Hypersonic Imaging and Emission Spectroscopy of Hydrogen and Cyanide Following Laser-Induced Optical Breakdown
Abstract
:1. Introduction
2. Experimental Arrangement and Methods
2.1. Shadowgraphs
2.2. Emission Spectroscopy
2.3. Shockwave Analysis Method
2.4. Electron Density Determination Method
2.4.1. Atomic Carbon Line Interference
2.4.2. Line Broadening and Deconvolution
2.4.3. Method for Computation of Electron Density
2.5. Molecular Spectra Analysis Method
2.6. Abel Inversion Method
3. Results
3.1. Shadowgraphs
3.2. Emission Spectra
3.3. Shockwave amd Plasma Expansion
3.4. Electron Density
3.5. Cyanide Temperature
3.6. Abel Inverted Spectra
4. Discussion and Conclusions
- Shockwave expansion affects the formation of CN molecules as the plasma expands;
- Stark widths and shifts can be used to determine electron density, but higher spectral resolutions would be desirable for determination of accurate values of electron densities;
- For time delays around 1 µs, higher CN and electron concentrations occur near the shockwave than those in the central region of the plasma. The CN becomes concentrated towards the edges of the plasma, therefore slit size, energy per pulse, and measurement acquisition time would need to be considered when capturing data especially for handheld design;
- The use of a 309 nm cut-on filter is an effective way to filter out unwanted atomic carbon line contributions but causes a ~10% reduction in the signal captured, which can cause issues with possible quantification for medical and forensic applications;
- As plasma expands and cools, radiation from excited CN molecules seems evenly distributed and indicates a close to homogenous temperature;
- Abel inversion is only justified for radially symmetric light sources, but shadowgraph studies support symmetrization to elucidate spatial dependence.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Miziolek, A.; Palleschi, V.; Schechter, I. (Eds.) Laser Induced Breakdown Spectroscopy (LIBS): Fundamentals and Applications; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Singh, J.P.; Thakur, S.N. (Eds.) Laser-Induced Breakdown Spectroscopy, 2nd ed.; Elsevier: Amsterdam, NL, USA, 2020. [Google Scholar]
- Gautam, G.; Helstern, C.M.; Drake, K.A.; Parigger, C.G. Imaging of laser-induced plasma expansion dynamics in ambient air. Int. Rev. At. Mol. Phys. 2016, 7, 45–51. [Google Scholar]
- Gautam, G.; Parigger, C.G. Plasma Expansion Dynamics in Hydrogen Gas. Atoms 2018, 6, 46. [Google Scholar] [CrossRef] [Green Version]
- Parigger, C.G.; Helstern, C.M.; Jordan, B.S.; Surmick, D.M.; Splinter, R. Laser-plasma spatio-temporal cyanide spectroscopy and applications. Molecules 2020, 25, 615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helstern, C.M. Laser-Induced Breakdown Spectroscopy and Plasmas Containing Cyanide. Ph.D. Thesis, University of Tennessee Knoxville, Knoxville, TN, USA, 2020. [Google Scholar]
- Cremers, D.A.; Radziemski, L.J. Handbook of Laser-Induced Breakdown Spectroscopy; John Wiley and Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Parigger, C.G.; Helstern, C.M.; Gautam, G. Molecular emission spectroscopy of cyanide in laser-induced plasma. Int. Rev. At. Mol. Phys. 2017, 8, 25–35. [Google Scholar]
- Bethe, H.A.; Fuchs, K.; Hirschfelder, J.O.; Magee, J.L.; Peierls, R.E.; Neumann, J. Blastwave; University of California: Los Alamos, NM, USA, 1947. [Google Scholar]
- Taylor, G.I. The formation of a blast wave by a very intense explosion i. Theoretical discussion. Proc. Math. Phys. Eng. Sci. 1950, 201, 159–174. [Google Scholar]
- Sedov, L.I. Similarity and Dimensional Methods in Mechanics; Academic Press: Cambridge, MA, USA, 1959. [Google Scholar]
- Sedov, L.I. Propagation of strong blast waves. Prikl. Mat. Mech. 1946, 10, 241–250. [Google Scholar]
- Harith, M.A.; Palleschi, V.; Salvetti, A.; Singh, D.P.; Tropiano, G.; Vaselli, M. Hydrodynamic evolution of laser driven diverging shock waves. Laser Part. Beams 1990, 8, 247–252. [Google Scholar] [CrossRef]
- Parigger, C.G.; Helstern, C.M.; Gautum, G. Temporally and spatially resolved emission spectroscopy of cyanide, hydrogen, and carbon in laser-induced plasma. Atoms 2019, 7, 74. [Google Scholar] [CrossRef] [Green Version]
- Dackman, M. Laser-Induced Breakdown Spectroscopy for Analysis of High-Density Methane-Oxygen Mixtures. Master’s Thesis, University of Tennessee Knoxville, Knoxville, TN, USA, 2014. [Google Scholar]
- Griem, H.R. Spectral Line Broadening by Plasmas; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Surmick, D.M. Spectroscopic Imaging of Aluminum Containing Plasma. Ph.D. Thesis, University of Tennessee Knoxville, Knoxville, TN, USA, 2016. [Google Scholar]
- O’Haver, T. Peakfit.m. Available online: https://www.mathworks.com/matlabcentral/fileexchange/23611-peakfit-m (accessed on 22 May 2019).
- Parigger, C.G.; Hornkohl, J.O. Quantum Mechanics of the Diatomic Molecule with Applications; IOP Publishing: Bristol, UK, 2019. [Google Scholar]
- Parigger, C.G.; Woods, A.C.; Surmick, D.M.; Gautam, G.; Witte, M.J.; Hornkohl, J.O. Computation of diaotmic molecular spectra for selected transitions of aluminum monoxide, cyanide, diatomic carbon, and titanium monoxide. Spectrochim Acta Part B At. Spectrosc. 2015, 107, 132–138. [Google Scholar] [CrossRef]
- Nelder, J.A.; Mead, R. A simplex-method for function minimization. Comput. J. 1965, 7, 308–313. [Google Scholar] [CrossRef]
- Pretzler, G. A new method for numerical Abel-inversion. Z. Naturforsch. A 1991, 46, 639–641. [Google Scholar] [CrossRef] [Green Version]
- Pretzler, G.; Jäger, H.; Neger, T.; Philipp, H.; Woisetschläger, J. Comparison of different methods of Abel inversion using computer simulated and experimental side-on data. Z. Naturforsch. A 1992, 47, 955–970. [Google Scholar] [CrossRef]
- Kandel, Y.P. An Experimental Study of Hydrogen Balmer Lines in Pulsed Laser Plasma. Ph.D. Thesis, Wesleyan University, Middletown, CT, USA, 2009. [Google Scholar]
- Gornushkin, I.B.; Shabanov, S.V.; Panne, U. Abel inversion applied to a transient laser induced plasma: Implications from plasma modeling. J. Anal. At. Spectrom. 2011, 26, 1457–1465. [Google Scholar] [CrossRef]
- Killer, C. Abel Inversion Algorithm. Available online: https://www.mathworks.com/matlabcentral/fileexchange/43639-abel-inversion-algorithm (accessed on 30 June 2019).
- Parigger, C.G.; Gautam, G.; Surmick, D.M. Radial electron density measurements in laser-induced plasma from Abel inverted hydrogen Balmer beta line profiles. Int. Rev. At. Mol. Phys. 2015, 6, 43–57. [Google Scholar]
- Gautam, G. On Laser-induced Plasma Containing Hydrogen. Ph.D. Thesis, University of Tennessee Knoxville, Knoxville, TN, USA, 2017. [Google Scholar]
- Parigger, C.G.; Surmick, D.M.; Gautam, G. Self-absorption characteristics of measured laser-induced plasma line shapes. J. Phys. Conf. Ser. 2017, 810, 012012. [Google Scholar] [CrossRef]
- Gautam, G.; Parigger, C.G.; Helstern, C.M.; Drake, K.A. Emission spectroscopy of expanding laser-induced gaseous hydrogen-nitrogen plasma. Appl. Opt. 2017, 56, 9277–9284. [Google Scholar] [CrossRef] [PubMed]
- Dardis, J.; Costello, J.T. Stagnation layers at the collision front between two laser-induced plasmas: A study using time-resolved imaging and spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 2010, 65, 535–627. [Google Scholar] [CrossRef]
- Zel’dovich, Y.B.; Raizer, Y.P. Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena; Hayes, W.D., Probstein, R.F., Eds.; Academic Press: New York, NY, USA, 1966; Volume 1, pp. 347–348. [Google Scholar]
τ (ns) | R (mm) for Air [ρ = 1.2 kg/m3] | R (mm) for CN [ρ = 1.63 kg/m3] |
---|---|---|
200 | 1.40 | 1.31 |
450 | 1.93 | 1.82 |
700 | 2.31 | 2.17 |
950 | 2.61 | 2.45 |
1200 | 2.86 | 2.69 |
1450 | 3.09 | 2.90 |
τ (ns) | R (mm) for Air [ρ = 1.2 kg/m3] | R(mm) for CN [ρ = 1.63 kg/m3] |
---|---|---|
200 | 1.46 | 1.37 |
450 | 2.02 | 1.90 |
700 | 2.41 | 2.27 |
950 | 2.73 | 2.56 |
1200 | 2.99 | 2.81 |
1450 | 3.23 | 3.04 |
τ (ns) | v (km/s) for Air [ρ = 1.2 kg/m3] | v (km/s) for CN [ρ = 1.63 kg/m3] |
---|---|---|
200 | 2.80 | 2.63 |
450 | 1.72 | 1.62 |
700 | 1.32 | 1.24 |
950 | 1.10 | 1.03 |
1200 | 0.95 | 0.90 |
1450 | 0.85 | 0.80 |
τ (ns) | v (km/s) for Air [ρ = 1.2 kg/m3] | v (km/s) for CN [ρ = 1.63 kg/m3] |
---|---|---|
200 | 2.92 | 2.75 |
450 | 1.80 | 1.69 |
700 | 1.38 | 1.30 |
950 | 1.15 | 1.08 |
1200 | 1.00 | 0.94 |
1450 | 0.89 | 0.84 |
τ (ns) | Ma for Air [ρ = 1.2 kg/m3] | Ma for CN [ρ = 1.63 kg/m3] |
---|---|---|
200 | 8.15 | 7.67 |
450 | 5.01 | 4.71 |
700 | 3.84 | 3.61 |
950 | 3.20 | 3.01 |
1200 | 2.78 | 2.62 |
1450 | 2.48 | 2.34 |
τ (ns) | Ma for Air [ρ = 1.2 kg/m3] | Ma for CN [ρ = 1.63 kg/m3] |
---|---|---|
200 | 8.52 | 8.02 |
450 | 5.24 | 4.93 |
700 | 4.02 | 3.78 |
950 | 3.35 | 3.15 |
1200 | 2.91 | 2.74 |
1450 | 2.60 | 2.44 |
τ (ns) | Computed R (mm) | Measured R (mm) |
---|---|---|
200 | 1.41 | 1.00 ± 0.30 |
1000 | 2.69 | 2.67 ± 0.80 |
1200 | 2.90 | 2.83 ± 0.85 |
2200 | 3.69 | 3.57 ± 1.07 |
4200 | 4.78 | 4.95 ± 1.49 |
τ (ns) | Velocity, v (km/s) | Mach number, Ma |
---|---|---|
200 | 4.03 ± 1.21 | 11.76 ± 0.30 |
1000 | 1.31 ± 0.39 | 3.82 ± 1.15 |
1200 | 1.08 ± 0.32 | 3.15 ± 0.95 |
2200 | 0.58 ± 0.17 | 1.67 ± 0.50 |
4200 | 0.30 ± 0.09 | 0.87 ± 0.26 |
τ (ns) | Measured r (mm) |
---|---|
200 | 0.45 ± 0.13 |
1000 | 2.25 ± 0.67 |
1200 | 2.40 ± 0.72 |
2200 | 3.00 ± 0.90 |
4200 | 4.04 ± 1.21 |
τ (ns) | Computed R (mm) | Measured RPlasma (mm) |
---|---|---|
450 | 1.84 | 2.90 ± 0.87 |
700 | 2.20 | 3.00 ± 0.90 |
950 | 2.48 | 3.30 ± 0.99 |
1200 | 2.72 | 3.35 ± 1.01 |
1450 | 2.94 | 4.00 ± 1.20 |
1700 | 3.13 | 4.30 ± 1.29 |
1950 | 3.31 | 4.40 ± 1.32 |
2200 | 3.47 | 4.30 ± 1.29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parigger, C.G.; Helstern, C.M.; Gautam, G. Hypersonic Imaging and Emission Spectroscopy of Hydrogen and Cyanide Following Laser-Induced Optical Breakdown. Symmetry 2020, 12, 2116. https://doi.org/10.3390/sym12122116
Parigger CG, Helstern CM, Gautam G. Hypersonic Imaging and Emission Spectroscopy of Hydrogen and Cyanide Following Laser-Induced Optical Breakdown. Symmetry. 2020; 12(12):2116. https://doi.org/10.3390/sym12122116
Chicago/Turabian StyleParigger, Christian G., Christopher M. Helstern, and Ghaneshwar Gautam. 2020. "Hypersonic Imaging and Emission Spectroscopy of Hydrogen and Cyanide Following Laser-Induced Optical Breakdown" Symmetry 12, no. 12: 2116. https://doi.org/10.3390/sym12122116