) δ 7.70-7.66 (m, 2H, Ar-H), 7.52-7.44 (m, 3H, Ar-H), 1.99-1.82 (m, 2H, P-CH₂), 1.67 (d, *J* = 12.6, 3H, P-CH₃), 1.10 (dt, *J* = 7.7 and 17.7, 3H, CH₂-CH₃); ¹³C NMR (CDCl₃) δ 133.3 (¹*J*_{P-C} = 95.5, C₁), 131.6 (⁴*J*_{P-C} = 2.8, C₄), 130.1 (²*J*_{P-C} = 9.1, C₂), ^{*}128.7 (³*J*_{P-C} = 11.4, C₃), ^{*}24.7 (¹*J*_{P-C} = 71.4, P-CH₂), 15.4 (¹*J*_{P-C} = 69.5, P-CH₃), 5.7 (²*J*_{P-C} = 5.1, CH₂-CH₃), ^{*} may be reversed; HRMS [M+H]⁺found = 169.0781, C₃H₁₃OP requires 169.0777; pale-yellow oil; [α]_{D²⁵ = +16.0 (c 1.0, MeOH; ee = 66%) [7].}

Methyl-phenyl-propylphosphine oxide [(*S*)-2] (Table 3, Entry 2)

³¹P NMR (CDCl₃) δ 37.4; ¹H NMR (CDCl₃) δ 7.70-7.66 (m, 2H, Ar-H), 7.52-7.44 (m, 3H, Ar-H), 1.96-1.80 (m, 2H, P-CH₂), 1.68-1.45 (m, 5H, P-CH₃ and P-CH₂-CH₂), 0.98-0.95 (m, 3H, CH₂-CH₃); ¹³C NMR (CDCl₃) δ 133.8 (¹*J*_{P-C} = 95.3, C₁), 131.6 (⁴*J*_{P-C} = 2.8, C₄), 130.1 (²*J*_{P-C} = 9.2, C₂), ^{*}15.5 (²*J*_{P-C} = 3.9, P-CH₂-CH₂), 128.7 (³*J*_{P-C} = 11.3, C₃), ^{*}34.0 (¹*J*_{P-C} = 70.2, P-CH₂), 16.1 (¹*J*_{P-C} = 69.3, P-CH₃), 15.7 (³*J*_{P-C} = 15.4, CH₂-CH₃), ^{*} may be reversed; HRMS [M+H]⁺found = 183.0932, C₁₀H₁₅OP requires 183.0933; clear oil; [α]_D²⁵ = -3.9 (c 3.6, CHCl₃; ee = 37%) [1].

Ethyl-phenyl-propylphosphine oxide [(*S*)-**3**] (Scheme 3 / III)

³¹P NMR (CDCl₃) δ 41.7; ¹H NMR (CDCl₃) δ 7.58-7.51 (m, 2H, Ar-H), 7.35-7.31 (m, 3H, Ar-H), 1.90-1.63 (m, 4H, 2xP-CH₂), 1.56-1.28 (m, 2H, P-CH₂-CH₂), 1.01-0.89 (m, 3H, CH₂-CH₂-CH₃), 0.82 (dt, *J* = 7.4, 3.8 Hz, 3H, P-CH₂-CH₃); ¹³C NMR (CDCl₃) δ 132.1 (¹*J*_{P-C} = 91.6, C₁), 131.2 (⁴*J*_{P-C} = 2.6, C₄), 130.2 (²*J*_{P-C} = 8.7, C₂), * 128.4 (³*J*_{P-C} = 11.0, C₃), * 31.4 (¹*J*_{P-C} = 68.3, P-CH₂-CH₂), 22.6 (¹*J*_{P-C} = 69.2, P-CH₂-CH₃), 15.5 (³*J*_{P-C} = 14.7, CH₂-CH₂-CH₃), 15.0 (²*J*_{P-C} = 4.1, P-CH₂-CH₂), 5.3 (²*J*_{P-C} = 5.1, P-CH₂-CH₃), * may be reversed; HRMS [M+H]⁺_{found} =197.1098, C₁₁H₁₇OP requires 197.1090; pale-yellow oil; [α]_{D²⁵} = +6.2 (c 1.0, CHCl₃; ee = 94%) [1].

Butyl-methyl-phenylphosphine oxide [(*S*)-4] (Table 3, Entry 3)

³¹P NMR (CDCl₃) δ 37.7; ¹H NMR (CDCl₃) δ 7.70-7.66 (m, 2H, Ar-H), 7.52-7.44 (m, 3H, Ar-H), 1.97-1.80 (m, 2H, P-CH₂), 1.67 (d, *J* = 12.7, 3H, P-CH₃), 1.63-1.31 (m, 4H, P-CH₂-CH₂-CH₂), 0.85 (t, *J* = 7.3, 3H, CH₂-CH₃); ¹³C NMR (CDCl₃) δ 133.8 (¹*J*_{P-C} = 95.5, C₁), 131.6 (⁴*J*_{P-C} = 2.7, C₄), 130.1 (²*J*_{P-C} = 9.2, C₂)*, 128.7 (³*J*_{P-C} = 11.4, C₃),* 31.6 (¹*J*_{P-C} = 70.5, P-CH₂), 24.1 (³*J*_{P-C} = 15.0, P-CH₂-CH₂-CH₂), 23.8 (²*J*_{P-C} = 4.1, P-CH₂-CH₂), 16.1 (¹*J*_{P-C} = 69.5, P-CH₃), 13.6 (CH₂-CH₃), * may be reversed; HRMS [M+H]*_{found} =197.1093, C₁₁H₁₇OP requires 197.1090; clear oil; [*α*]_{P²⁵} = - 16.3 (c 0.5, CHCl₃; ee = 96%) [8].

Methyl-phenyl-*i*-propylphosphine oxide [(*R*)-**5**] (Table 3, Entry 5)

³¹P NMR (CDCl₃) δ 43.5; ¹H NMR (CDCl₃) δ 7.73 – 7.68 (m, 2H, Ar-H), 7.54 – 7.47 (m, 3H, Ar-H), 2.09 – 1.97 (m, 1H, CH-(CH₃)₂), 1.70 (d, *J* = 12.4, 3H, P-CH₃), [1.24 – 1.18 (m, 3H) and 1.10 – 1.05 (m, 3H)] CH-(CH₃)₂; ¹³C NMR (CDCl₃) δ 132.3 (¹*J*_{P-C} = 92.7, C₁), 131.3 (⁴*J*_{P-C} = 2.8, C₄), 130.2 (²*J*_{P-C} = 8.7, C₂), 128.3 (³*J*_{P-C} = 11.0, C₃), 29.3 (¹*J*_{P-C} = 71.5, CH-(CH₃)₂), [15.2 (²*J*_{P-C} = 2.4 Hz) and 15.0 (²*J*_{P-C} = 2.4)] CH-(CH₃)₂, 12.7 (¹*J*_{P-C} = 67.8, P-CH₃); HRMS [M+H]⁺_{found} = 183.0936, C₁₀H₁₆PO requires 183.0841; clear oil; [α]_D²⁵ = +11.3 (c 0.7, MeOH; ee = 53%) [9].

c-Hexyl-methyl-phenylphosphine oxide (6)

³¹P NMR (CDCl₃) δ 41.0; ¹H NMR (CDCl₃) δ 7.69-7.64 (m, 2H, Ar-H), 7.52-7.44 (m, 3H, Ar-H), 1.96-1.91 (m, 1H, P-CH, 1 x *c*Hex-H), 1.84-1.61 (m, 7H, 4x *c*Hex-H, P-CH₃), 1.40-1.14 (m, 6H, 6 x *c*Hex-H); ¹³C NMR (CDCl₃) δ 132.7 (¹*J*_{P-C} = 92.6, C₁), 131.5 (⁴*J*_{P-C} = 2.6, C₄), 130.5 (²*J*_{P-C} = 8.6, C₂), * 128.5 (³*J*_{P-C} = 11.0, C₃), * 39.7 (¹*J*_{P-C} = 71.8, C₁'), [26.3 (³*J*_{P-C} = 3.6) and 26.2 (³*J*_{P-C} = 3.6) 2 x C₃'], 25.7 (C₄'), 25.1 - 25.0 (m, 2 x C₂'), 12.9 (¹*J*_{P-C} = 67.8, P-CH₃), * may be reversed; HRMS [M+H]⁺found =223.1244, C₁₃H₂₀OP requires 223.1254; white solid; mp. 98-99°C.

t-Butyl-methyl-phenylphosphine oxide [(*R*)-7] (Table 3, Entry 7)

³¹P NMR (CDCl₃) δ 47.8; ¹H NMR (CDCl₃) δ 7.71-7.67 (m, 2H, Ar-H), 7.52-7.43 (m, 3H, Ar-H), 1.70 (d, *J* = 12.1 Hz, 3H, P-CH₃), 1.10 (d, *J* = 14.8 Hz, 9H, C(CH₃)₃); ¹³C NMR (CDCl₃) δ 131.6 (²*J*_{P-C} = 8.2, C₂), 131.6 (⁴*J*_{P-C} = 2.6, C₄), 131.6 (¹*J*_{P-C} = 90.0, C₁), 128.3 (³*J*_{P-C} = 10.9, C₃), 32.6 (¹*J*_{P-C} = 70.9, PC(CH₃)₃), 24.3 (C(CH₃)₃), 10.3 (¹*J*_{P-C} = 66.0, P-CH₃); HRMS [M+H]⁺_{found} = 197.1096, C₁₁H₁₇OP requires 197.1095; white solid; mp. 97-98°C; [α]_{D²⁵} = +0.8 (c 1.2, MeOH; ee = 3%) [10].

5. HPLC traces of the optically active dialkyl-arylphosphine oxides (1-7)

Ethyl-methyl-phenylphosphine-oxide (1) Racemic 1

(*R*)-1 (Table 3, Entry 1/IV.)

Peak Time # [min] Area [µV·s] Height [µ∨] Area [%]

Norm. Area BL Area/Height [%] [s]

Racemic 2

Methyl-phenyl-propylphosphine oxide (2)

(S)-3 (Scheme 3 / III)

Time

Area

Ethyl-phenyl-propylphosphine oxide (3) Racemic 3

 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

Methyl-phenyl-*i*-propylphosphine oxide (5) Racemic **5**

c-Hexyl-methyl-phenylphosphine oxide (6) Racemic 6

6. References

- 1. Pietrusiewicz K. M., Zablocka M., Monkiewicz J.: J. Org. Chem., 1984, 49, 1522–1526.
- 2. Andersen N. G., Ramsden P. D., Che D., Parvez M., Keay B. A.: Org. Lett., 1999, 1, 2009–2011.
- 3. Bergin E., O'Connor C. T., Robinson S. B., McGarrigle E. M., O'Mahony C. P., Gilheany D. G.: J. Am. Chem. Soc., 2007, 129, 9566–9567.
- 4. Xu Q., Zhao C.-Q., Han L.-B.: J. Am. Chem. Soc., 2008, 130, 12648–12655.
- 5. Rajendran K. V, Gilheany D. G.: Chem. Commun., 2012, 48, 817–819.
- 6. Fernández-Pérez H., Vidal-Ferran A.: Org. Lett., 2019, 21, 7019–7023.
- 7. Adams H., Collins R. C., Jones S., Warner C. J. A.: Org. Lett., 2011, 13, 6576–6579.
- 8. Segi M., Nakamura Y., Nakajima T., Suga S.: Chem. Lett., 1983, 12, 913–916.
- 9. Andersen N. G., Ramsden P. D., Che D. Q., Parvez M., Keay B. A.: J. Org. Chem., 2001, 66, 7478–7486.
- 10. Haynes R. K., Au-Yeung T. L., Chan W. K., Lam W. L., Li Z. Y., Yeung L. L., Chan A. S. C., Li P., Koen M., Mitchell C. R., Vonwiller S. C.: Eur. J. Org. Chem., 2000, 2000, 3205–3216.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).