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Abstract: Neutrosophy is a recent section of philosophy. It was initiated in 1980 by Smarandache.
It was presented as the study of origin, nature, and scope of neutralities, as well as their interactions
with different ideational spectra. In this paper, we introduce the notion of single-valued neutrosophic
ideals sets in Šostak’s sense, which is considered as a generalization of fuzzy ideals in Šostak’s
sense and intuitionistic fuzzy ideals. The concept of single-valued neutrosophic ideal open local
function is also introduced for a single-valued neutrosophic topological space. The basic structure,
especially a basis for such generated single-valued neutrosophic topologies and several relations
between different single-valued neutrosophic ideals and single-valued neutrosophic topologies, are
also studied here. Finally, for the purpose of symmetry, we also define the so-called single-valued
neutrosophic relations.

Keywords: single-valued neutrosophic closure; single-valued neutrosophic ideal; single-valued
neutrosophic ideal open local function; single-valued neutrosophic ideal closure; single-valued
neutrosophic ideal interior; single-valued neutrosophic ideal open compatible

1. Introduction

The notion of fuzzy sets, employed as an ordinary set generalization, was introduced in 1965 by
Zadeh [1]. Later on, using fuzzy sets through the fuzzy topology concept was initially introduced in
1968 by Chang [2]. Afterwards, many properties in fuzzy topological spaces have been explored by
various researchers [3–13]

Paradoxically, it is to be emphasized that being fuzzy or what is termed as fuzzy topology in fuzzy
openness concept is not highlighted and well-studied. Meanwhile, Samanta et al. [14,15] introduced
what is called the graduation of openness of fuzzy sets. Later on, Ramadan [16] introduced smooth
continuity, a number of their properties, and smooth topology. Demirci [17] investigated properties
and systems of smooth Q-neighborhood and smooth neighborhood alike. It is worth mentioning
that Chattopadhyay and Samanta [18] have initiated smooth connectedness and smooth compactness.
On the other hand, Peters [19] tackled the notion of primary fuzzy smooth characteristics and structures
together with smooth topology in Lowen sense. He [20] further evidenced that smooth topologies
collection constitutes a complete lattice. Furthermore, Onassanya and Hošková-Mayerová [21]
inspected certain features of subsets of α-level as an integral part of a fuzzy subset topology. Likewise,
more specialists in the field like Çoker and Demirci [22], in addition to Samanta and Mondal [23,24],
have provided definitions to the concept of graduation intuitionistic openness of fuzzy sets based on
Šostak’s sense [25] according to Atanassov’s [26] intuitionistic fuzzy sets. Essentially, they focused on
intuitionistic gradation of openness in light of Chang. On the other hand, Lim et al. [27] examined
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Lowen’s framework smooth intuitionistic topological spaces. In recent times, Kim et al. [28] considered
systems of neighborhood and continuities within smooth intuitionistic topological spaces. Moreover,
Choi et al. [29] scrutinized smooth interval-valued topology through graduation of the concept of
interval-valued openness of fuzzy sets, as suggested by Gorzalczany [30] and Zadeh [31], respectively.
Ying [32] put forward a topology notion termed as fuzzifying topology, taking into consideration the
extent of ordinary subset of a set openness. General properties in ordinary smooth topological spaces
were elaborated in 2012 by Lim et al. [33]. In addition, they [34–36] inspected compactness, interiors,
and closures within normal smooth topological spaces. In 2014, Saber et al. [37] shaped the notion of
fuzzy ideal and r-fuzzy open local function in fuzzy topological spaces in view of the definition of
Šostak. In addition, they [38,39] inspected intuitionistic fuzzy ideals, fuzzy ideals and fuzzy open local
function in fuzzy topological spaces in view of the definition of Chang.

Smarandache [40] determined the notion of a neutrosophic set as intuitionistic fuzzy set
generalization. Meanwhile, Salama et al. [41,42] familiarized the concepts of neutrosophic crisp set
and neutrosophic crisp relation neutrosophic set theory. Correspondingly, Hur et al. [43,44] initiated
classifications NSet(H) and NCSet including neutrosophic crisp and neutrosophic sets, where they
examined them in a universe topological position. Furthermore, Salama and Alblowi [45] presented
neutrosophic topology as they claimed a number of its characteristics. Salama et al. [46] defined a
neutrosophic crisp topology and studied some of its properties. Others, such as Wang et al. [47],
defined the single-valued neutrosophic set concept. Currently, Kim et al. [48] has come to grips with a
neutrosophic partition single-value, neutrosophic equivalence relation single-value, and neutrosophic
relation single-value.

Preliminaries of single-value neutrosophic sets and single-valued neutrosophic topology are
reviewed in Section 2. Section 3 is devoted to the concepts of single-valued neutrosophic closure space
and single-valued neutrosophic ideal. Some of their characteristic properties are considered. Finally,
the concepts of single-valued neutrosophic ideal open local function has been introduced and studied.
Several preservation properties and some characterizations concerning single-valued neutrosophic
ideal open compatible have been obtained.

2. Preliminaries

In this section, we attempt to cover enough of the fundamental concepts and definitions.

Definition 1 ([49]). A neutrosophic setH (NS, for short) on a nonempty set S is defined as

H = 〈κ, TH, IH, FH : κ ∈ S〉,

where

TH : S →c−0, 1+b, IH : S →c−0, 1+b, FH : S →c−0, 1+b

and

−0 ≤ TH(κ) + IH(κ) + FH(κ) ≤ 3+,

representing the degree of membership (namely, TH(κ)), the degree of indeterminacy (namely, IH(κ)), and the
degree of nonmembership (namely, FH(κ)); for all κ ∈ S to the setH.

Definition 2 ([49]). LetH andR be fuzzy neutrosophic sets in S . Then,H is a subset ofR if, for each κ ∈ S ,

inf TH(x) ≤ inf TR(κ), inf IH(x) ≥ inf IR(κ), inf FH(x) ≥ inf FR(κ)
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and

sup TH(κ) ≤ sup TR(κ), sup IH(κ) ≥ sup IR(κ), sup FH(κ) ≥ sup FR(κ).

Definition 3 ([47]). Let H be a space of points (objects) with a generic element in S denoted by κ. Then,
H is called a single-valued neutrosophic set (in short, SVNS) in S if H has the form H = 〈TH, IH, FH〉,
where TH, IH, FH : S → [0, 1].

In this case, TH, IH, FH are called truth-membership function, indeterminacy-membership function,
and falsity-membership function, respectively, and we will denote the set of all SVNS′s in S as SVNS(S).

Moreover, we will refer to the Null (empty) SVNS (or the absolute (universe) SVNS) in S as 0N (or 1N)
and define by 0N = (0, 1, 1) (or 1N = (1, 0, 0)) for each κ ∈ S .

Definition 4 ([47]). LetH = 〈TH, IH, FH〉 be an SVNS on S . The complement of the setH (Hc, f or short)
and is defined as follows: for every κ ∈ S ,

THc(κ) = FH(κ), IHc(κ) = 1− IH(κ), FHc(κ) = TH(κ).

Definition 5 ([50]). Suppose thatH ∈ SVNS(S). Then,

(i) H is said to be contained inR, denoted byH ⊆ R, if, for every κ ∈ S ,

TH(κ) ≤ TR(κ), IH(κ) ≥ IR(κ), FH(κ) ≥ FR(κ);

(ii) H is said to be equal toR, denoted byH = H, ifR ⊆ R andH ⊇ R.

Definition 6 ([51]). Suppose thatH,R ∈ SVNS(S). Then,

(i) the union ofH andR (H∪R, f or short) is an SVNS in S defined as

H∪R = (TH ∪ TR, IH ∩ IR, FH ∩ FR),

where (TH ∪ TR)(κ) = TH(κ) ∪ TR(κ) and (FH ∩ FR)(κ) = FH(κ) ∩ FR(κ), for each κ ∈ S ;
(ii) the intersection ofH andR, (H∩R, f or short), is an SVNS in S defined as

H∩R = (TH ∩ TR, IH ∪ IR, FH ∪ FR).

Definition 7 ([45]). LetH ∈ SVNS(S). Then,

(i) the union of {Hi}i∈J (
⋃

i∈J Hi, f or short) is an SVNS in S defined as follows: for every κ ∈ S ,

(
⋃
i∈J
Hi)(κ) = (

⋃
i∈J

THi (κ),
⋂
i∈J

IHi (κ),
⋂
i∈J

FHi (κ);

(ii) the intersection of {Hi}i∈J (
⋂

i∈J Hi, f or short) is an SVNS in S defined as follows: for every κ ∈ S ,

(
⋂
i∈J
Hi)(κ) = (

⋂
i∈J

THi (κ),
⋃
i∈J

IHi (κ),
⋃
i∈J

FHi (κ).

Definition 8 ([52]). A single-valued neutrosophic topology on S is a map (τT , τ I , τF) : IS → I satisfying the
following three conditions:

(SVNT1) τT(0) = τT(1) = 1 and τ I(0) = τ I(1) = τF(0) = τF(1) = 0,
(SVNT2) τT(H∩R) ≥ τT(H) ∩ τT(R), τ I(H∩R) ≤ τ I(H) ∪ τ I(R),

τF(H∩R) ≤ τF(H) ∪ τF(R), for anyH,R ∈ IS ,
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(SVNT3) τT(∪i∈jHi) ≥ ∩i∈jτ
T(Hi), τ I(∪i∈jHi) ≤ ∪i∈jτ

I(Hi) ,
τF(∪i∈jHi) ≤ ∪i∈jτ

F(Hi), for any {Hi}i∈J ∈ IS .

The pair (X, τT, τI , τF) is called single-valued neutrosophic topological spaces (SVNTS, f or short).
We will occasionally write τTIF for (τT , τ I , τF) and it will cause no ambiguity.

3. Single-Valued Neutrosophic Closure Space and Single-Valued Neutrosophic Ideal in
Šostak Sense

This section deals with the definition of single-valued neutrosophic closure space. The researchers
examine the connection between single-valued neutrosophic closure space and SVNTS based in
Šostak sense. Moreover, the researchers focused on the single-valued neutrosophic ideal notion where
they obtained fundamental properties. Based on Šostak’s sense, where a single-valued neutrosophic
ideal takes the form (S ,LT ,LI ,LF) and the mappings LT ,LI ,LF : IS → I, where (LT ,LI ,LF) are the
degree of openness, the degree of indeterminacy, and the degree of non-openness, respectively.

In this paper, S is used to refer to nonempty sets, whereas I is used to refer to closed interval [0, 1]
and Io is used to refer to the interval (0, 1]. Concepts and notations that are not described in this paper
are standard, instead, S is usually used.

Definition 9. A mapping C : IS × I0 → IS is called a single-valued neutrosophic closure operator on S if,
for everyH,R ∈ IS and r, s ∈ I0, the following axioms are satisfied:

(C1) C((0.1.1), s) = (0.1.1),
(C2)H ≤ C(H, s),
(C3) C(H, s) ∨C(R, s) = C(H∨R, s),
(C4) C(H, s) ≤ C(H, r) if s ≤ r,
(C5) C(C(H, s), s) = C(H, s).

The pair (X,C) is a single-valued neutrosophic closure space (SVNCS , f or short).
Suppose that C1 and C2 are single-valued neutrosophic closure operators on S . Then, C1 is finer

than C2, denoted by C2 ≤ C1 iff C1(H, s) ≤ C2(H, s), for everyH ∈ IS and s ∈ I0.

Theorem 1. Let (S , τTIF) be an SVNTS. Then, for any H ∈ IS and s ∈ I0, we define an operator
CτTIF : IS × I0 → IS as follows:

CτTIF (H, s) =
∧
{R ∈ IX : H ≤ R, τT(1−R) ≥ s, τ I(1−R) ≤ 1− s, τF(1−R) ≤ 1− s}.

Then, (S ,CτTIF ) is an SVNCS .

Proof. Suppose that (S , τTIF) is an SVNTS. Then, C1, (C2) and (C4) follows directly from the
definition of CτTIF .

(C3) SinceR,H ≤ H∪R,CτTIF(R, s) ≤ CτTIF(H∪R, s) andCτTIF(H, s) ≤ CτTIF(H∪R, s), therefore,

CτTIF (H, s) ∪CτTIF (R, s) ≤ CτTIF (H∪R, s).

Let (X, τTIF) be an SVNTS. From (C2), we have

H ≤ CτTIF (H, s), τT(1−CτTIF (H, s)) ≥ s, τ I(1−CτTIF (H, s)) ≤ 1− s

and τF(1−CτTIF (H, s)) ≤ 1− s,
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R ≤ CτTIF (R, s), τT(1−CτTIF (R, s)) ≥ s, τ I(1−CτTIF (R, s)) ≤ 1− s

and τF(1−CτTIF (R, s)) ≤ 1− s.

It implies thatH∪R ≤ CτTIF (H, s) ∪CτTIF (R, s),

τT(1− (CτTIF (H, s) ∪CτTIF (R, s))) = τT((1−CτTIF (H, s)) ∩ (1−CτTIF (R, s)))

≥ τT(1−CτTIF (H, s)) ∩ τT(1−CτTIF (R, s)) ≥ s,

τ I(1− (CτTIF (H, s) ∪CτTIF (R, s))) = τ I((1−CτTIF (H, s)) ∩ (1−CτTIF (R, s)))

≤ τ I((1−CτTIF (H, s)) ∪ τ I(1−CτTIF (R, s)) ≤ 1− s,

τF(1− (CτTIF (H, s) ∪CτTIF (R, s))) = τF((1−CτTIF (H, s)) ∩ (1−CτTIF (R, s)))

≤ τF(1−CτTIF (H, s)) ∪ τF(1−CτTIF (R, s)) ≤ 1− s.

Hence, CτTIF (H, s) ∪CτTIF (H∪R, s) ≥ CτTIF (H∪R, s). Therefore,

CτTIF (H, s) ∪CτTIF (H∪R, s) = CτTIF (H∪R, s).

(C5) Suppose that there exists s ∈ I0,H ∈ IS , and κ ∈ S such that

CτTIF (CτTIF (H, s), s)(κ) > CτTIF (H, s)(κ).

By the definition of CτTIF , there exists D ∈ IS with D ≥ H, and τT(1−D) ≥ s, τ I(1−D) ≤ 1− s and
τF(1−D) ≤ 1− s such that

CτTIF (CτTIF (H, s), s)(κ) > D(κ) ≥ CτTIF (H, s)(κ).

Since CτTIF (H, s) ≤ D and τT(1−D) ≥ s, τ I(1−D) ≤ 1− s, and τF(1−D) ≤ 1− s, by the definition
of CτTIF (CτTIF ), we have

CτTIF (CτTIF (H, s), s) ≤ D.

It is a contradiction. Thus, CτTIF (CτTIF (H, s), s) = CτTIF (H, s). Hence, CτTIF is a single-valued
neutrosophic closure operator on S .

Theorem 2. Let (S ,C) be an SVNCS andH ∈ S . Define the mapping τTIF
C : IS → I on S by

τT
C(H) =

⋃
{s ∈ I0 | C(1−H, s) = 1−H},

τ I
C(H) =

⋂
{1− s ∈ I0 | C(1−H, s) = 1−H},

τF
C(H) =

⋂
{1− s ∈ I0 | C(1−H, s) = 1−H},

Then,

(1) τTIF
C is an SVNTS on S ;

(2) CτTIF
C

is finer than C.
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Proof. (SVNT1) Let (S ,C) be an SVNCS . Since C((0.1.1), r) = (0.1.1) and C(1, 0, 0), r) = (1, 0, 0) for
every s ∈ I0, (SVNT1).

(SVNT2) Let (S ,C) be an SVNCS . Suppose that there existsH1,H2 ∈ IS such that

τT
C(H1 ∩H2) < τT

C(H1) ∩ τT
C(H2), τ I

C(H1 ∩H2) > τ I
C(H1) ∪ τ I

C(H2),

τF
C(H1 ∩H2) > τF

C(H1) ∪ τF
C(H2).

There exists s ∈ I0 such that

τT
C(H1 ∩H2) < s < τT

C(H1) ∩ τT
C(H2), τ I

C(H1 ∩H2) > 1− s > τ I
C(H1) ∪ τ I

C(H2),

τF
C(H1 ∩H2) > 1− s > τF

C(H1) ∪ τF
C(H2).

For each i ∈ {1, 2}, there exists s ∈ I0 with C(Hi, si) = 1−Hi such that

s < si ≤ τT
C(Hi), τ I

C(Hi) ≤ 1− si < 1− s, τF
C(Hi) ≤ 1− si < 1− s.

In addition, since (1−Hi, r) = 1−Hi by C2 and C4 of Definition 9, for any i ∈ {1, 2},

C((1−H1) ∪ (1−H2), s) = (1−H1) ∪ (1−H2).

It follows that τT
C(H1 ∩H2) ≥ s, τ I

C(H1 ∩H2) ≤ 1− s, and τF
C(H1 ∩H2) ≤ 1− s. It is a contradiction.

Thus, for every H,R ∈ IS , τT
C(H ∩ R) ≥ τT

C(H) ∩ τT
C(B), τ I

C(H ∩ R) ≤ τ I
C(H) ∪ τ I

C(R),
and τF

C(H∩R) ≤ τF
C(H) ∪ τF

C(R).
(SVNT3) Suppose that there existsH =

⋃
i∈I Hi ∈ IS such that

τT
C(H) <

⋃
i∈I

τT
C(Hi), τ I

C(H) >
⋃
i∈I

τ I
C(Hi), τF

C(H) >
⋃
i∈I

τF
C(Hi).

There exists s0 ∈ I0 such that

τT
C (H) < s0 <

⋃
i∈I

τT
C(Hi), τ I

C(H) > 1− s0 >
⋃
i∈I

τ I
C(Hi), τF

C(H) > 1− s0 >
⋃
i∈I

τF
C(Hi).

For every i ∈ I, there exists C(Hi, si) = 1−Hi and si ∈ I0 such that

s0 < si ≤ τT
C(Hi), 1− s0 > 1− si ≥ τ I

C(Hi), 1− si > 1− s0 ≥ τF
C(Hi).

In addition, since C(1−Hi, r0) ≤ C(1−Hi, si) = 1−Hi, by C2 of Definition 9,

C(1−Hi, s0) = 1−Hi.

It implies, for all i ∈ I,

C(1−H, s0) ≤ C(1−Hi, s0) = 1−Hi.

It follows that

C(1−H, r0) ≤
⋂
i∈J

(1−Hi) = 1−H.
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Thus, CI(1 − H, s0) = 1 − H, that is, τT
C(H) ≥ s0, τ I

C(H) ≤ 1 − s0, and τF
C(H) ≤ 1 − s0. It is a

contradiction. Hence, τTIF
C is an SVNTS on S .

(2) SinceH ≤ C(H, r),

τT
C(1−C(H, s)) ≥ s, τ I

C(1−C(H, s)) ≤ 1− s, τF
C(1−C(H, s)) ≤ 1− s.

From C5 of Definition 9, we have CτTIF
C

(H, s) ≤ C(H, s). Thus, CτTIF
C

is finer than C.

Example 1. Let S = {a, b}. Define B,H,A ∈ IS as follows:

B = 〈(0.2, 0.2), (0.3, 0.3), (0.3, 0.3)〉;H = 〈(0.5, 0.5), (0.1, 0.1), (0.1, 0.1)〉.

We define the mapping C : IS × I0 → IS as follows:

C(A, s) =



(0.1.1), if A = (0.1.1), s ∈ I0,
B ∩H, if 0 6= A ≤ B ∩H, 0 < r < 1

2 ,
B, if A ≤ B,A 6≤ H, 0 < r < 1

2 ,
or 0 6= A ≤ B 1

2 < r < 2
3 ,

H, if A ≤ H,A 6≤ B, 0 < r < 1
2 ,

B ∪H, if 0 6= A ≤ B ∪H, 0 < r < 1
2 ,

1, otherwise.

Then, C is a single-valued neutrosophic closure operator.
From Theorem 2, we have a single-valued neutrosophic topology (τT

C , τ I
C, τF

C) on S as follows:

τT
C(A) =



1, if A = (1, 0, 0) or (0, 1, 1),
2
3 , if A = Bc,
1
2 , if A = Hc,
1
2 , if A = Bc ∪Hc,
1
2 , if A = Bc ∩Hc,
0, otherwise.

τ I
C(A) =



0, if A = (1, 0, 0) or (0, 1, 1),
1
3 , if A = Bc,
1
2 , if A = Hc,
1
2 , if A = Bc ∪Hc,
1
2 , if A = Bc ∩Hc,
1, otherwise.

τF
C(A) =



0, if A = (1, 0, 0) or (0, 1, 1),
1
3 , if A = Bc,
1
2 , if A = Hc,
1
2 , if A = Bc ∪Hc,
1
2 , if A = Bc ∩Hc,
1, otherwise.

Thus, the τTIF
C is a single-valued neutrosophic topology on S .

Definition 10. A single-valued neutrosophic ideal (SVNI) on S in Šostak’s sense on a nonempty set S is a
family LT ,LI ,LF of single-valued neutrosophic sets in S satisfying the following axioms:
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(L1) LT(0) = 1 and LI(0) = LF(0) = 0.
(L2) IfH ≤ B, then LT(R) ≤ LT(H), LI(R) ≥ LI(H), and LF(R) ≥ LF(H), for each single-valued

neutrosophic setR,H in IS .
(L3) LT(R∪H) ≥ LT(R) ∩ LT(H), LI(R∪H) ≤ LI(R) ∪ LI(H), and LF(R∪H) ≤ LF(R) ∪

LF(H), for each single-valued neutrosophic setR,H in IS .
If L1 and L2 are SVNI on S , we say that L1 is finer than L2, denoted by L1 ≤ L2, iff LT

1 (H) ≤ LT
2 (H),

LI
1(H) ≥ LI

2(A), and LF
1 (H) ≥ LF

2 (H), forH ∈ IS .
The triable (X, (τT , τ I , τF), (LT ,LI ,LF) is called a single-valued neutrosophic ideal topological space in

Šostak sense (SVNITS, f or short).
We will occasionally write LTIF, LTIF

i , and LTIF : IX → I for (LT ,LI ,LF), (LT
i ,LI

i ,LF
i ), and

LT ,LI ,LF : IS → I, respectively.

Remark 1. The conditions (L2) and (L3), which are given in Definition 10, are equivalent to the following
axioms: LT(H ∪R) = LT(H) ∩ LT(R), LI(H ∪R) 6= LI(H) ∪ LI(R), and LF(H ∪R) 6= LF(H) ∪
LF(R), for everyR,H ∈ IS .

Example 2. Let S = {a, b}. Define the single-valued neutrosophic setsR, C,H,A and (LT ,LT ,LT) : IS →
I as follows:

R = 〈(0.3, 0.5), (0.4, 0.5), (0.5, 0.5)〉; C = 〈(0.3, 0.4), (0.5, 0.5), (0.3, 0.4)〉,

H = 〈(0.1, 0.2), (0.5, 0.5), (0.5, 0.5)〉.

LT(A) =


1, if B = (0.1.1),
1
2 , if A = R,
2
3 , if (0.1.1) < A < R,
0, otherwise.

LI(A) =


0, if A = (0.1.1),
1
2 , if A = C,
1
4 , if (0.1.1) < A < C,
1, otherwise.

LT(B) =


0, if A = (0, 1, 1),
1
2 , if A = H,
1
4 , if (0.1.1) < A < H,
1, otherwise.

Then, LTIF is an SVNI on S .

Remark 2.

(i) If LT(1) = 1, LI(1) = 0, and LF(1) = 0, then LTIF is called a single-valued neutrosophic proper ideal.
(ii) If LT(1) = 0, LI(1) = 1, and LF(1) = 1, then LTIF is called a single-valued neutrosophic improper

ideal.

Proposition 1. Let {LTIF
i }i∈J be a family o f SVNI on S . Then, their intersection

⋂
i∈J LTIF

i is also SVNI.

Proof. Directly from Definition 7.
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Proposition 2. Let {LTIF
i }i∈J be a family o f SVNI on S . Then, their union

⋃
i∈J LTIF

i is also an SVNI.

Proof. Directly from Definition 7.

4. Single-Valued Neutrosophic Ideal Open Local Function in Šostak Sense

In this section, we study the single-valued neutrosophic ideal open local function in Šostak’s sense
and present some of their properties. Additionally, properties preserved by single-valued neutrosophic
ideal open compatible are examined.

Definition 11. Let s, t, p ∈ I0 and s + t + p ≤ 3. A single-valued neutrosophic point xs,t,r of S is the
single-valued neutrosophic set in IS for each κ ∈ H, defined by

xs,t,p(κ) =

{
(s, t, p), if x = κ,
(0, 1, 1), if x 6= κ.

A single-valued neutrosophic point xs,t,p is said to belong to a single-valued neutrosophic set
H = 〈TH, IH, FH〉 ∈ IS , denoted by xs,t,p ∈ H iff s < TH, t ≥ IH and p ≥ FH. 1. We indicate the set
of all single-valued neutrosophic points in S as SVNP(S).

For every xs,t,p ∈ SVNP(S) andH ∈ IS we shall write xs,t,p quasi-coincident withH, denoted by
xs,t,pqH, if

s + TH(κ) > 1, t + IH(κ) ≤ 1, p + FH(κ) ≤ 1.

For everyR,H ∈ S we shall writeHqR to mean thatH is quasi-coincident withR if there exists
κ ∈ S such that

TH(κ) + TR(κ) > 1, IH(κ) + IR(κ) ≤ 1, FH(κ) + FR(κ) ≤ 1.

Definition 12. Let (S , τTIF) be an SVNTS. For each r ∈ I0, H ∈ IS , xs,t,p ∈ SVNP(S), a single-valued
neutrosophic open QτTIF -neighborhood of xs,t,p is defined as follows:

QτTIF (xs,t,p, r) = {H|(xs,t,p)qH, τT(H) ≥ r, τ I(H) ≤ 1− r, τF(H) ≤ 1− r}.

Lemma 1. A single-valued neutrosophic point xs,t,p ∈ CτTIF (R, r) iff every single-valued neutrosophic open
QτTIF -neighborhood of xs,t,p is quasi-coincident withH.

Definition 13. Let (S , τTIF) be an SVNTS for each H ∈ IS . Then, the single-valued neutrosophic ideal
open local functionH?

r (τ
TIF,LTIF) ofH is the union of all single-valued neutrosophic points xs,t,p such that if

R ∈ QτTIF (xs,t,p, r) and LT(C) ≥ r, LI(C) ≤ 1− r, LF(C) ≤ 1− r, then there is at least one κ ∈ S for
which TR(κ) + TH(κ)− 1 > TC(κ), IR(κ) + IH(κ)− 1 ≤ IC(κ), and FR(κ) + FH(κ)− 1 ≤ FC(κ).

Occasionally, we will writeH?
r forH?

r (τ
TIF,LTIF) and it will have no ambiguity.

Example 3. Let (S , τTIF,LTIF) be an SVNITS. The simplest single-valued neutrosophic ideal on S is
LTIF

0 : IS → I, where

LTIF
0 (R) =

{
1, if R = (1, 0, 0),
0, otherwise.

If we take LTIF = LTIF
0 , for eachH ∈ IS we haveH?

r = CτTIF (H, r).
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Theorem 3. Let (S , τTIF) be an SVNTS and LTIF
1 ,LTIF

2 ∈ SVNI(S). Then, for anyH,R ∈ IS and r ∈ I0,
we have

(1) IfH ≤ R, thenH?
r ≤ R?

r ;
(2) If LT

1 ≤ LT
2 , LI

1 ≥ LI
2 and LF

1 ≥ LF
2 , thenH?

r (LTIF
1 , τTIF) ≥ H?

r ((LTIF
2 , τTIF);

(3) H?
r = CτTIF (A?

r , r) ≤ CτTIF (H, r);
(4) (H?

r )
?
r ≤ H?

r ;
(5) (H?

r ∨R?
r ) = (H∨R)?r ;

(6) If LT(H) ≥ r, LI(R) ≤ 1− r, and LF(R) ≤ 1− r then (H∨R)?r = A?
r ∨R?

r = H?
r ;

(7) If τT(R) ≥ r, τ I(R) ≤ 1− r, and τF(R) ≤ 1− r, then (R∧H?
r ) ≤ (R∧H)?r ;

(8) (H?
r ∧R?

r ) ≥ (H∧R)?r .

Proof. (1) Suppose thatH ∈ IS andH?
r 6≤ R?

r . Then, there exists κ ∈ S and s, t, p ∈ I0 such that

TH?
r (κ) ≥ s > TR?

r (κ), IH?
r (κ) < t ≤ IR?

r (κ), FH?
r (κ) < p ≤ FR?

r (κ). (1)

Since TR?
r (κ) < s, IR?

r (κ) ≥ t, and FR?
r (κ) ≥ p. Then, there exists D ∈ Q(τTIF)(xs,t,p, r), LT(C) ≥ r,

LI(C) ≤ 1− r, and LF(C) ≤ 1− r such that for any κ1 ∈ S ,

TD(κ1) + TR(κ1)− 1 ≤ TC(κ1), ID(κ1) + IR(κ1)− 1 > IC(κ1), FD(κ1) + FR(κ1)− 1 > FC(κ1).

SinceH ≤ R,

TD(κ1) + TH(κ1)− 1 ≤ TC(κ1), ID(κ1) + IH(κ1)− 1 > IC(κ1), FD(κ1) + FH(κ1)− 1 > FC(κ1).

So, TH?
r (κ) < s, IH?

r (κ) ≥ t, and FH?
r (κ) ≥ p and we arrive at a contradiction for Equation (1). Hence,

H?
r ≤ R?

r .
(2) SupposeH?

r (LTIF
1 , τTIF) 6≥ H?

r (LTIF
2 , τTIF). Then, there exists s, t, p ∈ I0 and κ ∈ S such that

TH?
r (LTIF

1 ,τTIF)(κ) < s ≤ TH?
r (LTIF

2 ,τTIF)(κ),

IH?
r (LTIF

1 ,τTIF)(κ) ≥ t > IH?
r (LTIF

2 ,τTIF)(κ), (2)

FH?
r (LTIF

1 ,τTIF)(κ) ≥ p > FH?
r (LTIF

2 ,τTIF)(κ).

Since TH?
r (LTIF

1 ,τTIF)(κ) < s, IH?
r (LTIF

1 ,τTIF)(κ) ≥ t, and FH?
r (LTIF

1 ,τTIF)(κ) ≥ p, D ∈ QτTIF (xs,t,p, r) with

LT
1 (C) ≥ r, LI

1(C) ≤ 1− r and LF
1 (C) ≤ 1− r. Thus, for every κ1 ∈ S ,

TD(κ1) + TH(κ1)− 1 ≤ TC(κ1), ID(κ1) + IH(κ1)− 1 > IC(κ1), FD(κ1) + FH(κ1)− 1 > FC(κ1).

Since LT
2 (C) ≥ LT

1 (C)) ≥ r, LI
2(C) ≤ LI

1(C)) ≤ 1− r, and LF
2 (C) ≤ LF

1 (C)) ≤ 1− r,

TD(κ1) + TH(κ1)− 1 ≤ TC(κ1), ID(κ1) + IH(κ1)− 1 > IC(κ1), FD(κ1) + FH(κ1)− 1 > FC(κ1).

Thus, TH?
r (LTIF

2 ,τTIF)(κ) < s, IH?
r (LTIF

2 ,τTIF)(κ) ≥ t, and FH?
r (LTIF

2 ,τTIF)(κ) ≥ p. This is a contradiction for

Equation (2). Hence,H?
r ((LTIF

1 , τTIF)) ≥ H?
r ((LTIF

2 , τTIF)).
(3)(⇒) SupposeH?

r 6≤ CτTIF (H, r). Then, there exists s, t, p ∈ I0 and κ ∈ S such that

TH?
r (κ) ≥ s > TC

τTIF (H,r)(κ), IH?
r (κ) < t ≤ IC

τTIF (H,r)(κ), FH?
r (κ) < p ≤ FC

τTIF (H,r)(κ). (3)
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Since TH?
r (κ) ≥ s, IH?

r (κ) < t and FH?
r (κ) < p, xs,t,p ∈ H?

r . So there is at least one κ1 ∈ S for every
D ∈ QτTIF (xs,t,p, r) with LT

1 (C) ≥ r, LI
1(C) ≤ 1− r, LF

1 (C) ≤ 1− r such that

TD(κ1) + TH(κ1) > TC(κ1) + 1, ID(κ1) + IH(κ1) ≤ IC(κ1) + 1, FD(κ1) + FH(κ1) ≤ FC(κ1) + 1.

Therefore, by Lemma 1, xs,t,p ∈ CτTIF (H, r) which is a contradiction for Equation (3). Hence,
H?

r ≤ CτTIF (H, r).
(⇐) SupposeH?

r 6≥ CτTIF (H?
r , r). Then, there exists s, t, p ∈ I0 and κ ∈ S such that

TH?
r (κ) < s ≤ TC

τTIF (H?
r ,r)(κ), IH?

r (κ) ≥ t > IC
τTIF (H?

r ,r)(κ), FH?
r (κ) ≥ p > FC

τTIF (H?
r ,r)(κ). (4)

Since TC
τTIF (H?

r ,r)(κ) ≥ t, IC
τTIF (H?

r ,r)(κ) < s, CτTIF (H?
r , r)(κ) < p we have xs,t,p ∈ CτTIF (H?

r , r). So,
there is at least one κ1 ∈ S withR ∈ QτTIF (xs,t,p, r) such that

TR(κ1) + TH?
r (κ1) > 1, IR(κ1) + IH?

r (κ1) ≤ 1, FR(κ1) + FH?
r (κ1) ≤ 1.

Therefore, H?
r (κ1) 6= 0. Let s1 = TH?

r (κ1), t1 = IH?
r (κ1), and p1 = FH?

r (κ1). Then, (κ1)s1,t1,p1 ∈ H∗r
and s1 + TR(κ1) > 1, t1 + IR(κ1) ≤ 1, and p1 + FR(κ1) ≤ 1 so that R ∈ QτTIF ((κ1)s1,t1,p1 , r). Now,
(κ1)s1,t1,p1 ∈ H?

r implies there is at least one κ
′ ∈ S such that TD(κ

′
) + TH(κ

′
)− 1 > TC(κ

′
), ID(κ

′
) +

IH(κ
′
)− 1 ≤ IC(κ

′
), and FD(κ

′
)+ FH(κ

′
)− 1 ≤ FC(κ

′
), for allLT(C) ≥ r, LI(C) ≤ 1− r, LF(C) ≤ 1− r,

and D ∈ QτTIF ((κ1)s1,t1,p1 , r). That is also true for R. So there is at least one κ
′′ ∈ S such that

TR(κ
′′
) + TH(κ

′′
)− 1 > TC(κ

′′
), IR(κ

′′
) + IH(κ

′′
)− 1 ≤ IC(κ

′′
), and FR(x

′′
) + FH(κ

′′
)− 1 ≤ FC(κ

′′
).

Since R ∈ QτTIF (κs,t,p, r) and R is arbitrary; then TH?
r (κ) > s, IH?

r (κ) ≤ t and TH?
r (κ) ≤ p. It is a

contradiction for (4). Thus,H?
r ≥ CτTIF (H?

r , r).
(4) (⇒) Can be easily established using standard technique.
(5) (⇒) Since H,R ≤ H ∪R. By (1), H?

r ≤ (H ∪R)?r and R?
r ≤ (H ∪R)?r . Hence, H?

r ∪ B?r ≤
(H∪R)?r .

(⇐) Suppose (H?
r ∪R?

r ) 6≥ (H∪R)?r . Then, there exists s, t, p ∈ I0 and κ ∈ S such that

T(H?
r ∪R?

r )
(κ) < s ≤ T(H∪R)?r (κ), I(H?

r ∪R?
r )
(κ) ≥ t > I(H∪R)?r (κ), F(H?

r ∪R?
r )
(κ) ≥ p > F(H∪R)?r (κ). (5)

Since T(H?
r ∪R?

r )
(κ) < s, I(H?

r ∪R?
r )
(κ) ≥ t, and F(H?

r ∪R?
r )
(κ) ≥ p, we have TH?

r (κ) < s, IH?
r (κ) ≥ t,

FH?
r (κ) ≥ p or TR?

r (κ) < t, IR?
r (κ) ≥ t, FR?

r (κ) ≥ t. So, there exists D1 ∈ QτTIF (xs,t,p, r) such that for
every κ1 ∈ S and for some LT(C1) ≥ r, LI(C1) ≤ 1− r, LF(C1) ≤ 1− r, we have

TD1(κ1) + TH(κ1)− 1 ≤ TC1(κ1), ID1(κ1) + IH(κ1)− 1 > IC1(κ1), FD1(κ1) + FH(κ1)− 1 > FC1(κ1).

Similarly, there exists D2 ∈ QτTIF (xs,t,p, r) such that for every κ1 ∈ S and for some LT(C2) ≥ r,
LI(C2) ≤ 1− r, LF(C2) ≤ 1− r, we have

TD2(κ1) + TH(κ1)− 1 ≤ TC2(κ1), ID2(κ1) + IH(κ1)− 1 > IC2(κ1), FD2(κ1) + FH(κ1)− 1 > FC2(κ1).

Since D = D1 ∧D2 ∈ QτTIF (xs,t,p, r) and by (L3), LT(C1 ∪ C2) ≥ LT(C1) ∩ LT(C2) ≥ r, LI(C1 ∪ C2) ≤
LI(C1) ∪ LI(C2) ≤ 1− r, and LF(C1 ∪ C2) ≤ LT(C1) ∪ LT(C2) ≤ 1− r. Thus, for every κ1 ∈ S ,

TD(κ1) + TR∪H(κ1)− 1 ≤ TC1∪C2(κ1),

ID(κ1) + IR∪H(κ1)− 1 ≥ IC1∪C2(κ1),

FD(κ1) + FR∪H(κ1) ≥ FC1∪C2(κ1).

Therefore, T(H∪R)?r (κ) < s, I(H∪R)?r (κ) ≥ t, and F(H∪R)?r (κ) ≥ p. So, we arrive at a contradiction for
(5). Hence, (H?

r ∪R?
r ) ≥ (H∪R)?r .

(6), (7), and (8) can be easily established using the standard technique.
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Example 4. Let S = {a, b}. DefineR, C,H ∈ S as follows:

R1 = 〈(0.5, 0.5, 0.5), (0.5, 0.5, 0.5), (0.5, 0.5, 0.5)〉; R2 = 〈(0.4, 0.4, 0.4), (0.1, 0.1, 0.1), (0.1, 0.1, 0.1)〉;

R3 = 〈(0.3, 0.3, 0.3), (0.1, 0.1, 0.1), (0.1, 0.1, 0.1); C1 = 〈(0.3, 0.3, 0.3), (0.3, 0.3, 0.3), (0.1, 0.1, 0.1)〉;

C2 = 〈(0.2, 0.2, 0.2), (0.2, 0.2, 0.2), (0.1, 0.1, 0.1); C3 = 〈(0.1, 0.1, 0.1), (0.1, 0.1, 0.1), (0.1, 0.1, 0.1)〉.

Define τTIF,LTIF : IX → I as follows:

τT(H) =


1, if H = (0, 1, 1),
1, if H = (1, 0, 0),
1
2 , if H = R1;

LT(H) =


1, if H = (0, 1, 1),
1
2 , if H = C1,
2
3 , if 0 < H < C1;

τ I(H) =


0, if H = (0, 1, 1),
0, if H = (1, 0, 0),
1
2 , if H = R2;

LI(R) =


0, if H = (0, 1, 1),
1
2 , if H = C2,
1
4 , if 0 < H < C2;

τF(H) =


0, if H = (0, 1, 1),
0, if H = (1, 0, 0),
1
2 , if H = R3;

LF(H) =


0, if H = (0, 1, 1),
1
2 , if H = C3,
1
4 , if 0 < H < C3.

Let G = 〈(0.4, 0.4, 0.4), (0.4, 0.4, 0.4), (0.4, 0.4, 0.4)〉. Then, G?1
2
= R1.

Theorem 4. Let {Hi}i∈J ⊂ IS be a family of single-valued neutrosophic sets on S and (S , τTIF,LTIF) be an
SVNITS. Then,

(1) (
⋃
(Hi)

?
r : i ∈ J) ≤ (

⋃Hi : i ∈ J)?r ;
(2) (

⋂
(Hi)

?
r : i ∈ J) ≥ (

⋂Hi : i ∈ J)?r .

Proof. (1) Since Hi ≤ ⋃Hi for all i ∈ J, and by Theorem 3 (1), we obtain
(
⋃
(Hi)

?
r , i ∈ J) ≤ (

⋃Hi, i ∈ J)?r . Then, (1) holds.
(2) Easy, so omitted.

Remark 3. Let (S , τTIF,LTIF) be an SVNITS andH ∈ IS , we can define

C?
τTIF (H, r) = H∪H?

r , int?τTIF (H, r) = H∧ [1− (1−H)?r ].

It is clear, C?
τTIF is a single-valued neutrosophic closure operator and (τT?(LT), τ I?(LI), τF?(LF) is the

single-valued neutrosophic topology generated by C?
τTIF , i.e.,

τ?(I)(H) =
⋃
{r| C?

τTIF (1−H, r) = 1−H}.

Now, if LTIF = LTIF
0 , then, C?

τTIF (H, r) = H∗r ∪ H = C?
τTIF (H, r) ∪ H = CτTIF (H, r), for H ∈ IS . So,

τTIF?(LTIF
0 ) = τTIF.

Proposition 3. Let (S , τTIF,LTIF) be an SVNITS, r ∈ I0, andH ∈ IS . Then,

(1) C?
τTIF (1, r) = 1;
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(2) C?
τTIF (0, r) = 0;

(3) int?
τTIF (H∪R, r) ≤ int?

τTIF (H, r) ∪ int?
τTIF (R, r);

(4) int?
τTIF (H, r) ≤ H ≤ C?

τTIF (H, r) ≤ CτTIF (H, r);
(5) C?

τTIF (1−H, r) = 1− int?
τTIF (H, r) and 1−C?

τTIF?(H, r) = int?
τTIF (1−H, r);

(6) int?
τTIF (H∩R, r) = int?

τTIF (H, r) ∩ int?
τTIF (R, r).

Proof. Follows directly from definitions of C?
τTIF , int?

τTIF , CτTIF , and Theorem 3 (5).

Theorem 5. Let (S , τTIF
1 ,LTIF) and (S , τTIF

2 ,LTIF) be SVNTS′s and τTIF
1 ≤ τTIF

2 . Then,
H?

r (τ
TIF
2 ,LTIF) ≤ H?

r (τ
TIF
1 ,LTIF).

Proof. SupposeH?
r (τ

TIF
2 ,LTIF) 6≤ H?

r (τ
TIF
1 ,LTIF). Then, there exists s, t, p ∈ I0, κ ∈ S such that

TH?
r (τ

TIF
2 ,LTIF)(κ) ≥ s > TH?

r (τ
TIF
1 ,LTIF)(κ),

IH?
r (τ

TIF
2 ,LTIF)(κ) < t ≤ IH?

r (τ
TIF
1 ,LTIF)(κ), (6)

FH?
r (τ

TIF
2 ,LTIF)(κ) < t ≤ FH?

r (τ
TIF
1 ,LTIF)(κ).

Since TH?
r (τ

TIF
1 ,LTIF)(κ) < s, IH?

r (τ
TIF
1 ,LTIF)(κ) ≥ t, FH?

r (τ
TIF
1 ,LTIF)(κ) ≥ p, there exists D ∈ QτTIF

1
(xs,t,p, r)

with LT(C1) ≥ r, LI(C1) ≤ 1− r and LF(C1) ≤ 1− r, such that for any κ1 ∈ S ,

TD(κ1) + TH(κ1)− 1 ≤ TCκ1), ID(κ1) + IH(κ1)− 1 > IC(κ1), FD(κ1) + FH(κ1)− 1 > FC(κ1).

Since τTIF
1 ≤ τTIF

2 , D ∈ QτTIF
2

(xs,t,p, r). Thus, TH?
r (τ

TIF
2 ,LTIF)(κ) < s, IH?

r (τ
TIF
2 ,LTIF))(κ) ≥ t,

FH?
r (τ

TIF
2 ,LTIF)(κ) ≥ p. It is a contradiction for Equation (6).

Theorem 6. Let (S , τTIF,LTIF
1 ) and (S , τTIF,LTIF

2 ) be SVNTS′s and LTIF
1 ≤ LTIF

2 . Then,
H?

r (LTIF
1 , τTIF) ≥ H?

r (LTIF
2 , τTIF).

Proof. Clear.

Definition 14. Let Θ be a subset of IS , and 0 6∈ Θ. A mapping βT , βI , βF : Θ → I is called a single-valued
neutrosophic base on S if it satisfies the following conditions:

(1) βT(1) = 1 and βI(1) = βF(1) = 0;
(2) For allH,R ∈ Θ,

βT(H∩R) ≥ βT(H) ∩ βT(R), βI(H∩R) ≤ βI(H) ∪ βI(R), βF(H∩R) ≤ βF(H) ∪ βF(R).

Theorem 7. Define a mapping β : Θ→ I on S by

βI(H) =
⋃
{τT(R) ∩ IT(C)| H = R∩ (1− C)},

βI(H) =
⋂
{τ I(R) ∪ I I(C)| H = R∩ (1− C)},

βF(H) =
⋂
{τF(R) ∪ IF(C)| H = R∩ (1− C)}.
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Then, βTIF is a base for the single-valued neutrosophic topology τTIF?.

Proof.

(1) Since LT(0) = 1 and LI(0) = LF(0) = 0, we have βT(1) = 1 and βI(1) = βF(1) = 0;
(2) Suppose that there existsH1,H2 ∈ Θ such that

βT(H1 ∩H2) 6≥ βT(H1) ∩ βT(H2),

βI(H1 ∩H2) 6≤ βI(H1) ∪ βI(H2),

βF(H1 ∩H2) 6≤ βF(H1) ∪ βF(H2).

There exists s, t, p ∈ I0 and κ ∈ S such that

βT(H1 ∩H2)(κ) < s ≤ βT(H1)(x) ∩ βT(H2)(κ),

βI(H1 ∩H2)(κ) ≥ t > βI(H1)(κ) ∩ βI(H2)(κ), (7)

βF(H1 ∩H2)(κ) ≥ p > βF(H1)(κ) ∪ βF(H2)(κ).

Since βT(H1)(κ) ≥ s, βI(H1)(κ) < t, βF(H1)(κ) < p, and βT(H2)(κ) ≥ s, βI(H2)(κ) < t,
βF(H2)(κ) < p, then there existsR1,R1, C1, C2 ∈ Θ withH1 = R1 ∩ (1−C1) andH2 = R2 ∩ (1−C2),
such that βT(H1) ≥ τT(R1) ∩ LT(C1) ≥ s, βI(H1) ≤ τ I(R1) ∪ LI(C1) < t, βF(H1) ≤
τF(R1) ∪ LF(C1) < p, and βT(H2) ≥ τT(R2) ∩ LT(C2) ≥ s, βI(H2) ≤ τ I(R2) ∪ LI(C2) < t,
βF(H2) ≤ τF(R2) ∪ LF(C2) < p. Therefore,

H1 ∩H2 = (R1 ∩ (1− C1)) ∩ (R2 ∩ (1− C2))

= (R1 ∩R2) ∩ ((1− C1) ∩ (1− C2))

= (R1 ∩R2) ∩ (1− (C1 ∪ C2)).

Hence, from Definition 14, we have

βT(H1 ∩H2) ≥ τT(R1 ∩R2) ∩ LT(C1 ∪ C2)

≥ τT(R1) ∩ τT(R2) ∩ LT(C1) ∩ LT(C2)

= (τT(R1) ∩ LT(C1)) ∩ (τT(R2) ∩ LT(C2)) ≥ s,

βI(H1 ∩H2) ≤ τ I(R1 ∩R2) ∪ LI(C1 ∪ C2)

≤ τ I(R1) ∪ τ I(R2) ∪ LI(C1) ∪ LI(C2)

= (τ I(R1) ∪ LF(C1)) ∪ (τ I(R2) ∪ LI(C2)) < t,

βF(H1 ∩H2) ≤ τF(R1 ∩R2) ∪ LF(C1 ∪ C2)

≤ τF(R1) ∪ τF(R2) ∪ LF(C1) ∪ LF(C2)

= (τF(R1) ∪ LF(C1)) ∪ (τF(R2) ∪ LF(C2)) < p.

It is a contradiction for Equation (7). Thus,

βT(H1 ∩H2) ≥ βT(H1) ∩ βT(H2), βI(H1 ∩H2) ≤ βI(H1) ∪ βI(H2), βF(H1 ∩H2) ≤ βF(H1) ∪ βF(H2).
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Theorem 8. Let (S , τTIF) be an SVNTS, and LTIF
1 and LTIF

1 be two single-valued neutrosophic ideals on S .
Then, for every r ∈ I0 andH ∈ IS ,

(1) H?
r (LTIF

1 ∩ LTIF
2 , τTIF) = H?

r (LTIF
1 , τTIF) ∪H?

r (LTIF
2 , τTIF),

(2) H?
r (LTIF

1 ∪ LTIF
2 , τ) = H?

r (LTIF
1 , τT?(LTIF

2 )) ∩H?(LTIF
2 , τT?(LTIF

1 )).

Proof. (1) Suppose thatH?
r (LTIF

1 ∩LTIF
2 , τTIF) 6≤ H?

r (LTIF
1 , τTIF)∪H?

r (LTIF
2 , τTIF), there exists κ ∈ S

and s, t, p ∈ I0 such that

TH?
r (LT

1 ∩L
T
2 ,τT)(κ) ≥ s > TH?

r (LT
1 ,τT)(κ) ∪ TH?

r (LT
2 ,τT)(κ), (8)

IH?
r (LI

1∩L
I
2,τ I)(κ) < t ≤ IH?

r (LI
1,τ I)(κ) ∪ IH?

r (LI
2,τ I)(κ),

FH?
r (LF

1∩L
F
2 ,τF)(κ) < p ≤ FH?

r (LF
1 ,τF)(κ) ∩ FH?

r (LF
2 ,τF)(κ).

Since TH?
r (LT

1 ,τT)(κ) ∪ TH?
r (LT

2 ,τT)(κ) < s, IH?
r (LI

1,τ I)(κ) ∩ IH?
r (LI

2,τ I)(κ) ≥ t, FH?
r (LF

1 ,τF)(κ) ∩
FH?

r (LF
2 ,τF)(κ) ≥ p, we have, TH?

r (LT
1 ,τT)(κ) < s, IH?

r (LI
1,τ I)(κ) ≥ t, FH?

r (LF
1 ,τF)(κ) ≥ p, and

IH?
r (LI

2,τ I)(κ) < s, IH?
r (LI

2,τ I)(κ) ≥ t , FH?
r (LF

2 ,τF)(κ) ≥ p.

Now, TH?
r (LT

1 ,τT)(κ) < s, IH?
r (LI

1,τ I)(κ) ≥ t, FH?
r (LF

1 ,τF)(κ) ≥ p implies that there exists D1 ∈
QτTIF (xs,t,p, r) and for some LT

1 (C1) ≥ r, LI
1(C1) ≤ 1− r and LF

1 (C1) ≤ 1− r such that for every
κ1 ∈ S ,

TD1(κ1) + TH(κ1)− 1 ≤ TC1(κ1), ID1(κ1) + IH(κ1)− 1 ≥ IC1(κ1), FD1(κ1) + FH(κ1)− 1 ≥ FC1(κ1).

Once again, TH?
r (LT

2 ,τT)(κ) < s, IH?
r (LI

2,τ I)(κ) ≥ t, FH?
r (LF

2 ,τF)(κ) ≥ p, implies there exists D2 ∈
QτTIF (xs,t,p, r) and for some LT

2 (C2) ≥ r, LI
2(C2) ≤ 1− r and LF

2 (C2) ≤ 1− r, such that for κ1 ∈ S ,

TD2(κ1) + TH(κ1)− 1 ≤ TC2(κ1), ID2(κ1) + IH(κ1)− 1 ≥ IC2(κ), FD2(κ1) + FH(κ1)− 1 ≥ FC2(κ1),

Therefore, for every κ1 ∈ S , we have

TD1∩D2(κ1) + TH(κ1)− 1 ≤ TC1∩C2(κ1), ID1∪D2(κ1) + IH(κ1)− 1 ≥ IC1∪C2(κ1),

FD1∪D2(κ1) + FH(κ1)− 1 ≥ FC1∪C2(κ1).

Since (D1 ∧D2) ∈ QτTIF (xs,t,p, r) and (LT
1 ∩ LT

2 )(C1 ∩ C2) ≥ r, (LI
1 ∩ LI

2)(C1 ∪ C2) ≤ 1− r, and (LF
1 ∩

LF
2 )(C1 ∪ C2) ≥ 1− r we have TH?

r (LT
1 ∩L

T
2 ,τT)(κ) ≤ s, IH?

r (LI
1∩L

I
2,τ I)(κ) > t, and FH?

r (LF
1∩L

F
2 ,τF)(κ) > t

and this is a contradiction for Equation (8). So that

H?
r (LTIF

1 ∩ LTIF
2 , τTIF) ≤ H?

r (LTIF
1 , τTIF) ∪H?

r (LTIF
2 , τTIF).

On the opposite direction, LTIF
1 ≥ LTIF

1 ∩ LTIF
2 and LTIF

2 ≥ LTIF
1 ∩ LTIF

2 , so by Theorem 3 (2),

H?
r (LTIF

1 ∩ LTIF
2 , τT) ≥ H?

r (LTIF
1 , τTIF) ∪H?

r (LTIF
2 , τTIF).

Then,

H?
r (LTIF

1 ∩ LTIF
2 , τTIF) = H?

r (LTIF
1 , τTIF) ∪H?

r (LTIF
2 , τTIF).
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(2) Straightforward.

The above theorem results in an important consequence. τTIF?(LTIF) and [τTIF?(LTIF)]?(LTIF)

(in short τ??) are equal for any single-valued neutrosophic ideal on S .

Corollary 1. Let (S , τTIF,LTIF) be an SVNITS. For every r ∈ I0 and H ∈ IX, H?
r (LTIF) =

H?
r (LTIF, τTIF?) and τTIF?(LTIF) = τTIF??.

Proof. Putting LTIF
1 = LTIF

2 in Theorem 8 (2), we have the required result.

Corollary 2. Let (S , τTIF) be an SVNTS, and LTIF
1 and LTIF

1 be two single-valued neutrosophic ideals on S .
Then, for anyH ∈ IS and r ∈ I0,

(1) τT?(LTIF
1 ∪ ITIF

2 ) = (τTIF?(LTIF
2 ))?(LT

1 ) = (τTIF?(LTIF
1 ))?(LT

2 ),
(2) τT?(LTIF

1 ∩ LTIF
2 ) = τTIF?(LTIF

1 ) ∩ τT?(LTIF
2 ).

Proof. Straightforward.

Definition 15. For an SVNTS (S , τTIF) with a single-valued neutrosophic ideal ITIF, τTIF is said to be
single-valued neutrosophic ideal open compatible with ITIF, denoted by τTIF ∼ LTIF, if for each H, C ∈ IS

and xs,t,p ∈ H with LT(C) ≥ r, LI(C) ≤ 1− r, and LF(C) ≤ 1− r, there exists D ∈ QτTIF (xt, r) such that
TD(κ) + TH(κ)− 1 ≤ TC(κ), ID(κ) + IH(κ)− 1 > IC(κ), and FD(κ) + FH(κ)− 1 > FC(κ) holds for any
κ ∈ S , then LT(H) ≥ r, LI(H) ≤ 1− r and LF(H) ≤ 1− r.

Definition 16. Let {Rj}j∈J be an indexed family of a single-valued neutrosophic set of S such that RjqH
for each j ∈ J, where H ∈ IS . Then, {Rj}j∈J is said to be a single-valued neutrosophic quasi-cover of H iff
TH(κ) + T∨

j∈J(Rj)
(κ) ≥ 1, IH(κ) + I∨

j∈J(Rj)
(κ) < 1, and FH(κ) + F∨

j∈J(Rj)
(κ) < 1, for every κ ∈ S .

Further, let (S , τTIF) be an SVNTS, for each τT(Rj) ≥ r, τ I(Rj) ≤ 1− r, and τF(Rj) ≤ 1− r.
Then, any single-valued neutrosophic quasi-cover will be called single-valued neutrosophic quasi
open-cover ofH.

Theorem 9. Let (S , τTIF) be an SVNTS with single-valued neutrosophic ideal LTIF on S . Then, the following
conditions are equivalent:

(1) τ ∼ L.
(2) If for every H ∈ IS has a single-valued neutrosophic quasi open-cover of {Rj}j∈J such that for each

j, TH(κ) + TRj(κ) − 1 ≤ TC(κ), IH(κ) + IRj(κ) − 1 > IC(κ), and FH(κ) + FRj(κ) − 1 > FC(κ)
for every κ ∈ S and for some LT(C) ≥ r, LI(C) ≤ 1− r, and LF(C) ≤ 1− r, then LT(H) ≥ r,
LI(H) ≤ 1− r, and LF(H) ≤ 1− r,

(3) For everyH ∈ IS ,H∧H?
r = (0, 1, 1) implies LT(H) ≥ r, LI(H) ≤ 1− r, and LF(H) ≤ 1− r,

(4) For every H ∈ IS , LT(H̃) ≥ r, LI(H̃) ≤ 1− r, and LF(H̃) ≤ 1− r, where H̃ =
∨

xs,t,p such that
xs,t,p ∈ H but xs,t,p 6∈ H∗r ,

(5) For every τT?(1−H) ≥ r, τ I?(1−H) ≤ 1− r, and τF?(1−H) ≤ 1− r we have LT(H̃) ≥ r,
LI(H̃) ≤ 1− r, and LF(H̃) ≤ 1− r,

(6) For every H ∈ IS , if A contains no R 6= (0, 1, 1) with R ≤ R?
r , then LT(H) ≥ r, LI(H) ≤ 1− r,

and LF(H) ≤ 1− r.

Proof. It is proved that most of the equivalent conditions ultimately prove the all the equivalence.
(1)⇒(2): Let {Rj}j∈J be a single-valued neutrosophic quasi open-cover ofH ∈ IS such that for

j ∈ J, TH(κ) + TRj(κ)− 1 ≤ TC(κ), IH(κ) + IRj(κ)− 1 > IC(κ), and FH(κ) + FRj(κ)− 1 > FC(κ) for
every κ ∈ R and for some LT(C) ≥ r, LI(C) ≤ 1− r, and LF(C) ≤ 1− r. Therefore, as {Rj}j∈J is a
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single-valued neutrosophic quasi open-cover of R, for each xs,t,p ∈ H, there exists at least one Rj◦
such that xs,t,pqRj◦ and for every κ ∈ S , TH(κ) + TRj◦(κ)− 1 ≤ TC(κ), IH(κ) + IRj◦(κ)− 1 > IC(κ),
and FH(κ) + FRj◦(κ) − 1 > FC(κ) for every κ ∈ S and for some LT(C) ≥ r, LI(C) ≤ 1 − r and
LF(C) ≤ 1− r. Obviously, Rj◦ ∈ QτTIF (xs,t,p, r). By (1), we have LT(H) ≥ r, LI(H) ≤ 1− r, and
LF(H) ≤ 1− r.

(2)⇒(1): Clear from the fact that a collection of {Rj}j∈J , which contains at least one Rj◦ ∈
QτT IF(xs,t,p, r) of each single-valued neutrosophic point ofH, constitutes a single-valued neutrosophic
quasi-open cover ofH.

(1)⇒(3): Let H ∩ H?
r = (0, 1, 1), for every κ ∈ S , xt ∈ H implies xs,t,p 6∈ H?

r . Then, there
exists D ∈ QτTIF (xs,t,p, r) and LT(C) ≥ r, LI(C) ≤ 1− r, LF(C) ≤ 1− r such that for every κ ∈ S ,
TD(κ) + TH(κ)− 1 ≤ TC(κ), ID(κ) + IH(κ)− 1 > IC(κ), and FD(κ) + FH(κ)− 1 > FC(κ). Since D ∈
QτTIF (xs,t,p, r), By (1), we have LT(H) ≥ r, LI(H) ≤ 1− r, and LF(H) ≤ 1− r.

(3)⇒(1): For every xs,t,p ∈ H, there exists D ∈ QτTIF (xs,t,p, r) such that for every κ ∈ S , TD(κ) +
TH(κ)− 1 ≤ TC(κ), ID(κ) + IH(κ)− 1 > IC(κ), and FD(κ) + FH(κ)− 1 > FC(κ), for some LT(C) ≥ r,
LI(C) ≤ 1− r, LF(C) ≤ 1− r. This implies xs,t,p 6∈ H?

r . Now, there are two cases: eitherH?
r = (0, 1, 1)

or H?
r 6= (0, 1, 1) but s > TH?

r (κ) 6= 0, t ≤ IH?
r (κ) 6= 1, and p ≤ FH?

r (κ) 6= 1. Let, if possible,
xs,t,p ∈ H such that t > TH?

r (κ) 6= 0, t ≤ IH?
r (κ) 6= 1, and t ≤ FH?

r (κ) 6= 1. Let s′ = TH?
r (κ) 6= 0,

t′ = IH?
r (κ) 6= 1, and p′ = FH?

r (κ) 6= 1. Then, xs′ ,t′ ,p′ ∈ H∗r (κ). In addition, xs′ ,t′ ,p′ ∈ H. Thus, for every
V ∈ QτTIF (xs,t,p, r), for every LT(C) ≥ r, LI(C) ≤ 1− r, and LF(C) ≤ 1− r, there is at least one κ ∈ S
such that TV (κ) + TH(κ)− 1 > TC(κ), IV (κ) + IH(κ)− 1 ≤ IC(κ), and FV (κ) + FH(κ)− 1 ≤ FC(κ).
Since xs,t,p ∈ H, this contradicts the assumption for every single-valued neutrosophic point ofH. So,
H?

r = (0, 1, 1). That means xs,t,p ∈ H implies xs,t,p 6∈ H∗r . Now this is true for every H ∈ IS . So, for
any H ∈ IS , H∩H?

r = (0, 1, 1). Hence, by (3), we have LT(H) ≥ r, LI(H) ≤ 1− r, LF(H) ≤ 1− r,
which implies τTIF ∼ LTIF.

(3)⇒(4): Let xs,t,pinH̃. Then, xs,t,p ∈ H but xs,t,p 6∈ H?
r . So, there exists a D ∈ QτTIF (xs,t,p, r) such

that for every κ ∈ S , TD(κ) + TH(κ)− 1 ≤ TC(κ), ID(κ) + IH(κ)− 1 > IC(κ), and FD(κ) + FH(κ)−
1 > FC(κ), for some LT(C) ≥ r, LI(C) ≤ 1− r, LF(C) ≤ 1− r. Since H̃ ≤ H, for every κ ∈ S ,
TD(κ) + TH̃(κ)− 1 ≤ TC(κ), ID(κ) + IH̃(κ)− 1 > IC(κ), and FD(κ) + FH̃(κ)− 1 > FC(κ), for some
LT(C) ≥ r, LI(C) ≤ 1− r and LF(C) ≤ 1− r. Therefore, xs,t,p 6∈ H̃?

r implies that H̃?
r = (0, 1, 1) or

H̃?
r 6= (0, 1, 1) but s > TH̃?

r
, t ≤ IH̃?

r
, and p ≤ FH̃?

r
. Let xs′ ,t′ ,p′ in SVNP(S) such that s′ ≤ TH̃?

r
(κ) < s,

t ≤ IÃ?
r
(κ) < t′, and p ≤ FH̃?

r
(κ) < p′, i.e., xs′ ,t′ ,p′ ∈ H̃?

r . Then, for each V ∈ QτTIF (xs′ ,t′ ,p′ , r)
and for each LT(C) ≥ r, LI(C) ≤ 1 − r, LF(C) ≤ 1 − r, there is at least one κ ∈ S such that
TV (κ) + TH̃(κ)− 1 > TC(κ), IV (κ) + IH̃(κ)− 1 ≤ IC(κ), and FV (κ) + FH̃(κ)− 1 ≤ FC(κ). Since H̃ ≤
H, then for each V ∈ QτTIF (xs′ ,t′ ,p′ , r) and for each LT(C) ≥ r, LI(C) ≤ 1 − r, LF(C) ≤ 1 − r,
there is at least one κ ∈ S such that TV (κ) + TH(κ) − 1 > TC(κ), IV (κ) + IH(κ) − 1 ≤ IC(κ), and
FV (κ) + FH(κ)− 1 ≤ FC(κ). This implies xs′ ,t′ ,p′ ∈ H?

r . But as s′ < s, t′ < t, and p′ < p, xs,t,p ∈ H̃
implies xs′ ,t′ ,p′ ∈ H̃, and therefore, xs′ ,t′ ,p′ 6∈ H?

r . This is a contradiction. Hence,H?
r = (0, 1, 1), so that

xs,t,p ∈ H̃ implies xs,t,p 6∈ H̃?
r with H̃?

r = (0, 1, 1). Thus, H̃ ∩ H̃∗r = 0, for everyH ∈ IX . Hence, by (3),
LT(H̃) ≥ r, LI(H̃) ≤ 1− r, and LF(H̃) ≤ 1− r.

(4)⇒(5): Straightforward.
(4)⇒(6): Let H ∈ IS and H ≤ R 6= (0, 1, 1) with R ≤ R?

r . Then, for any H ∈ IS , H =

H̃ ∪ (H∩H?
r ). Therefore,H?

r = (Ã ∪ (H∩H?
r ))

?
r = H̃?

r ∪ (H∩H?
r )

?
r . by Theorem 3 (5).

Now, by (4), we have LT(H̃) ≥ r, LI(H̃) ≤ 1− r, and LF(H̃) ≤ 1− r, then H̃?
r = (0, 1, 1). Hence,

(H ∩ H?
r )

?
r = H?

r but H ∩ H?
r ≤ H?

r , then H ∩ A?
r ≤ (H ∩ H?

r )
?
r . This contradicts the hypothesis

about every single-valued neutrosophic set H ∈ IS , if (0, 1, 1) 6= R ≤ H with R ≤ R?
r . Therefore,

H∩H?
r = (0, 1, 1), so thatH = H̃ by (4), we have LT(H) ≥ r, LI(H) ≤ 1− r, and LF(H) ≤ 1− r.

(6)⇒(4): Since, for every H ∈ IS , H ∩ H?
r = (0, 1, 1). Therefore, by (6), as H contains no

non-empty single-valued neutrosophic subset R with R ≤ R?
r , LT(H) ≥ r, LI(H) ≤ 1− r, and

LF(H) ≤ 1− r.
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(5)⇒(1): For every H ∈ IS , xs,t,p ∈ H, there exists an D ∈ QτTIF (xs,t,p, r) such that TD(κ) +
TH(κ)− 1 ≤ TC(κ), ID(κ) + IH(κ)− 1 > IC(κ), and FD(κ) + FH(κ)− 1 > FC(κ) holds for every κ ∈ S
and for some LT(H) ≥ r, LI(H) ≤ 1− r, and LF(H) ≤ 1− r. This implies xs,t,p 6∈ H?

r . Let R =

H∪H∗r . Then,R∗r = (H∪H∗r )?r = H?
r ∪ (H?

r )
?
r = H?

r by Theorem 3(4). So, C?
τTIF (R, r) = R∪R?

r = R.
That means τT?(1−R) ≥ r, τ I?(1−R) ≤ 1− r, and τF?(1−R) ≤ 1− r. Therefore, by (5), we have
LT(R) ≥ r, LI(R) ≤ 1− r, and LF(R) ≤ 1− r.

Once again, for any xs,t,p in SVNP(X), xs,t,p 6∈ R̃?
r implies xs,t,p ∈ R but xs,t,p 6∈ R?

r = H?
r So,

as B = H∨H?
r , xs,t,p ∈ H. Now, by hypothesis aboutH. Then, for any xs,t,p ∈ H?

r . So, R̃ = H. Hence,
LT(H) ≥ r, LI(H) ≤ 1− r, and LF(H) ≤ 1− r, i.e., τTIF ∼ LTIF.

Theorem 10. Let (S , τTIF) be an SVNTS with single-valued neutrosophic ideal LTIF on S . Then, the
following are equivalent and implied by τ ∼ L.

(1) For everyH ∈ IS ,H∧H?
r = (0, 1, 1) impliesH∗r = (0, 1, 1);

(2) For anyH ∈ IS , H̃?
r = (0, 1, 1);

(3) For everyH ∈ IS ,H∧H?
r = H?

r .

Proof. Clear from Theorem 9.

The following corollary is an important consequence of Theorem 10.

Corollary 3. Let τTIF ∼ LTIF. Then, β(τTIF,LTIF) is a base for τTIF? and also β(τTIF,LTIF) = τTIF?.

Definition 17. LetH,R ∈ SVNS on S . IfH is a single-valued neutrosophic relation on a set S , thenH is
called a single-valued neutrosophic relation on B if, for every κ, κ1 ∈ S ,

TR(κ, κ1) ≤ min(TH(κ), TH(κ1)),
IR(κ, κ1) ≥ max(IH(κ), IH(κ1)), and
FR(κ, κ1) ≥ max(FH(κ), FH(κ1)).

A single-valued neutrosophic relationH on S is called symmetric if, for every κ, κ1 ∈ S ,

TH(κ, κ1) = TH(κ1, κ), IH(κ, κ1) = IH(κ1, κ), FH(κ, κ1) = FH(κ1, κ); and

TR(κ, κ1) = TR(κ1, κ) IR(κ, κ1) = IR(κ1, κ), FR(κ, κ1) = FR(κ1, κ).

In the purpose of symmetry, we can replace Definition 3 with Definition 17.

5. Conclusions

In this paper, we defined a single-valued neutrosophic closure space and single-valued neutrosophic
ideal to study some characteristics of neutrosophic sets and obtained some of their basic properties.
Next, the single-valued neutrosophic ideal open local function, single-valued neutrosophic ideal
closure, single-valued neutrosophic ideal interior, single-valued neutrosophic ideal open compatible,
and ordinary single-valued neutrosophic base were introduced and studied.

Discussion for further works:
We can apply the following ideas to the notion of single-valued ideal topological spaces.

(a) The collection of bounded single-valued sets [53];
(b) The concept of fuzzy bornology [54];
(c) The notion of boundedness in topological spaces. [54].
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