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Abstract: A group key establishment protocol is presented and proven secure in the common
reference string mode. The protocol builds on a group-theoretic assumption, and a concrete
example can be obtained with a decision Diffie-Hellman assumption. The protocol is derived
from a two-party solution by means of a protocol compiler presented by Abdalla et al. at TCC 2007,
evidencing the possibility of meaningfully integrating cryptographic and group-theoretic tools in
cryptographic protocol design. This compiler uses a standard ring configuration, where all users
behave symmetrically, exchanging keys with their left and right neighbor, which are later combined
to yield a shared group key.

Keywords: group key establishment; group theory; provable security; protocol compiler

1. Introduction

Cryptography is the science of handling, storing, transmitting, and processing information
securely, even in the presence of adversaries. For centuries, cryptographic techniques were developed
for diplomatic or military scenarios, while nowadays individuals and institutions (often obliviously)
make use of cryptographic tools every day. As a complex discipline, cryptography builds upon physics,
mathematics, and different research areas within computer science. Mathematics are the main source
of tools for cryptographic developments, in which, security is often demonstrated using the hardness
of well understood mathematical problems. This paper is concerned with the construction of a widely
used cryptographic tool, a group key exchange, using group theory as a base. Key exchange allows
a number of users to establish a common secret value which will be subsequently used to secure their
communication. Such cryptographic tools are often constructed from number theoretical problems
(described in finite cyclic groups), and a challenging research question is whether secure constructions
can be derived from different problems arising in group theory.

In recent years, not only due to the advent of quantum computation, significant efforts have been
made to identify new mathematical platforms for implementing cryptographic schemes. One of the
explored candidate platforms is the theory of finitely presented groups, where, in particular, a number
of works on key establishment have been published. The first constructions in this direction where
published about twenty years ago [1-3], and different approaches towards secure constructions have
been explored regularly, such as [4-9], and the more recently [10]. Unfortunately, most of the proposed
protocols have not been analyzed in a modern cryptographic security model (like [11-16]), and only
few group-theoretic constructions with a rigorous security analysis seem to be known. This lack of
formalism has resulted in weaknesses being overlooked (see, for instance, [17]).
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One approach to facilitate the synergy between group-theoretic and cryptographic tools is the
identification of general constructions that under suitable group-theoretic conditions yield an (efficient)
cryptographic scheme with provable security guarantees. As examples for research along this line
of thought, proposals for constructing IND-CCA secure asymmetric encryption schemes can be
mentioned [18,19]. Also, constructions for building provably secure group key establishment schemes
have been proposed (cf. [20,21]), but identifying practical non-abelian instances still appears to be
a challenging problem. In this contribution, we build on [21], and try to extend and simplify their
approach in the following sense:

o Instead of the random oracle model, we use the common reference string model. An (expected)
price we pay for this, is the need of a decisional assumption instead of a computational one that is
used in [21].

o Instead of setting out for a group key establishment directly, we suggest a construction for the
two-party case and thereafter apply a protocol compiler of Abdalla et al. [22].

In terms of round complexity, we lose some efficiency through the modular design approach
we chose. On the other hand, this modular design approach illustrates how an integration of
group-theoretic and cryptographic tools can look like. Moreover, we obtain a comparatively clear
group-theoretic condition which hopefully stimulates further research on finding concrete non-abelian
instances. Concrete examples of our protocol can be derived from a decision Diffie-Hellman
assumption, but we hope that in subsequent work also concrete non-abelian instances can be identified.

2. Preliminaries: Security Model and Protocol Goals

To explore the security of our protocol, we adopt the model used by Abdalla et al. [22], which
can be traced back to [23-27]. Both to formulate our two-party solution and to use the “2-to-n
compiler” from [22], we assume a common reference string (CRS) to be available that encodes the
following information:

o  Two values v, v1. These will be the input for a pseudorandom function at the time of computing
the session identifier and session key;

e  Theinformation necessary to implement a non-interactive and non-malleable commitment scheme
(see Section 3.1 for further details);

o Two elements, chosen independently and uniformly at random, each taken from a family of
universal hash functions (one as needed for the compiler in [22] and one for our two-party
solution as detailed in Section 3.1).

This is similar to the constructions for password-authenticated key establishment in [24,27].

2.1. Communication Model and Adversarial Capabilities

As usual, we model protocol participants as probabilistic polynomial time (ppt) Turing machines
(all our proofs hold for both uniform and non-uniform machines). We denote by P the total set of
users which is assumed to be of polynomial size and by U = {Uy, ..., U,—1} C P the set of protocol
participants. To enable authentication among the protocol participants, we assume that an existentially
unforgeable signature scheme is available with all signing keys being chosen independently in a trusted
initialization phase. The verification keys are assumed to be distributed in a trusted initialization
phase, prior to the protocol execution.

2.1.1. Protocol Instances

We allow each protocol participant U; € U to execute polynomially many protocols instances in
parallel. Each single instance Hff' may be understood as a process executed by participant U;. We will
denote by Hfi (s; € N) the s5; — th instance of user U; € U, and the following seven variables are
assigned to each instance:
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used? will indicate whether this instance is or has been used for a protocol run. The used?" flag is set
through a protocol message received by the corresponding instance due to a call to the Send
oracle (see below);

state]’  stores the state information needed during the protocol execution;
term;’  indicates if the execution has terminated;

sid? denotes a session identifier (which may be public) which may be later use as identifier for

the session key skls.i (in particular, the adversary is thus allowed to learn session identifiers);
pid’’ stores the user identities that IT}' aims at establishing a key with. This set includes U; himself;
acc?" indicates that the protocol instance completed a protocol successfully. That is, whether the

involved user accepted the session key or not;
sk?i stores a distinguished NULL value in the beginning. After a session key is accepted by Hfi,
this session key replaces the NULL value.

We refer to a paper of Bellare et al. [14] for more details on the usage of these variables.

2.1.2. Communication Network

The network is considered to be fully asynchronous and under complete control of the adversary.
Arbitrary point-to-point connections among users are available, but the adversary may delay,
eavesdrop, insert, and delete messages at will.

2.1.3. Adversarial Capabilities

We restrict to adversaries .4 running in probabilistic polynomial time, whose capabilities are
made explicit through the four oracles listed below. These oracles formalize the interaction between A
and the protocol instances run by the users. For the description of the Test oracle, we denote by b a bit
that is chosen uniformly at random.

Send(U;, s;, M) This oracle sends a message M to instance IT;' and returns the message generated
by this instance. In case the instance Hfi is previously unused and the message
M C P contains a set of user identities, the usedf"—ﬂag is set, pidls.f initialized with
pid’ := {U;} U M. IT} initiates the protocol with the first message which is returned.

Reveal(U;,s;)  This outputs the computed key of the instance stored in sk;'.

Test(U,, s;) If the corresponding session key is defined (i.e., acc’ = true and skls-i # NULL)
and instance IT! is fresh (see Definition 4), A can execute this oracle query at any
time when being activated. Then, if b = 0 the session key sk?" is returned, while if
b = 1 a uniformly chosen random session key is returned. An arbitrary number of
Test queries is allowed for the adversary A, but once the Test oracle returned a value
for an instance I}, the same value will be returned for all instances partnered with
ITY (see Definition 3).

Corrupt(U;)  This oracle models forward secrecy, as this query will output the secret signing key of
user U;.

2.2. Goals of a Key Establishment Protocol: Correctness, Integrity, and Security

We assume that an instance IT;' always accepts the session key constructed at the end of a protocol
run if no deviation from the protocol specification has occurred. The subsequent definition of
correctness captures the protocol goal that, if the adversary is passive, all users involved in the
same protocol session should come up with the same session key. By A being passive, we mean that .A
must not use the Corrupt oracle, and may query the Send oracle for the purpose of executing honest
protocol executions only.
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Definition 1 (Correctness). A group key establishment protocol P is correct, 1f in the presence of a passive
adversary A the following holds: for all i, with both 5|d b= snd’ and acc = acc]] = true, we have

sks’ = sk’ # NULL and plds’ = pldjj.
Unlike correctness, the concept of integrity imposes no restrictions on the adversary’s behavior:

Definition 2 (Key Integrity). A correct group key establishment protocol fulfills key integrity, if all instances
of users that have accepted with the same session identifier sid;/ hold with overwhelming probability identical

session keys sk;j and identical partner identifiers pid? .
Finally, for defining security, we detail our interpretation of partnering and freshness:

Definition 3 (Partnering). Instances Hfi and H]s.j are partnered if pidff = pid]s.j , sidfi = sid]s.j , and acczs." =
acc;’ = true.

The idea of freshness is to characterize those instances where the adversary does not know
the secret session key for trivial reasons. In particular, note that after revealing a session key from
instance IT, the session keys of all instances partnered with IT; are known, too:

Definition 4 (Freshness). An instance IT." is called fresh provided that none of the following condition holds:

e ForsomeU; € pid’’ a query Corru pt(U;) was executed before a query of the form Send(Uy, sy, *) has taken
place where Uy € pid".

o The adversary queried Reveal(U;, s;) with IT and Hjj being partnered.

Now the advantage Adv 4(¢) of a probabilistic polynomial time adversary A in attacking a key
establishment protocol P is the function

Adv 4 := |2 - Succyq — 1|

in the security parameter ¢. Here, Succ 4 denotes the probability that .4 queries Test only on fresh
instances and correctly outputs the bit b used by the Test oracle while preserving the freshness of all
instances queried to Test.

Definition 5. We say that an authenticated group key establishment protocol P is secure, if the following
inequality holds for every probabilistic polynomial time adversary A some negligible function negl(¢) in the
security parameter £: Adv 4(£) < negl(¥)

As in [22], our security definition above implies forward secrecy. Specifically, our freshness
definition (Definition 4) allows Test queries to an instances, for which the long term secret key has
been revealed by a Corrupt query (or is partnered with a instance that has be queried Corrupt) as long
as the adversary has not asked a Send query to any of these instances (or their partners) after the
Corrupt query.

3. Building on a Group-Theoretic Assumption

As already indicated, we construct our group key establishment protocol in two steps:
In Section 3.1 we describe a two-party solution, which subsequently is lifted to an n-party solution by
means of the protocol compiler in [22].

3.1. A Two-Party Solution

On the cryptographic side, our two-party solution mainly builds on three technical tools:
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A non-interactive non-malleable commitment scheme C, satisfying the following requirements:

- Itis perfectly binding in the sense that every commitment can be decommitted to at most

one value.

- It is non-malleable for multiple commitments. This means that an adversary who knows

commitments to a polynomial sized set of values v, will not be able to output commitments
to a polynomial sized set of values  related to v in a meaningful way:. It is well-known that in
the CRS model such a commitment scheme can be implemented by means of any IND-CCA2
secure public key encryption scheme, for instance.

A family of universal hash functions ¢/H mapping triples consisting of two elements from G
and a pid?i—value onto a superpolynomial sized set {0, 1}L. A universal hash function UH will be
selected by the CRS from this family.

A collision-resistant pseudorandom function family F = {F‘},cx(see Katz and Shin [28]). We
assume F! = {F,f },76 {0,1}¢ to be indexed by {0,1}F and further denote by vy = vy(¢) a publicly
known value such that no ppt adversary can find two different indices A # A’ € {0, 1} such that
F)(v9) = Fy(vp). We further use another public value vy, fulfilling the same requirement as vy for
deriving the session key (this can also be included in the CRS—see [28] for more details).

Our protocol builds on [21], and for the security proof we have to assume that the underlying

group G (respectively, the family of groups G = G(/), indexed by the security parameter) satisfies
a number of conditions. Besides assuming products and inverses of group elements to be computable
by efficient (ppt) algorithms, we further assume G to have a ppt computable canonical representation
of elements. The latter allows us to identify group elements with their canonical representation.
Furthermore, as in [21], we need three algorithms to perform the computations occurring in
a protocol execution:

DomPar, the domain parameter generation algorithm, is a (stateless) ppt algorithm that, upon input
of the security parameter 1¢, outputs a finite sequence S of elements in G. The subgroup of
G spanned by S, (S), will be publicly known. Note that, for the special case of applying our
framework to a DDH-assumption, S specifies a public generator of a cyclic group.

SamAut, the automorphism group sampling algorithm, is a (stateless) ppt algorithm that, upon
input of the security parameter 1¢ and a sequence S output by DomPar, returns a description of
an automorphism ¢ on the subgroup (S), so that both ¢ and ¢! can be efficiently evaluated.
For example, for a cyclic group, ¢ could be given as an exponent, or for an inner automorphism
the conjugating group element could be specified.

SamSub, the subgroup sampling algorithm, is a (stateless) ppt that, upon input of the security
parameter 1 and a sequence S output by DomPar, returns a word x(S) representing an element
x € (S). Intuitively, SamSub chooses a random x € (S), so that it is hard to recognize x if we know
elements of x’s orbit under Aut((S)). Thus, our protocol requires an explicit representation of x
in terms of the generators S.

With this notation, we can now define a decision problem, whose supposed difficulty will be

essential for our security proof. As usual, with the notation 0 <— A(i) we describe that algorithm A
upon receiving input i outputs o:
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Definition 6 (Decision Automorphism Application). Suppose that we have fixed a quadruple
(G, DomPar, SamAut, SamSub). Then the decision automorphism application (DAA) assumption states
that for all ppt algorithms A the advantage function AdvOM = AdvOAA (¢) =

Pr («4(5/ X, (9i(S), $i(x))i=12) = 0

S + DomPar(1Y), x + SamSub(1%,S),
(¢; < SamAut (1", 5));1,0

o (“4(5' 0S) 9i)im12) =01 (4 Gamaut(1f, 5))irs, 7+ SamSub(1l,S)

S < DomPar(1), x + SamSub(1¢,S), ) ‘

is negligible.

Example 1 (Building on decision Diffie—-Hellman). Let G be a finite cyclic group and S := (g) a prime
order subgroup with generator g of order q. If we let SubSam choose uniformly at random an exponent
x € {1,...,9 — 1} and SamAut uniformly at a random exponent ¢ € {1,...,q — 1}, then the DAA problem
just described can be recognized as polynomial-time equivalent to a decision Diffie—Hellman (DDH) problem:

“DDH solution = DAA solution”: When facing, the DAA problem, we obtain as input a tuple
(g,8Y,(g%,§%%)i_1) where either y = x, or y has been chosen uniformly at random from {1,...,q —
1}—independently of x and the ¢;s. Given a DDH oracle, we just query it with (g, g, g%, g*) to see
with non-negligible success probability which is the case.

“DDH solution <= DAA solution”: When facing the DDH problem, we obtain as input a tuple
(3,87, 9%,8Y), where either y = ¢1x mod q, or y has been chosen uniformly at random from
{1,...,q9 — 1}—independently of x and ¢1. Choosing another random ¢ € {1,...,q — 1}, we can
compute the input

(g%, 8%, ((

7

), (g™, (897 )
~— ——

:(gm)‘i’fl‘?z :(gW)‘Pfl‘Pz

g g
N~ N~~~
1 1

needed for a DAA attacker. Running a successful DAA attacker with this input, we immediately obtain
the desired DDH attacker.

A two-party key establishment protocol building on the DAA assumption is presented in Figure 1.
The figure describes the operations to be performed by instance IT; of U;. For the sake of readability
we name the users trying to establish a common key as Uy and Uj, and here, as in the sequel, we often
omit making explicit the identifiers s; of the instances Hf" involved in the protocol execution and
just write sid; instead of sid}’, for instance. The common reference string is denoted by p, and for
a commitment to a value x involving random choices r we write C,(x;7). Finally, S denotes the
subgroup generators which are to be fixed prior to the protocol execution by means of DomPar (and
may also be included in the CRS p).

In the subsequent section we prove the following result:

Proposition 1 (Security of the Two-Party Protocol). Assume that for each ppt time algorithm A, its
advantage AvaS‘lIg of achieving an existential forgery under the adaptive chosen-message attack for the underlying
signature scheme, and AdvE‘AA, its advantage of solving DAA, can be bounded by a negligible function (in ¢).

Then the protocol in Figure 1 is a correct and secure two-party key establishment protocol fulfilling key integrity.

In Figure 2, we describe the group key establishment protocol obtained from a given two party
group key establishment protocol 2-AKE via the compiler from [22]. We note here that given the result
of Proposition 1, we can apply [22, Theorem 1] (which, as noted by Nam et al. in [29] is only valid if
the underlying two party construction fulfills integrity) to obtain our desired security result:



Symmetry 2020, 12, 197 7 of 11

Corollary 1 (Security of the n-Party Protocol). Denoting the two-party key establishment protocol in Figure 1
by 2-AKE, the protocol described in Figure 2 is a secure group key establishment fulfilling key integrity.

Round 1:

Initialization: For i = 0,1 the variables of involved oracles Hff are set as pid; := {Uy, U1},
used; := true.

Also, for i = 0,1, choose (¢, gqbi)’l) +— SamAut (1%, S), x; + SamSub(1,S).
Computation: User Uj, fori = d, chooses a random r; and constructs a commitment

ci := Cp(x;1i).

Communication: User U;, i = 0,1, sends m} := (U;, $:(S), ¢;) to Uy ;.
Round 2:
Computation: User U;, i = 0,1, computes ¢_;(x;) and a signature o; of (U;, ¢1_;(x;)) (using

the representation of x; = x;(S) in terms of the generators S and the images ¢;(S) of the
subgroup generators).

Communication: Each user U;,i = 0,1, sends ml2 = (Uj, ¢1-i(x;),07) to Up_;.
Key Generation:

Computation: Compute x;_; by applying (¢;) ! to ¢;(x1_;), and define the master key
K:= (Xo, X1, pidl‘).
Verification: Check the correctness of the commitment c;_; and the signature oy _;.

If true, set sk; := Fypy(k) (01), sid; := Fyp (k) (vo0) and acc; := term; := true.
Else set acc; := false, term; := true

Figure 1. A two-party key establishment protocol in the common reference string (CRS) model.

Round 0:

2-AKE: Fori =0,...,n — 1 execute 2-AKE(U;, U;,1), (Where, as customary, all indices are to
be taken mod #, i.e., U, = Uy, etc.).

Thus, each user U; holds two keys ?i, ? ;- shared with U, respectively U;_; and
-
(non-secret) corresponding session identifiers sid;, sid;.

Round 1:

Computation: Each U; computes
? <~
Xz’ = i D K{
and chooses a random ; to compute a commitment C; = C,(U;, X;; 7).
Broadcast: Each U, broadcasts Mi1 = (U;, C;)
Round 2:

Broadcast: Each U; broadcasts M? := (U;, X;, 1;)
Check: Each U; checks that Xg @ X1 @ - - - @ X,,_1 = 0 and the correctness of the commitments.

Computation: Each U; sets K; := ?i and computes the n — 1 values
Ki—j::?i@xi—l@"'@xi—j (j:l,...,n—l),

defines a master key
K:= (KO,. . .,Kn_1, pidi),

and sets sk; := Fypy(k)(v1), sid; := Fypk) (v0) and acc; := true.

Figure 2. The protocol compiler from [22].
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3.2. Security Analysis for the Two-Party Case: Proof of Proposition 1

Correctness and Integrity. Due to the collision-resistance of the family F, all oracles that accept
with identical session identifier use the same index value UH(K) and therewith also obtain the same
session key and have identical pid;-values with overwhelming probability.

Security. Let gs and q; denote the (polynomially bounded) number of adversarial queries to the Send
and Test oracle, respectively.

We consider a simulator simulating all oracles and instances for the adversary. The proof is thus
set up following a sequence of experiments or games, where from game to game the simulator’s
behavior deviates from the previous in a certain controlled way. We follow standard notation and we
denote by Adv(.A, G;) the advantage of the adversary when confronted with Game i and by Succ(\A, G;)
the success probability of A winning in Game i. As usual, the security parameter will be denoted
denoted by £.

Game 0. All oracles are simulated as defined in the model. Thus, Adv(.A, Gy) is exactly Adv 4 and
Succ(A, Gp) is the probability of violating the security of our key exchange protocol.

Game 1. In this game, the simulator keeps a list with entries (i, M, o) for every message M and
corresponding signature o he has produced and returned to the adversary A in a Round 2 message
following a Send query.

By Forge we denote the event that A queries the Send oracle with a message M containing a valid
signature o) of an uncorrupted principal U; and with (i, M, o)) not being contained in the simulator’s
list. If the event Forge occurs, we abort the simulation and take the adversary A for being successful in
breaking the security of the protocol. Thus,

|Succ(A, G1) — Succ(A, Gg)| < P(Forge) 1)

Lemma 1. If the signature scheme used in the above protocol is existentially unforgeable under adaptive
chosen-message attacks, then P(Forge) is negligible: P(Forge) < |P| - Advi'g.

Proof. Any ppt adversary A provoking the event Forge can be turned into an attacker against the
underlying signature scheme by means of our simulator: The simulator obtains the public verification
key PK and access to a signing oracle. In the initialization phase of the protocol, the simulator assigns
the key PK uniformly at random to one of the at most |P| users the adversary can involve. Whenever
during the subsequent simulation a signature for this user has to be generated, the simulator queries
the signing oracle.

If A comes up with a message/signature pair that is not stored in the simulator’s list, the simulator
returns this message as existential forgery. If A does not come up with such a message, the simulator
outputs L. Having chosen the party U; uniformly at random, the simulator’s success probability for

an existential forgery is at least 1/|P| - P(Forge), and we get P(Forge) < |P| - Adviig . O

Thus, from Equation (1), we get

|Adv(A, G1) — Adv(A, Gp)| < negl(¥) (2)

Game 2. Now the simulation of the Test oracle is modified, so that, on input of a fresh instance, it will
always output an element selected uniformly at random in the key space. Thus, Adv(.A4, G;) = 0.

Suppose that A is able to distinguish between Game 2 and Game 1. We construct an attacker D,
that breaks the DAA assumption and uses A as a black-box. The attacker D will start by setting up the
instances with key pairs for the signature scheme and receive a DA A-instance as a challenge. Further,
D will choose an index a € {1,...,4;} uniformly at random and select two values u,v € {1,...,4s}
chosen independently and uniformly at random subject to the condition u # v. Then the adversary
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A is started. D will simulate the model as in Game 1 except for the uth and vth instance activated
by the adversary A and the answers to the Test query. For the uth and vth instances activated by A,
the messages will be constructed from the DAA challenge. If these two instances do not end up in the
same session, D aborts the simulation and starts anew. The same happens, if A does not query his ath
Test query to one of these two instances.

D will simulate the Test oracle as follows: The first a — 1 queries of Test will be answered with the
real session key, in the ath query, D will return the challenge, and from query a + 1 on, D will always
answer with a random element.

By a standard hybrid argument, D will win the challenge in 1/4; of the cases where A
distinguished Game 1 and Game 2. Excluding the necessary aborts (namely, if the instances that
were chosen were not those used in the ath query of Test), we have:

|Adv(A, G2) — Adv(A, Gy)| < qaq:AdvPAA ®)
Combining Equations (2) and (3) yields the desired negligible upper bound for Adv 4.

4. Conclusions

Our discussion evidences the possibility of meaningfully integrating tools from group theory and
cryptography. Unfortunately, so far we cannot provide a concrete non-abelian example, but a concrete
instance of our protocol can be derived by means of the decision Diffie-Hellman assumption. We hope,
however, that the modular approach taken above facilitates the design of group key establishment
schemes building on group-theoretic tools and fertilizes the exchange of ideas between group theory
and cryptography.
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