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Abstract: Neutrosophy is a recent section of philosophy. It was initiated in 1980 by Smarandache.
It was presented as the study of origin, nature, and scope of neutralities, as well as their interactions
with different ideational spectra. In this paper, we introduce the notion of single-valued neutrosophic
ideals sets in Sostak’s sense, which is considered as a generalization of fuzzy ideals in Sostak’s
sense and intuitionistic fuzzy ideals. The concept of single-valued neutrosophic ideal open local
function is also introduced for a single-valued neutrosophic topological space. The basic structure,
especially a basis for such generated single-valued neutrosophic topologies and several relations
between different single-valued neutrosophic ideals and single-valued neutrosophic topologies, are
also studied here. Finally, for the purpose of symmetry, we also define the so-called single-valued
neutrosophic relations.

Keywords: single-valued neutrosophic closure; single-valued neutrosophic ideal; single-valued
neutrosophic ideal open local function; single-valued neutrosophic ideal closure; single-valued
neutrosophic ideal interior; single-valued neutrosophic ideal open compatible

1. Introduction

The notion of fuzzy sets, employed as an ordinary set generalization, was introduced in 1965 by
Zadeh [1]. Later on, using fuzzy sets through the fuzzy topology concept was initially introduced in
1968 by Chang [2]. Afterwards, many properties in fuzzy topological spaces have been explored by
various researchers [3-13]

Paradoxically, it is to be emphasized that being fuzzy or what is termed as fuzzy topology in fuzzy
openness concept is not highlighted and well-studied. Meanwhile, Samanta et al. [14,15] introduced
what is called the graduation of openness of fuzzy sets. Later on, Ramadan [16] introduced smooth
continuity, a number of their properties, and smooth topology. Demirci [17] investigated properties
and systems of smooth Q-neighborhood and smooth neighborhood alike. It is worth mentioning
that Chattopadhyay and Samanta [18] have initiated smooth connectedness and smooth compactness.
On the other hand, Peters [19] tackled the notion of primary fuzzy smooth characteristics and structures
together with smooth topology in Lowen sense. He [20] further evidenced that smooth topologies
collection constitutes a complete lattice. Furthermore, Onassanya and Hoskova-Mayerova [21]
inspected certain features of subsets of a-level as an integral part of a fuzzy subset topology. Likewise,
more specialists in the field like Coker and Demirci [22], in addition to Samanta and Mondal [23,24],
have provided definitions to the concept of graduation intuitionistic openness of fuzzy sets based on
Sostak’s sense [25] according to Atanassov’s [26] intuitionistic fuzzy sets. Essentially, they focused on
intuitionistic gradation of openness in light of Chang. On the other hand, Lim et al. [27] examined
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Lowen’s framework smooth intuitionistic topological spaces. In recent times, Kim et al. [28] considered
systems of neighborhood and continuities within smooth intuitionistic topological spaces. Moreover,
Choi et al. [29] scrutinized smooth interval-valued topology through graduation of the concept of
interval-valued openness of fuzzy sets, as suggested by Gorzalczany [30] and Zadeh [31], respectively.
Ying [32] put forward a topology notion termed as fuzzifying topology, taking into consideration the
extent of ordinary subset of a set openness. General properties in ordinary smooth topological spaces
were elaborated in 2012 by Lim et al. [33]. In addition, they [34-36] inspected compactness, interiors,
and closures within normal smooth topological spaces. In 2014, Saber et al. [37] shaped the notion of
fuzzy ideal and r-fuzzy open local function in fuzzy topological spaces in view of the definition of
Sostak. In addition, they [38,39] inspected intuitionistic fuzzy ideals, fuzzy ideals and fuzzy open local
function in fuzzy topological spaces in view of the definition of Chang.

Smarandache [40] determined the notion of a neutrosophic set as intuitionistic fuzzy set
generalization. Meanwhile, Salama et al. [41,42] familiarized the concepts of neutrosophic crisp set
and neutrosophic crisp relation neutrosophic set theory. Correspondingly, Hur et al. [43,44] initiated
classifications NSet(H) and NCSet including neutrosophic crisp and neutrosophic sets, where they
examined them in a universe topological position. Furthermore, Salama and Alblowi [45] presented
neutrosophic topology as they claimed a number of its characteristics. Salama et al. [46] defined a
neutrosophic crisp topology and studied some of its properties. Others, such as Wang et al. [47],
defined the single-valued neutrosophic set concept. Currently, Kim et al. [48] has come to grips with a
neutrosophic partition single-value, neutrosophic equivalence relation single-value, and neutrosophic
relation single-value.

Preliminaries of single-value neutrosophic sets and single-valued neutrosophic topology are
reviewed in Section 2. Section 3 is devoted to the concepts of single-valued neutrosophic closure space
and single-valued neutrosophic ideal. Some of their characteristic properties are considered. Finally,
the concepts of single-valued neutrosophic ideal open local function has been introduced and studied.
Several preservation properties and some characterizations concerning single-valued neutrosophic
ideal open compatible have been obtained.

2. Preliminaries

In this section, we attempt to cover enough of the fundamental concepts and definitions.
Definition 1 ([49]). A neutrosophic set H (NS, for short) on a nonempty set S is defined as
H = (x,Ty, Iy, Fyy : x €S8),
where
Ty:S—|7017, Ix:8—|017, Fy:S8—]|70,17|
and
70 < Ty () + Iy (k) + Fyy () < 3%,

representing the degree of membership (namely, Ty;(x)), the degree of indeterminacy (namely, I3 (x)), and the
degree of nonmembership (namely, Fy(x)); for all k € S to the set H.

Definition 2 ([49]). Let H and R be fuzzy neutrosophic sets in S. Then, H is a subset of R if, for each x € S,

inf Ty (x) <infTr(x), infly(x) > inflg(x), infFy(x) > inf Fg(x)
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and
sup Ty (k) < sup Tr(x), suply(x)>suplr(x), supFy(x) > sup Fg(x).

Definition 3 ([47]). Let H be a space of points (objects) with a generic element in S denoted by k. Then,
H is called a single-valued neutrosophic set (in short, SVNS) in S if H has the form H = (Ty, I;, Fy),
where Ty, Iy, By : S — [0,1].
In this case, Ty, Iy, Fy are called truth-membership function, indeterminacy-membership function,
and falsity-membership function, respectively, and we will denote the set of all SVNS's in S as SVNS(S).
Moreover, we will refer to the Null (empty) SVNS (or the absolute (universe) SVNS) in S as Oy (or 1x)
and define by O = (0,1,1) (or 1y = (1,0,0)) for each x € S.

Definition 4 ([47]). Let H = (Ty, Iy, F) be an SVNS on S. The complement of the set H (H€, for short)
and is defined as follows: for every x € S,

Tye () = Fy(x),  Ine(x) =1 —Iy(x),  Fye(x) = Ty ().
Definition 5 ([50]). Suppose that H € SVNS(S). Then,
(i) H is said to be contained in R, denoted by H C R, if, for every x € S,
Ty (k) < Tr(k), Iu(x) > Ig(x), Fp(x) > Fr(x);
(ii) H is said to be equal to R, denoted by H = H, if R C Rand H O R.
Definition 6 ([51]). Suppose that H, R € SVNS(S). Then,
(i) the union of H and R (HU'R, for short) isan SVNS in S defined as
HUR = (Ty UTg, Iy NIg, Fy NEFR),

where (Ty U TR)(x) = Ty (x) U Tr (k) and (Fy N Fr)(x) = Fy(x) N Fr(x), foreachx € S;
(ii) the intersection of H and R, (HN'R, for short), isan SVNS in S defined as

HNR = (TyNTgr,IyyUlg, Fyy UFR).

Definition 7 ([45]). Let H € SVNS(S). Then,
(i) the union of {H;}icy (Ujej Hi, for short) isan SVNS in S defined as follows: for every x € S,
(UHi) () = (U T, (), () Iy, (1), () Fa, ()5
i€] i€] i€] i€]
(ii) the intersection of {H;}icj (Nicj Hi, for short) is an SVNS in S defined as follows: for every x € S,

(M) () = () T, (), | I (), (U Fa, (10).

ic] ie] ic] ie]

Definition 8 ([52]). A single-valued neutrosophic topology on S is a map (t, !, TF) : IS — I satisfying the
following three conditions:

(SVNT1) t7(0) =7T(1) =1and t'(0) = 7/(1) = F(0) = (1) =0,
(SVNT2) tT(HNR) >t (H)NTI(R), t(HNR) <TI(H)UT(R),
F(HNR) < F(H)UTFH(R), forany H, R € IS,

—~
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(SVNT3) 1T (Uje/H;i) > Nigjt! (H;), T (UjeiMi) < Uigit! (M),
TF(UI'E]"HZ') < Uie]-TF(Hi),for any {Hi}iej eId.

The pair (X, 7, 7!, F) is called single-valued neutrosophic topological spaces (SVNTS, for short).
T I

We will occasionally write T for (T, T, tad ) and it will cause no ambiguity.
3. Single-Valued Neutrosophic Closure Space and Single-Valued Neutrosophic Ideal in
Sostak Sense

This section deals with the definition of single-valued neutrosophic closure space. The researchers
examine the connection between single-valued neutrosophic closure space and SVNTS based in
Sostak sense. Moreover, the researchers focused on the single-valued neutrosophic ideal notion where
they obtained fundamental properties. Based on Sostak’s sense, where a single-valued neutrosophic
ideal takes the form (S, £T, £, £F) and the mappings LTl cF . 1S — I, where (LT, L1, £F) are the
degree of openness, the degree of indeterminacy, and the degree of non-openness, respectively.

In this paper, S is used to refer to nonempty sets, whereas I is used to refer to closed interval [0, 1]
and I, is used to refer to the interval (0, 1]. Concepts and notations that are not described in this paper
are standard, instead, S is usually used.

Definition 9. A mapping C : I° x Iy — IS is called a single-valued neutrosophic closure operator on S if,
for every H, R € I° and r,s € Iy, the following axioms are satisfied:

(C1) C((0.1.1),s) = (0.1.1),

(C)) H < C(H,s),

(Cs) C(H,s) VC(R,s) = C(HVR,s),
(Cy C(H,s) <C(H,r)ifs<r,

(Cs) C(C(H,s),s) = C(H,s).

The pair (X, C) is a single-valued neutrosophic closure space (SVN'CS, for short).
Suppose that C; and C, are single-valued neutrosophic closure operators on S. Then, C; is finer
than Cy, denoted by C, < Cy iff Cy(H,s) < Ca(#H,s), for every H € I¢ and s € .

Theorem 1. Let (S,7!'F) be an SVNTS. Then, for any H € 1S and s € Iy, we define an operator
Corir 2 I8 x Iy — I as follows:

Cair(Hs)=N\{ReI* H<R, TT1-R)>s, TI(1-R)<1-s5 t'(1-R)<1-s}
Then, (S, C_rir) is an SVNCS.

Proof. Suppose that (S,t7'F) is an SVNTS. Then, C;, (C;) and (C,) follows directly from the
definition of C_rir.
(C3)Since R, H < HUR, (CTTIF (R, S) < (CTTIF (7‘[ UR, S) and (CTTIF (7‘[, S) < (CTTIF (7‘[ UR, S), therefore,

Corir(H,5) UC e (R, ) < Corir(HUTR, ).
Let (X, 7TIF) be an SVNTS. From (C,), we have

H< CTTIF(%,S)/ TT(l— (CTTIP(HIS)> >s, Tl(l_ (CTTIF (7{/5)) <1l-s
and 5 (1 — Crir(H,5)) <1—s5,
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R < Corr(Rys), 71— Cprir(R,5) 2 5, 7(1— Crr(R,5)) <1
and ¥ (1 - Crir(R,s)) < 1—s.
It implies that HUR < C_rir(H,s) UC e (R, s),
T (L= (Corr (M, ) UCmie (R,5))) =T (L= Corir(H,5)) N (L= Crrie (R, 5)))

> 71 (1= Conr(H,5) NT' (1= Corir(R,5)) > s,

T (L~ (Corr(H,5) UCmir(R,5))) =T/ (L~ Comr(H,5)) N (L= Corir (R, 5)))
TI((l— Corie(H,s)) UTI(l— Crir(R,s)) <1-—s5,

IN

(1= (Corir (H,5) UCr(Ry5))) = 7" (1= Cone(H,5)) N (L= Corir (R, 5)))
< TF(l —Corir(H,5)) U Tp(lf Crir(R,s)) <1—s.

Hence, C rir(H,s) UC rir(HUR,s) > Crir(HUR,s). Therefore,
Corir(H,s) UC rir(HUR,s) = Corir(HUR,s).
(Cs) Suppose that there exists s € I, H € IS, and k € S such that
Corir(Corir (M, 8),5) (1) > Corie(H, s) (k).

By the definition of C_rir, there exists D & IS with D > H, and TT(l —D) >s5, Tl(l —D)<1-sand
F(1 - D) <1 — s such that

Corir (Corir(H,5),8) (1) > D(x) > Crie (H, s)(x).

Since Crir(H,s) < D and T(1-D) >5,7'(1-D) <1-s,andtF(1-D) <1-5, by the definition
of C_rir (C rir), we have

Corir(Crrir(H,5),s) < D.

It is a contradiction. Thus, C_rir (Crir(H,s),s) = Crr(H,s). Hence, C_rir is a single-valued
neutrosophic closure operator on S. [

Theorem 2. Let (S, C) bean SVNCS and H € S . Define the mapping t2'F : 1S — I on S by

t(H) ={seh|COA-H,s)=1-H},
(H)=({1-s€l |CA-H,s)=1—-H},

(H) =({1-s€l|COA-H,s)=1—H},
Then,

(1) TéH: isan SVNTS on S;
(2) Coqir is finer than C.
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Proof. (SVNT1) Let (S, C) be an SVNCS. Since C((0.1.1),7) = (0.1.1) and C(1,0,0),r) = (1,0,0) for
every s € Iy, (SVNT1).
(SVNT2) Let (S, C) be an SVNCS. Suppose that there exists 1, Ho € I° such that

W (H1NHy) < (M) NTE(Ha), TE(H1NHo) > T (Hy) U (Ha),

Té(?’h N Hz) > T([I;('Hﬂ U Té(HQ).
There exists s € Iy such that

L (H1NH) < s < ¢ (Hq) NTE(Ha), (M1 NHy) > 1 -5 > L (H1) Uth(Ha),

e (H1NHy) > 15 > tE(Hy) UTE(Ha).
For each i € {1,2}, there exists s € Iy with C(#;,s;) = 1 — H,; such that
s <8 <TE(My), TE(H) <1—-si<1-s, tE(H)<1-s<1—s.
In addition, since (1 — H;,7) = 1 — H; by C; and C4 of Definition 9, for any i € {1,2},
C(A-—HNUA—H),8) =1 —H)U (1 —Hy).
It follows that & (H1 NHa) > s, T&(H1 NHa) < 1—s,and tE(Hy N Ho) < 1—s. Itis a contradiction.
Thus, for every H,R € IS, tfL(HNR) > L(H)NE(B), TEHNR) < TE(H)UTE(R),

and TE(HNR) < tE(H)UTE(R).
(SVNT3) Suppose that there exists H = (J;c; H; € I such that

M) < UM, w(H) > UM, (1) > ).

iel iel iel
There exists sy € Iy such that

E(H) <so<JTE(H), (H)>1—s0>JE(Hi), TE(H) >1—s0 > |JtE(H).

icl icl icl
For every i € I, there exists C(H;,s;) =1 — H; and s; € I such that
sp < 8; < Té(%i), 1—59>1—s;> T(é(Hi), 1—5;>1—59> T(é(Hi).
In addition, since C(1 — H;,r9) < C(1 — H;,s;) = 1 — H;, by C, of Definition 9,
C(1—His0) =1—H;.
It implies, for alli € I,
C(1—"H,s0) <C(1—Hjs0) =1—H,.
It follows that

(C(T—H,I’()) S m(T—Hl) ZT—H.

ic]
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Thus, CI(1 — H,s0) = 1 —H, thatis, t£(H) > so, 7t(H) < 1 —sp, and TE(H) < 1 —sy.

contradiction. Hence, TéIF isan SVNTS on S.
(2) Since H < C(H, 1),

(1 —C(H,s)) >s, ©e(1-C(H,s)) <1—s, £(1—-C(H,s)) <1—s.
From Cs of Definition 9, we have (C%ur (H,s) < C(H,s). Thus, (C%u: is finer than C. O
Example 1. Let S = {a,b}. Define B,H, A € IS as follows:

B =((0.2,0.2),(0.3,0.3),(0.3,0.3)); H = ((0.5,0.5),(0.1,0.1), (0.1,0.1)).

We define the mapping C : IS x Iy — I° as follows:

(0.1.1), if A=(01.1), se€l,
BNH, if 0£A<BNH, 0<r<3,
B, if AKBAZLH, 0<r<},

C(A,s) = or0£A<B t<r<3,
H, if ASHAZLB, 0<r<i,
BUH, if 0£A<BUH, 0<r<3,
1, otherwise.

Then, C is a single-valued neutrosophic closure operator.
From Theorem 2, we have a single-valued neutrosophic topology (t&, t&, &) on S as follows:

1, if A=(1,0,0)0r(0,1,1),
%, if A=DB,
vy ) b A=
T(C(A) %/ lf A = B¢ UHC,
3 if A=BNHE,
0, otherwise.
0, if A=1(1,0,0)0r(0,1,1),
§oif A=B,
I — 27 Zf A = HC,
T(C(A) %/ lf A — B UHC,
%, if A=DB°NHS,
1, otherwise.

0, if A=(1,0,0)0r (0,1,1),
%,jA:B?
E(A) = igﬁ:ﬁbw,
1, if A=BNHS,
1, otherwise.

Thus, the T%IF is a single-valued neutrosophic topology on S.

7 of 21

Itisa

Definition 10. A single-valued neutrosophic ideal (SVNI) on S in Sostak’s sense on a nonempty set S is a

family LT, LT, LT of single-valued neutrosophic sets in S satisfying the following axioms:



Symmetry 2020, 12, 193 8 of 21

(L) £T(0) = 1and L£(0) = LF(0) = 0.

(L) IfH < B, then LT(R) < LT(H), LYR) > LI(H), and LF(R) > LE(H), for each single-valued
neutrosophic set R, H in I°.

(L3) LT(RUH) > LT(R)NLT(H), LL(RUH) < LI R)ULYH), and LE(RUH) < LE(R)U
LE(H), for each single-valued neutrosophic set R, H in I°.

If L1 and Ly are SVNI on S, we say that Ly is finer than Ly, denoted by £1 < L5, zﬁ[IlT(’H) < Eg(?—[),
LUH) > LA(A), and LE(H) > LE(H), for H € IS,

The triable (X, (7,71, tF), (LT, L1, LF) is called a single-valued neutrosophic ideal topological space in
Sostak sense (SVNITS, for short).

We will occasionally write LTIE, El-TIP, and LTIE . X — I for (LT,L'I,EF), (CiT, E{, Ef), and
LT, !, cF 19 — 1, respectively.
Remark 1. The conditions (L) and (Ls), which are given in Definition 10, are equivalent to the following
axioms: LT(HUR) = LT(H)NLT(R), L{(HUR) # LYH)ULI(R), and LE(HUR) £ LE(H) U
LE(R), for every R, H € IS.

Example 2. Let S = {a,b}. Define the single-valued neutrosophic sets R,C, H, A and (cT,cT, Ty J
I as follows:

R = ((0.3,0.5), (0.4,0.5), (0.5,05)); C = {((0.3,0.4),(05,0.5),(0.3,0.4)),

H = ((0.1,0.2), (0.5,0.5), (0.5,0.5)).

1, if B=(0.1.1),
1 .
T — 27 zf A - 7?'/
£5(A4) 2, if (011) < A<R,
0, otherwise.
0, if A=(0.1.1),
1 .
I _ 27 l,f A - C/
LA 3 if (011) < A<C,
1, otherwise.
0, if A=(0,1,1),
1 .
T ) b FA=H,
£(B) Loif (011) < A< H,
1, otherwise.

Then, LTIF isan SVNI on S.

Remark 2.

(i) IFLT(1) =1,L'(1) = 0,and LF (1) = 0, then LTF is called a single-valued neutrosophic proper ideal.

(i) IfLT(1) =0, £1(1) = 1, and LF(1) = 1, then LT'T is called a single-valued neutrosophic improper
ideal.

Proposition 1. Let {LT'F},c; be a family of SVNI on S. Then, their intersection Nies LI is also SVNL

Proof. Directly from Definition 7. [J
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Proposition 2. Let {L]F},c; be a family of SVNI on S. Then, their union Uies LIF is also an SVNI
Proof. Directly from Definition 7. [J

4. Single-Valued Neutrosophic Ideal Open Local Function in Sostak Sense

In this section, we study the single-valued neutrosophic ideal open local function in Sostak’s sense
and present some of their properties. Additionally, properties preserved by single-valued neutrosophic
ideal open compatible are examined.

Definition 11. Let s,t,p € Iy and s +t+ p < 3. A single-valued neutrosophic point xs:, of S is the
single-valued neutrosophic set in I° for each x € H, defined by

_ ) (stp) ifx=x
Xstp () = { 0,1,1), if x #x.

A single-valued neutrosophic point xstp is said to belong to a single-valued neutrosophic set
H = (T, Iy, Fy) € I°, denoted by Xstp € Hiffs < Ty, t > Iy and p > Fy. 1. We indicate the set
of all single-valued neutrosophic points in S as SVNP(S).

For every x5, € SVNP(S)and H € I < we shall write Xs,t,p quasi-coincident with #, denoted by
xs,t,qu, if

s+Tyu(x)>1,  t+1Iykx) <1,  p+Fyx) <1

For every R, H € S we shall write HgR to mean that H is quasi-coincident with R if there exists
x € S such that

Ty (x) + Tr(x) > 1, Iy(x) +Ip(x) <1, Fy(x) +Fr(x) < 1.

Definition 12. Let (S, t7'F) be an SVNTS. Foreachr € Iy, H € e, Xst,p € SVNP(S), a single-valued
neutrosophic open Q. rir-neighborhood of xs 1, is defined as follows:

Qurir (Xst,p, 1) = {H|(xst,p)qH, TT(H) >, TI(H) <1-rv, TP(’H) <1-r}

Lemma 1. A single-valued neutrosophic point x4, € C 1ir (R, 1) iff every single-valued neutrosophic open
Q. rir-neighborhood of xs 1, is quasi-coincident with H.

Definition 13. Let (S, T7'F) be an SVNTS for each H € I°. Then, the single-valued neutrosophic ideal
open local function H; (TH1E, LTIE) of M is the union of all single-valued neutrosophic points X,y such that if
R € Qurir(xspp, 1) and LT(C) >, LI(C) <1—7r, LF(C) < 1—r, then there is at least one k € S for
which Tr (k) + Ty (k) —1 > Te(x), Ir(k) + Iy(x) —1 < Ip(x), and Fr (k) + Fy (k) — 1 < Fe(x).

TTIF’ ETIF)

Occasionally, we will write H for 7 ( and it will have no ambiguity.

Example 3. Let (S, t/F, LTIF) be an SVNITS. The simplest single-valued neutrosophic ideal on S is
LITF 18 — I, where

0, otherwise.

L(T)"IF(R) _ { 1, lf R = (1,0,0),

If we take LT'F = LTTF, for each H € IS we have H = Corir (H, 7).
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Theorem 3. Let (S, 77'F) bean SVNTS and LT'F, LI'F € SVNI(S). Then, forany H,R € IS andr € Iy,
we have

(1) IfH <R, then H < RY;

2 el <cl £ > cland £F > £F, then Hy(CTIE, THE) > 3 (LI, <TIE),

(3) My =Corr(Af,1r) < Crir(H,1);

@ (Hy)y <M

5) (HFVR)=(HVR)

6) IFLT(H)>r, LY(R)<1—r,and LE(R) <1 —rthen (HVR); = AXVR: = H;
7)) FtI(R)>r, T'(R) <1—r,and tF(R) <1—7r, then (RAH}) < (RAH)E

8 (HIARr)>(HAR).

Proof. (1) Suppose that # € IS and H} % R}. Then, there exists k € S and s, t, p € Iy such that
Tyz (k) > s > Try (), Dy (k) <t <Ipp(x),  Fyp(x) < p < Fry(x). @

Since Tg; (k) <'s, Igy(x) >t and Fry(x) > p. Then, there exists D € Q(rir)(Xstp, 1), £re) >,
L£1(C) <1—r,and £LF(C) <1~ rsuch that forany x; € S,

Tp(x1) + Tr(k1) =1 < Te(x), Ip(ir) +Ig(k1) =1 > Ie(k1), Fp(k1) + Fr(x1) —1 > Fe(xq).
Since H < R,

Tp(x1) + Ty (1) =1 < Te(x), Ip(xk1) + Iy(r) =1 > Ie(x1),  Fp(r) + Fy(x1) — 1> Fe(r).

So, Ty (k) <'s, Iy (x) > t, and Fyx (k) > p and we arrive at a contradiction for Equation (1). Hence,
Hy <R}.

(2) Suppose Hjy (LTTE, TTIE) % 30x(LITE £TIF) Then, there exists s, t, p € Iy and x € S such that

TH;((ﬁlTIF,TTIF)(K) <s< TH;(ZZEIF/TTIF)(K)/
Iy.g(ﬁlTIF,TTIF)(K) >t> I%;(KEIF/TTIF)(K), )

PH;(L%"IF/TTIF)(K) >p>FE ;(ﬁ%"IF’TTIF)(K)-

Since T’H?(ﬁlTIF,TTIF) (K) <s, I ;(L}"IF,TTH:) (K) > t, and F’H;*(LITIF,TTIF) (K) > p, D e QTTIF (xsrt,p, 1’) with
£1T(C) > 7, ﬁ{(C) <1-—rand Ef(C) <1—r. Thus, forevery x; € S,

Tp(r1) + Ty (1) =1 < Te(xr), Ip(k1) + Iy() =1 > Ie(x1),  Fp(r) + Fy(x1) — 1> Fe(ry).
Since £I(C) > £T(C)) >, £1(C) < £I(C)) <1—r,and £E(C) < LE(C)) <1-7,
Tp(r1) + Ty (1) =1 < Te(xr), Ip(k1) + (1) —1> Ie(x1), Fp(xr) + F(x1) — 1> Fe(rp).

Thus, TH;(z:glF,TTIF)(K) <s, IH;(LZTIF,TTIF) () > t,and FH;( L%"IF,TTIF)(K) > p. This is a contradiction for
Equation (2). Hence, H} ((LT1F, tTIF)) > #x((LIF, TIFY).
(3)(=) Suppose Hy £ C rir(H,r). Then, there exists s, t, p € Iy and x € S such that

Ty (1) 2 8 > T gy (6), - Dy () <t < g g3 (K), Fap () < p < Fe 3, (1) ®)
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Since Ty () > s, Iz (k) < tand Fy:(x) < p, xs1p € H;. So there is at least one x; € S for every
D € Qurir(xstp,r) with £I(C) >, £1(C) <1—7, £E(C) <1 —rsuch that

Tp(k1) + Ty (k1) > Te(k1) + 1, Ip(xy) + Iy(x1) < le(x1) +1,  Fp(kr) + Fy(x1) < Fe(xp) + 1.

Therefore, by Lemma 1, x5:, € C,rir(H,r) which is a contradiction for Equation (3). Hence,
Hy < Corir(H, 7).
(<) Suppose H; # C_rir(H}, 7). Then, there exists s, t, p € Iy and k € S such that

Ty () < < T pyeap ) (), Dy () Z 8> Ie pap ) (K), Frp () 2 p > Fe ez (€). (4)

Since Te_p (mrr)(€) =t ez (€) <5, Cone(HF,7)(x) < p we have xst,, € Corir (M, 7). So,
there is at least one x; € S with R € Q1ir (xsrt,p, r) such that

T’R(Kl) + TH¢(K1> >1, IR(KI) + IH;(Kl) <1, FR(KI) +F'H;(K1) <1

Therefore, H;((Kl) 7é 0. Let 51 = TH;‘ (Kl)/ t = If;.ﬁ (Kl)/ and pP1 = F’H;(Kl)' Then, (Kl)Sl,tl,Pl S fo
and s; + Tr(x1) > 1, t; + Ig(x1) < 1,and p; + Fr(x) < 1sothat R € Q. rie((k1)s,b,p1,7)- Now,
(1 )5y 40,9 € My implies there is at least one k' € S such that Tp(x') + Ty(k') — 1 > Te(x ), Ip(x') +
Iy(K) =1 < Ie(x'),and Fp (k') 4+ Fy (') =1 < Fo(x'), forall LT(C) > r, £1(C) < 1—r, LE(C) <1—7,
and D € Q.rir((%1)sy,t1,p,,7). That is also true for R. So there is at least one k" € S such that
Tr(x') + Ty(k') =1 > Te(x"), In(x") + By(x") =1 < Ie(x"), and Fr(x") + Fy(x') =1 < Fe(x').
Since R € Q. rir(kstp,7) and R is arbitrary; then Ty (k) > s, Iz (k) < tand Tyx(x) < p. Itisa
contradiction for (4). Thus, Hy > C_rir (H, 7).

(4) (=) Can be easily established using standard technique.

(5) (=) Since H,R < HUR.By (1), Hf < (HUR); and R} < (HUR);. Hence, H; U B} <
(HUR);.

(<) Suppose (H;y UR}) # (HUR);. Then, there exists s, t, p € Iy and x € S such that

Tiagrurs) (€) <5 < Tiyuryr (€), Liagurs) (€) =t > Liyur): (), Fagurs) (€) = p > Faurys (). (5)

Since Tiyrurs) (k) < s, Iiggrury) (k) > t, and Figrupy) (k) > p, we have Ty (k) < s, Iy (x) > ¢,
Fy:(x) > por Trs(x) < t, Irz(x) > t, Frs(x) > t. So, there exists Dy € Q. rir(Xst,p, 1) such that for
every x; € S and for some LT (Cy) >, £LI1(C;) <1—r, LF(C;) < 1—r, wehave

Tp, (k1) + Ty(x1) =1 < Te, (1), Ip, (k1) + Iy (k1) = 1> Ie, (x1),  Fp, (x1) + Fy(x1) — 1> Fe, (1)

Similarly, there exists Dy € Qqrir (s, 7) such that for every x; € S and for some LT(C;) > 7,
L1(C) <1—7r,LF(C) <1 —r,wehave

Tp, (k1) + Ty (k1) =1 < Te,(x1), Ip,(x1) + Iy(x1) — 1> Ic,(k1), Fp,(x1) + Fy(x1) — 1> Fe,(x1).

Since D = D; AD; € Q. 1ir (xs,t,p/ 1’) and by (L3), ,CT(Cl U Cz) > ﬁT(Cl) N ET(Cz) >, EI(Cl @] Cz) <
L1(C)ULl(C) <1—r,and LF(CLUC,) < LT(C1) U LT(Cy) <1 —r. Thus, for every k1 € S,

Tp(x1) + Trun (k1) — 1 < Teyue, (x1),
Ip(x1) 4 Irup (k1) =1 > Ie,ue, (K1),
Fp(x1) + Frup (1) > Feyue, (k1)
Therefore, Tury: (k) <, [iyur)x (k) > t, and Figyur): (k) > p. So, we arrive at a contradiction for

(5). Hence, (Hy UR}) > (HUR);.
(6), (7), and (8) can be easily established using the standard technique. [
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Example 4. Let S = {a,b}. Define R,C,H € S as follows:

Ry = ((0.5,05,0.5),(0.5,0.5,0.5), (0.5,0.5,0.5)); Ry = ((0.4,0.4,0.4),(0.1,0.1,0.1), (0.1,0.1,0.1));

Rs = ((0.3,0.3,0.3),(0.1,0.1,0.1), (0.1,0.1,0.1); C; = ((0.3,0.3,0.3),(0.3,0.3,0.3), (0.1,0.1,0.1));

C, = ((0.2,0.2,0.2),(0.2,0.2,0.2),(0.1,0.1,0.1); Cs = ((0.1,0.1,0.1),(0.1,0.1,0.1), (0.1,0.1,0.1)).

Define T/F, LTIF : 1X — T as follows:

1, if H=1(0,1,1), 1, if H=1(0,1,1),
tH(H) =<¢ 1, if H=(1,0,0), L'H)=% 1, if H=0Cy,
3 if H=TRy 5 fO<H<Cy

0, if H=1(0,1,1),
0, if H=(1,0,0), LY (R) =
3, if H="TRy

’ l_]cH:(Ollll)l
if H=0C,
;I O<H<Cy

S )
N

{Q#H@Lu

0, if H=1(0,1,1),
, if H=(1,0,0), LEH) =X L ifH=0Cs,
3, if H=TRs; 1 ifO<H<Cs

Let G = ((0.4,0.4,0.4), (0.4,0.4,0.4), (0.4,0.4,0.4)). Then, G} = R.
2

Theorem 4. Let {H;}ic; C IS be a family of single-valued neutrosophic sets on S and (S, T, LTIF) pe an
SVNITS. Then,

@ (UH)y:ie])<(UHi:ie])ys
2 (NH)y:ie]) =2 (NHi:i€]);.

Proof. (1) Since H; < UH; for all i € [, and by Theorem 3 (1), we obtain
(UHDF,ie]) < (UH; i€])r. Then, (1) holds.
(2) Easy, so omitted. O
Remark 3. Let (S, tTF, LTIF) be an SVNITS and H € IS, we can define
C;T[F (Hf 7’) =HU /H:/ int:T!F (Hﬂ’) =HA [l - (l - H)ﬂ

It is clear, Crryp is a single-valued neutrosophic closure operator and (tT(LT), e (L), TF*(LF) is the
single-valued neutrosophic topology generated by C*r ., i.e.,

™ =U{rl Corir (A —H,7r) =1—H}.

Now, if LT = LTIF then, C* frir(H,r) = Hf UH = Clpp(H,r) UH = Corie(H, 7), for H € IS. So,
TTIFs (L TIF) = TIP

Proposition 3. Let (S, 77F, LTIF) be an SVNITS, r € Iy, and H € I°. Then,

(1) (C:TIF Lr) =1
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2) C:TIF 0r)=0

(3) intiyp(HUR,r) <intipp(H,r) Uintin (R,7);

(4) int;TIF(H/ r)<H< C;TIF (H,r) < Corir(H,1);

(5) C:TIF A-H,r)=1- int:TlF (H,r)and 1 — C;TIF*(H’ r) = int:TlF (1—H,7);
(6) intiyp(HNR,r) = intine (H,r) Nintip (R, 7).

Proof. Follows directly from definitions of (C;T,p, int;m, C, 117, and Theorem 3 (5). O

Theorem 5. Let (S,t['F, LTF) and (S, 7}1F, LTIF) be SVNTS's and tf'F < <. Then,
(I, LTIF) < 1 («]TF, £TIF),

Proof. Suppose H; (7] F, LTIF) £ Hy(t]F, LTIF). Then, there exists s, t, p € Iy, x € S such that

TH*( TIF LTIF)( ) >s>T ;%(TEIF’L‘TIF)(K)/
IH;K(TZTIF,ETIF)(K) <t< IH;((T;"IF’ﬁTIF)(K)r (6)

FH:(TzTIF,LTIF)(K) <t< PH;%(TlTIF,ﬁTIF)(K)-

Since THNHTIF’LW)(K) <s, Iqﬁ(TlTlP,Em)(K) > t, F’;.[;c(TlTIF,ETIF)(K) > p, there exists D € QTlTIF(xs,t,p/r)
with £T(Cy) > r, £1(C;) <1 —rand £F(C;) <1 —r, such that for any 1 € S,

Tp(k1) + Ty (k1) =1 < Texq), Ip(ky) + Iy(x1) =1 > Ie(x1), Fp(x1) + F(x1) —1 > Fe(xp).

Vv

Since T/1f < ]I, D € Qrgzp(xs/t,p,r). Thus, TH;(TZTIF,LTIF)(K) < s, IH:(TZT’F,CT’F))(K)
By (o, criry(x) = p. Itis a contradiction for Equation (6). O

Theorem 6. Let (S,TTIF,ﬁlT[F) and (S,TTIF,ﬁzTIF) be SVNTS's and ClTIP < EzTIF. Then,
H;(ﬁlTIP’ TTIF) > H# (CTIF, £ TIF),

Proof. Clear. U

Definition 14. Let © be a subset of I°, and 0 ¢ ©. A mapping BT, B!, BF : © — I is called a single-valued
neutrosophic base on S if it satisfies the following conditions:

(1) BT(1) =1and p'(1) = pF(1) = 0;
(2) Forall H,R € O,

BTHNR) = T (H)NBT(R), B(HNR)<B(H)UB(R), BT (HNR)<BF(H)UB(R).

Theorem 7. Define a mapping p: ® — Ion S by

"H)=J{r"TR)NIT(C)| H=RN(1-C)},
= (R)UZ'(C) H=RN(1-C)},

= R)UIFC)H=RN(1-C)}.
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Then, BT'F is a base for the single-valued neutrosophic topology T''F*,

Proof.

(1) Since £T(0) = 1and £1(0) = £F(0) = 0, we have BT (1) = 1and (1) = pF (1) = 0;
(2) Suppose that there exists H1, H, € © such that

BT (HiN M) 2 BT (H1) N BT (Ha),
Bl (H1NHa) £ B! (H1) U (Ha),
BF (M1 NHa) % BF(H1) U B (Ha).

There exists s, ¢, p € Ip and x € S such that

BT (HiNHa) (k) <5 < BT (H1)(x) NPT (Ha)(x),
Bl (H1NHa) (k) = t > Bl(H1) (k) N B (H2) (1), @)

BT (H1 N H2) (k) = p > BT (H1)(x) U BT (Ha) ().

Since BT(H1)(x) > 5, BH(HI)(0) < t, BF(H)(K) < p, and FT(H2)(K) > 5, BI(Ha)(x) < 1,
BF (Hz)(x) < p, then there exists R1, R1,C1,Cr € @ withHy = RN (1—C1)and Hy = RoN (1 —Ca),
such that ,BT(Hl) > TT(R1) N ,CT(C1) > s, ﬁI(H1) < TI(Rl) U El(Cl) < ﬁF(H1) <
TF(R1)U£F(61) < p, and ﬁT(Hz) > TT('Rz)ﬂﬁT(Cz) > s, ﬁI(Hz) < TI('Rz)Uﬁl(Cz) < t,
BE(Ha) < tF(Ry) U LF(Cy) < p. Therefore,

HiNH, =(RiN(A—-C1))N(RaN(L—0Co))
=(R1NR2)N((L-C)N(1—C))
=(R1NR2)N(L—(C1UC)).

Hence, from Definition 14, we have
BI(HiNHy) > (RiNR)NLT (G UC)

> tH(Ry) Nt (Ry) N LT(Cy) N LT(C)
= (t"(R) N LT(C1)) N (T (R2) N LT(C)) > 5,

Bl H1NH2) < TH(RiNR)ULI(CIUCG)
< (R)UT(R) UL (C)ULI(C)
— (]

(' (R UL (C)) U (T (R2) UL (C)) < t,

ﬁF(H1 n 7‘[2) < TF(Rl N Rz) U EF(Cl U Cz)
<Ry UTH(R) U LE(Cr) U LF(Cr)
= (tff(Ry)uLE(C)) U (thH(Ry) U LE(Cy)) < p.

It is a contradiction for Equation (7). Thus,

BT (H1NH2) > BT (H1) N BT (Ha), B (Ha N Ha) < B (H1) U B (Ha), BH (Ha N Ha) < B (H1) U BF (Ha).
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O

Theorem 8. Let (S, T1IF) be an SVNTS, and LTF and LTIF be two single-valued neutrosophic ideals on S.
Then, for everyr € Ipand H € 1 S,

(1) H:f([:lTH: e E%"IF, TTIF) — 'H;((AC{H:, TTIP) U H;((E%"IF, TTIF)/
(2 HHL]FU LT, 7) = My (LT, T (LJF)) A (L3F, T (£]F)).

Proof. (1) Suppose that H; (LTTE N LI1F, 7 TIE) £ 3x(LTIF £ TIEY y3x (LTIF, 7T1F) there exists k € S
and s, t,p € Iy such that

Ty (crrct,ery () 2 8 > Ty o1 omy () U Ty 1 o1y (K), ®)

L e1mve, oy (8) <8< Dypeen oy (8) U Ly 1 1y (K),

Faz(crnct or) () < P < By or o0y (K) O Bype o5 1 ().

Since T’H?(»CIT,TT) (K) U T’H’;([:%‘,TT) (K) < S, I’H;(L{,T[) (K) ﬂ I’H?(ﬁé,"[[) (K) Z t, F’H;(L{,TF)(K) ﬂ
Fyrcr oy (€)= p, we have, Typipromy(x) <8, Lyeiproy(K) >t Fypprory(x) > p, and
IH?(E%,TI)(K) <s, I’H;(ﬁé,l’l)(K) Z t, F’Hf(ﬁlz:,'fl:) (K) Z p.

Now, TH:(EIT,TT)(K) <s, LH;(E{,TI)(K) > t, FH?(L{,TF)(K) > p implies that there exists D; €
Q.rir (x5t p,7) and for some LT(C1) > r, £1(C;) < 1—rand £I(C1) < 1 —r such that for every
K1 €S,

Tp, (k1) + Ty (K1) =1 < Te,(x1), Ip,(x1) +Iy(x1) =1 > Ig, (x1), Fp,(x1) + Fy (1) —1 > Fe, (x1).

Once again, TH?(EZT,TT)(K) <'s, IH;(%’T,)(K) > ¢, PH;(EngF)(K) > p, implies there exists D, €
Qi (x5t p,7) and for some L1 (Cy) > r, £3(C2) < 1—rand £5(C,) <1 —r,such that forx; € S,

TDZ(Kl) + TH(Kl) —-1< TCZ(Kl)/ IDZ(Kl) + IH(K1) —-1> ICZ(K), FDZ(Kl) + FH(K1) —-1> Fcz(Kl),
Therefore, for every 1 € S, we have

Tp,np, (K1) + Ty (x1) =1 < Teye, (1), Ipyup, (k1) + Iy (k1) — 1> I e, (x1),

Fp,up, (k1) + Fy (1) — 1 > Feyue, (k1)
Since (Dl AN Dz) € Qrir (xs,t,p, 1’) and (E{ N EZT)(Cl N Cz) >, ([:{ N Eé)(Cl U Cz) <1-r,and (ﬁf N
EIZ—:)(Cl U Cz) 2 ]. — ¥ we haVe TH?(ﬁ{ﬂﬁg,TT) (K) S S, I’Hf(;c{ﬂﬁé,l'l)(K) > t, arld FH;(Lfﬂﬁg,Tp)(K) > t
and this is a contradiction for Equation (8). So that
H;(ﬁ{ﬂ»‘ N £2TIF/ TTIF) < H:(ﬁlTIP’ TTIP) U H:(EZTIF/ TTIP)'
On the opposite direction, £1TIF > ElTIP N L’ZTH: and £2TIF > ElTIP N ,CZTH:, so by Theorem 3 (2),
/H:(E{IF N L:%"IFI TT) 2 H;(E{H:, TTIF) U /H:((ﬁglp, TTIF).
Then,

H;(([,{IF N £2TIF/ TTIF) — H;([,}"IF, TTIF) U H:(EZTIF’ TTIF)‘
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(2) Straightforward. O

The above theorem results in an important consequence. T/ /F*(LTIF) and [tTIF*(LTIF)]*(LTIF)
(in short T°) are equal for any single-valued neutrosophic ideal on S.

Corollary 1. Let (S, t"F,LTF) be an SVNITS. For every r € Iy and H € 1%, Hi(LTF) =
Hr(LTIF T TIF*Y aud TTIF(LTIF) = ¢ TIFx
r 7 .

Proof. Putting £T!F = L£I!F in Theorem 8 (2), we have the required result. [

Corollary 2. Let (S, tI'F) be an SVNTS, and LTF and LT'F be two single-valued neutrosophic ideals on S.
Then, for any ‘H € ISandr € I,

(TIE (L) (LT) = (271 (LT1F))*(£1),

TTIF*(E{IF) N TT*(‘C%"IF).

1) T(LFuI]'h)
2) (LI L]

Proof. Straightforward. O

Definition 15. For an SVNTS (S, t'F) with a single-valued neutrosophic ideal T'F, TTIF is said to be
single-valued neutrosophic ideal open compatible with ZT'F, denoted by t''F ~ LTIF, if for each H,C € I°
and xs,, € Hwith LT(C) > 1, L1(C) < 1—r,and LF(C) < 1 —r, there exists D € Qrir (x¢, 1) such that
Tp(k) + Ty (x) —1 < Te(x), Ip(x) + Iy (k) —1 > I (x), and Fp(x) + Fy(x) —1 > Fe(x) holds for any
k€S, then LT(H) >r, LI(H) <1—rand LE(H) <1—r

Definition 16. Let {R;};cj be an indexed family of a single-valued neutrosophic set of S such that R;qH
for each j € ], where H € I°. Then, {R;}jej is said to be a single-valued neutrosophic quasi-cover of M. iff
Ty (k) + ijej(Rj)(K) >1, Iy(x) + IV,-E/(R]-)(K) < 1,and Fy(x) + ijel(Rj)(K) <1, for every x € S.

Further, let (S, TTIF) be an SVNTS, for each TT(R]') > 7, TI(R]-) <1-—r and TF(R]-) <1-r.
Then, any single-valued neutrosophic quasi-cover will be called single-valued neutrosophic quasi
open-cover of H.

Theorem 9. Let (S, t''F) be an SVNTS with single-valued neutrosophic ideal LT'F on S. Then, the following
conditions are equivalent:

(1) t~L.

(2)  If for every H € IS has a single-valued neutrosophic quasi open-cover of {R;}je; such that for each
) Tl) + Ty () =1 < To(x), Bu(x) + I (%) = 1 > Io(x), and Fy(x) + Fry(x) — 1 > Fo(x)
for every k € S and for some LT(C) > 1, LI(C) < 1—r,and LF(C) < 1 —7, then LT(H) > 7,
LYH)<1—r,and LF(H) <1 -7,

(3) ForeveryH € IS, H AH; = (0,1,1) implies LT (H) >r, LY(H) <1—r,and LF(H) <1 -7,

(4)  Forevery H € I, LTH) >r, LI(H) <1—r,and LF(H) <1 —r, where H = \/ Xs t,p such that
Xs,tp € H but x51p & HY,

(5) Forevery T*(1—H) > r, T*(A—H) < 1—r, and TF*(1 — M) < 1 —r we have LT(H) > 7,
LYH)<1—rand LE(H) <1—7,

(6) Forevery H € 19, if A contains no R # (0,1,1) with R < R}, then ET(’H) >, EI(”H) <1l-v,
and LE(H) <1—r.

Proof. Itis proved that most of the equivalent conditions ultimately prove the all the equivalence.
(1)=(2): Let {R;} ¢ be a single-valued neutrosophic quasi open-cover of H € I S such that for

je ], Tyu(x)+ TR],(K) —1 < Te(x), Iy(x) + IR/.(K) —1 > I¢(x), and Fy(x) + FR],(K) —1 > Fe(x) for

every x € R and for some LT(C) > r, £LI(C) <1—r,and LF(C) < 1 —r. Therefore, as {R;}c; is a
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single-valued neutrosophic quasi open-cover of R, for each Xstp € H, there exists at least one Rjo
such that x5+ pqRjo and for every x € S, Ty () + Tg,, (k) — 1 < Te(x), I (x) + Ir, (k) =1 > Ic(x),
and Fy (k) 4 Fg;, (k) =1 > Fe(x) for every ¥ € S and for some £r¢) > r, £C) < 1—-rand
LF(C) < 1—r. Obviously, Rjo € Qqrir(%stp, 7). By (1), we have LT(H) >r, LY(H) <1—r and
LE(H)<1—r.

(2)=(1): Clear from the fact that a collection of {R;};c;, which contains at least one R;, €
Q.11 (Xst,p, ) of each single-valued neutrosophic point of #, constitutes a single-valued neutrosophic
quasi-open cover of H.

(1)=@): Let HNH; = (0,1,1), for every x € S, x; € H implies xst, ¢ H;. Then, there
exists D € Qrir(xstp,r) and LT(C) > 7, LI(C) < 1—r, LF(C) < 1 —r such that for every x € S,
Tp(k) + Ty (x) — 1 < Te(x), Ip(k) 4+ Iy (k) — 1 > I¢(x), and Fp (k) + Fy (k) —1 > Fe(k). Since D €
Q.rir (Xst,p,7), By (1), we have LTYH)>r, LI (H)<1—r,and LF(H) <1—7.

(3)=(1): For every xs, € H, there exists D € Q 11r (Xs1,p,7) such that for every x € S, Tp(x) +
Ty (k) —1 < Te(x), Ip(x) + Iy (x) — 1 > Ic(x), and Fp (k) + Fy(x) — 1 > Fe(x), for some LT(C) > r,
£1(C) <1—r, LF(C) <1 —r. This implies x5, & H;. Now, there are two cases: either H} = (0,1,1)
or Hy # (0,1,1) buts > Ty:(x) # 0,t < Iys(x) # 1, and p < Fy:(x) # 1. Let, if possible,
Xstp € H such that t > Ty (k) # 0,t < Iyx(x) # 1, and t < Fyx (k) # 1. Lets’ = Ty (x) # 0,
t' = I (k) # 1,and p’ = Fyzx(x) # 1. Then, xy y v € H; (). In addition, xy » ,» € H. Thus, for every
V € Qurir(Xstp, 1), for every ET( y>r, L1C) < 1 —r,and LF(C) <1 -7, thereis at leastone x € S
such that Ty (x) + Ty (x) — 1 > Te(x), Iy(x) + Iy (k) =1 < Ie(x), and Fy(x) + Fy(x) —1 < Fe(x).
Since x5, € H, this contradicts the assumption for every single-valued neutrosophic point of H. So,
Hy = (0,1,1). That means x;, € H implies x5, & H;. Now this is true for every H € I°. So, for
any H € IS, HN Hy = (0,1,1). Hence, by (3), we have ET(’H) >, EI(’H) <1l1-7, EF(H) <1-v,
which implies TT/F ~ £TIF,

(3)=(4): Let xsrt,pinﬁ Then, x5, € H but x5, € H;. So, there existsa D € Qrm(xslt,p,r) such
that for every x € S, Tp(x) + Ty (x) — 1 < Te(x), Ip(k) + I (k) —1 > Io(x), and Fp (k) + Fy(x) —
1 > Fo(x), for some £T(C) > r, £1(C) < 1—r, LF(C) < 1—r. Since H < H, for every k € S,
Tp(x) + Ty(k) —1 < TC( ), Ip(x) + Ly(x) =1 > Ic(x), and Fp(x) + Fz(x) — 1 > Fe(x), for some
LT(C) > r, L1(C) <1—rand LF(C) < 1 —r. Therefore, x5, ¢ H} implies that H = (0,1,1) or
Hr #(0,1,1) buts > TH*' t < Iy, and p < .. Let xg 1,y in SVNP(S) such that s’ < Ty () <s,
b < Ig(c) <t,and p < Fp(x) < p,ie, xgp,y € H. Then, for each V € Qerir (Xgt g1 pr,7)
and for each £T(C) > r, LI(C) < 1—7r, LF(C) < 1 —r, there is at least one x € S such that
Ty (k) + Ty (k) — 1 > Te(x), Ly(x) + Iz(x) — 1 < Ie(x), and Fy(x) + Fg(x) — 1 < Fe(x). Since H <
H, then for each V € Q rir(xy p pr,r) and for each ET(C) > 7, £1(C) <1-r, EF(C) <1-r,
there is at least one x € S such that Ty (x) + Ty (k) —1 > Te(k), Iy(x) + Iy(x) —1 < I¢(x), and
Fy(x) + Fy(x) — 1 < Fe(x). This implies xy y v € H;. Butass’ <s,t' <t and p’ < p, xstp € H
implies xy 1,y € #, and therefore, Xg ¢, & Hy. This is a contradiction. Hence, H} = (0,1,1), so that
Xstp € H implies xst, & ﬁf with 7?[;* = (0,1,1). Thus, HN ’H* =0, forevery H € IX. Hence, by (3),
LTH)>r, LI(H) <1—r,and LFE(H) <1—r.

(4)=(5): Straightforward.

(4)=(6): Let H € Iand H < R # (0,1,1) with R < Rj. Then, for any H € IS, H =
H U (K NH}). Therefore, H = (AU (HNHE)): = HE U (H NHE)E by Theorem 3 (5).

Now, by (4), we have LT(H) > r, LI(H) <1—r,and LF(H) <1 —r, then H} = (0,1,1). Hence,
(HOH:)y = Hy but HNHF < Hf, then HNAF < (HNH});. This contradicts the hypothesis
about every single-valued neutrosophic set 1 € 19, if (0,1,1) # R < H with R < R}. Therefore,
HNH: = (0,1,1), so that H = H by (4), we have LT(H) > r, LI(H) <1—r,and LFE(H) <1—r.

(6)=(4): Since, for every H € I°, HNH; = (0,1,1). Therefore, by (6), as H contains no
non-empty single-valued neutrosophic subset R with R < R, CT(’H,) >r, LI(H) <1—r,and
LE(H)<1—7.
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(5)=(1): For every H € e, Xstp € H, there exists an D € Q. rir(Xsytp,7) such that Tp(x) +
Ty (x) —1 < Te(x), Ip(x) + Iy (k) —1 > Io(x), and Fp(x) + Fy(x) —1 > Fe(x) holds for every x € S
and for some LT(H) > r, L{(H) < 1—r,and £F(H) < 1 —r. This implies x4, ¢ H}. Let R =
HUH;. Then, Ry = (HUH;); = Hy U(Hy); = H;y by Theorem 3(4). So, Crrp (R, 7) = RUR; = R.
That means 77*(1 — R)>r, (1 - R)<1-r,and Th* (1-R) <1 —r. Therefore, by (5), we have
LT(R)>r,LY(R)<1—r,and LF(R) <1—7.

Once again, for any x;p, in SVNP(X), xst,p & R} implies Xstp € Rbut xstp € Ry = H; So,
as B =HV H}, x51p € H. Now, by hypothesis about . Then, for any x5, € H;. So, R = H. Hence,
LT(H)>r, LY(H) <1—r,and LF(H) <1—r,ie, TIF ~ LTI O

Theorem 10. Let (S, t7'F) be an SVNTS with single-valued neutrosophic ideal LT'F on S. Then, the
following are equivalent and implied by T ~ L.

(1) Forevery H € IS, H AH; = (0,1,1) implies H;} = (0,1,1);
(2)  Forany H € IS, #} = (0,1,1);
(3)  ForeveryH € IS, H A H} = H}.

Proof. Clear from Theorem 9. O

The following corollary is an important consequence of Theorem 10.
Corollary 3. Let T/1F ~ LTIF, Then, B(tT'F, LTIF) is a base for T1* and also B(TF, LTIF) = £T1Fx,

Definition 17. Let H, R € SVNS on S. If H is a single-valued neutrosophic relation on a set S, then H is
called a single-valued neutrosophic relation on B if, for every x,x1 € S,

Tr (1, x1) < min(Ty(x), Ty (x1)),

In (K, K1) > max(l«d (K), IH (Kl)), and

Fr (1, k1) = max(Fy (i), Fy (k1))

A single-valued neutrosophic relation H on S is called symmetric if, for every x,x1 € S,
Ty (i, x1) = Ty(x1,x),  DIy(x,30) = Iy(k1, %), Fyy(x,51) = Fyy (i1, ); and

Tr(x k1) = Tr(k1,x)  Ig(K,x1) = Ir(x1,%),  Fr(x,x1) = Fr (K1, x).
In the purpose of symmetry, we can replace Definition 3 with Definition 17.

5. Conclusions

In this paper, we defined a single-valued neutrosophic closure space and single-valued neutrosophic
ideal to study some characteristics of neutrosophic sets and obtained some of their basic properties.
Next, the single-valued neutrosophic ideal open local function, single-valued neutrosophic ideal
closure, single-valued neutrosophic ideal interior, single-valued neutrosophic ideal open compatible,
and ordinary single-valued neutrosophic base were introduced and studied.

Discussion for further works:
We can apply the following ideas to the notion of single-valued ideal topological spaces.

(@) The collection of bounded single-valued sets [53];
(b) The concept of fuzzy bornology [54];
(¢) The notion of boundedness in topological spaces. [54].
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