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Abstract: In this study, we present a spectral method for solving nonlinear Volterra integral equations
with weakly singular kernels based on the Genocchi polynomials. Many other interesting results
concerning nonlinear equations with discontinuous symmetric kernels with application of group
symmetry have remained beyond this paper. In the proposed approach, relying on the useful
properties of Genocchi polynomials, we produce an operational matrix and a related coefficient
matrix to convert nonlinear Volterra integral equations with weakly singular kernels into a system of
algebraic equations. This method is very fast and gives high-precision answers with good accuracy
in a low number of repetitions compared to other methods that are available. The error boundaries
for this method are also presented. Some illustrative examples are provided to demonstrate the
capability of the proposed method. Also, the results derived from the new method are compared to
Euler’s method to show the superiority of the proposed method.

Keywords: nonlinear Volterra integral equation; weakly singular kernels; Abel’s integral equations;
the Genocchi polynomials; operational matrix

1. Introduction

Spectral schemes are invaluable tools for the numerical solution of fractional partial
differential equations (FPDEs), ordinary differential equations (ODEs), integral equations (IEs),
and integrodifferential equations (IDEs).

Spectral approaches are a class of schemes used in applied mathematics and scientific
computing to numerically solve certain differential equations and nonlinear integral equations.
In recent years, these approaches have been used in modeling of many problems of physical
phenomena, engineering and chemical processes in chemical kinetics [1], super fluidity biology and
economics [2], axially symmetric problems in the case of an elastic body containing an inclusion [3],
and fluid dynamics [4], and the Hammerstein integral equation is employed for modeling nonlinear
physical phenomena such as electromagnetic fluid dynamics reformulation of boundary value problems
with a nonlinear boundary condition [5].

Various numerical approaches have been presented for solving a class of nonlinear singular
integral equations including Abel’s integral equation, Hammerstein integral equation, Volterra integral
equation, etc. For example, Noeiaghdam et al. in [6] applied the Laplace homotopy analysis method to
solve Abel’s integral equation, and validation of this method was discussed in [7]. Also, the numerical
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studies on the Volterra integral equation with discontinuous kernels can be found in [8,9]. Allaei et al.
in [10] presented an analytical and computational method for a class of nonlinear singular integral
equations. Maleknejad et al. in [11] proposed a new numerical approach for solving the nonlinear
integral equations of Hammerstein and Volterra–Hammerstein. In [12], the authors applied the
operational Tau method (OTM) to find a numerical solution for weakly singular Volterra integral
equations (WSVIEs) and Abel’s equation.

Other researchers have attempted to solve nonlinear integral equations in recent years.
Among them, in recent years, Mehdi Dehghan et al. in [13] solved nonlinear fractional integrodifferential
equations (NFIDEs) by using the collocation numerical method. Li Zhu and Qibin Fan in [14]
presented a spectral method based on the second Chebyshev wavelet (SCW) operational matrix for
solving the fractional nonlinear Fredholm integrodifferential equation, and the Ferdholm and Volterra
integral equations.

Nemati in [15] applied a numerical approach for solving nonlinear fractional integrodifferential
equations with weakly singular kernels by using a modification of hat functions. Somveer et al. [16]
presented an efficient spectral method based on shifted Legendre polynomials for solving nonlinear
Volterra singular partial integrodifferential equations (PIDEs) which involve both integrals and
derivatives of a function.

Recently, with the effort of other scientists, many of the nonlinear differential and integral
equations which appear in different fields of physical phenomena and engineering were solved by
using numerical methods, and nonlinear differential and integral equations have also been explored in
delayed scaled consensus problems [17–24].

In the study of many nonlinear problems in heat conduction, boundary-layer heat transfer,
chemical kinetics, and superfluidity, we are often led to singular Volterra integral equations for which
real answers are hard to find [10]. In this article, we use efficient functions such as Genocchi polynomials
and their operational matrices to solve nonlinear Volterra integral equations with weakly singular
kernels of the following form:

y(t) = f (t) −
∫ t

0

sβ

(t− s)α
g(y(s))ds, t > 0, (1)

where f (t) is in L2(<) on the interval 0 ≤ t, s ≤ T; g is locally Lipchitz continuous, smooth, and a
Hammerstein nonlinear function; and α, β are real positive numbers.

For future works, we can use other polynomials like Chebyshev, Lagger, etc. for implementation,
and by comparing the archived results, we can expand the present method and implement it on the
system of nonlinear Volterra integral equations or nonlinear Volterra integral equations of mixed type.
Because of important applications of the first kind of Volterra integral equations with discontinuous
kernels in load leveling problems and power engineering systems, the proposed method can also be
used for future works.

The rest of the article is organized as follows: In Section 2, we state some necessary basic definitions
and properties of Genocchi polynomials. Numerical implementation of the suggested technique based
on Genocchi polynomials is shown in Section 3. Section 4 estimates the error analysis of our proposed
technique. In Section 5, two examples with tables and graphs are presented to show the efficiency and
accuracy of the proposed scheme. Section 6 provides some discussion and concluding remarks.

2. Genocchi Polynomials and Their Properties

2.1. Definition of the Genocchi Polynomials

Genocchi polynomials and Genocchi numbers have been widely applied in many branches
of mathematics and physics such as complex analytic number theory, homotopy theory,
differential topology, and quantum physics (quantum groups) [25,26]. The Genocchi polynomials
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Gn(x) and numbers Gn are usually expressed by using the exponential generating functions Q(t, x)
and Q(t) respectively as follows:

Q(t) =
2t

et + 1
=
∞∑

n=0

Gn
tn

n!
, (|t| < π), (2)

Q(t, x) =
2text

et + 1
=
∞∑
n

Gn(x)
tn

n!
, (|t| < π), (3)

where Gn(x) is the well-known Genocchi polynomials of order n. Also, we note that the Genocchi
polynomials can be determined as follows:

Gn(x) =
n∑

k=0

(
n
k

)
Gn−kxk = 2Bn(x) − 2n+1Bn(x), (4)

where the Genocchi number Gn−k is obtained by the following relation:

Gn = 2(1− 2n)Bn, (5)

Bn is the famous Bernoulli number.
The first few Genocchi numbers are given in the table below:

n 0 1 2 4 6
Gn 0 1 −1 1 −3

We also have to pay attention that G2n+1 = 0, n = 1, 2, 3, . . .. We list the first few Genocchi
polynomials that are given as follows:

G0(x) = 0,
G1(x) = 1,
G2(x) = 2x− 1,
G3(x) = 3x2

− 3x,
G4(x) = 4x3

− 6x2 + 1,
G5(x) = 5x4

− 10x3 + 5x.

(6)

The Genocchi polynomials are depicted in Figure 1 for different n:

Figure 1. The plots of the Genocchi polynomials.
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Therefore, some of the important basic properties of the Genocchi polynomials are as follows:∫ 1

0
Gn(x)Gm(x)dx =

2(−1)nn!m!
(n + m)!

Gm+n, n, m ≥ 1, (7)

dGn(x)
dx

= nGn−1(x), n ≥ 1, (8)

Gn(1) + Gn(0) = 0, n > 1, (9)

Also, by using them in Relations (5) and (9), we can write the following:

Gn(x) =
∫ x

0
nGn−1(x)dx + Gn, n ≥ 1. (10)

For more information, you can refer to References [27] and [28], which discuss the Genocchi
polynomials extensively.

2.2. Approximation of Arbitrary Function by Applying Genocchi Polynomials

The approximation theory plays an important role in solving a variety of differential equations.
The main goal of this section is to approximate the arbitrary function f (x) ∈ L2[0, 1] by Genocchi
polynomials. Let

{
G1(x), G2(x), . . . , GN(x)] ⊆ L2[0, 1] be the set of Genocchi polynomials and

P = span
{
G1(x), G2(x), . . . , GN(x)

}
. Since P is a finite dimensional subspace of the L2[0, 1] space,

therefore f (x) as an arbitrary element of the L2[0, 1] space has a unique best approximation in P,
say f ∗(x), such that ∥∥∥ f (x) − f ∗(x)

∥∥∥
2 ≤

∥∥∥ f (x) − y(x)
∥∥∥

2 : ∀y(t) ∈ P. (11)

Therefore, inequality (11) requires that the following equation to be true.〈
f (x) − f ∗(x), y(t)

〉
= 0 : ∀y(t) ∈ P. (12)

where 〈., .〉 denotes the inner product.
Any arbitrary function f (x) ∈ L2[0, 1] can be expanded in the finite series to the number of the

Genocchi polynomials as follows:

f (x) ≈ f ∗(x) =
N∑

n=1

cnGn(x) = CTG(x), (13)

where T means transpose and the Genocchi coefficient vector C and Genocchi vector G(x) are given by
the following:

C = [c1, c2, . . . , cN]
T, G(x) = [G1(x), G2(x), . . . , GN(x)]

T. (14)

Hence, the coefficient cn can be obtained using the Genocchi polynomials as follows:

cn =
1

2n!

(
f (n−1)(0) + f (n−1)(1)

)
, n = 1, . . . , N. (15)

Of course, we have to note the important fact that calculating the approximation coefficient by the
Genocchi polynomials in Equation (15) for a function that is not (n − 1) differentiable at the points
x = 0, x = 1 leads to failure. The following example illustrates the problem.
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Let N = 3, f (x) = x3/2, f (x) =
3∑

n=1
cnGn(x) = c1G1(x) + c2G2(x) + c3G3(x);

c3 = 1
2×3!

[
d2

dx2 x3/2
∣∣∣∣
x=0

+ d2

dx2 x3/2
∣∣∣∣
x=1

]
= 1

2×3!

[
1

4
√

x

∣∣∣∣
x=0

+ 1
4
√

x

∣∣∣∣
x=1

]
.

(16)

To avoid this problem for functions that are not (n− 1) differentiable at points x = 0, x = 1, we use
the matrix approach taken in the next section to compute the unknown approximation coefficients.

2.3. Using the Matrix Approach to Compute the Genocchi Approximation Coefficients

In this section, we compute the Genocchi coefficient vector C using the matrix method. Before we
apply this approach, we need to demonstrate and verify the following theorems. We first introduce
Theorem 1, which gives the expression and proof of integration of the two Genocchi polynomials
on arbitrary interval [a, b], 0 ≤ a ≤ b which will be used to prove Theorem 2. Therefore, the proof of
Theorem 1 is of particular important.

Theorem 1. Let us assume that Gn(x) and Gm(x) are two Genocchi polynomials for x ≥ 0:

γn,m(x) =
∫ x

0 Gn(x)Gm(x)dx

=
n−1∑
r=0

(−1)r n(r)
(m+1)(r+1) (Gn−r(x)Gm+1+r(x) −Gn−r(0)Gm+1+r(0)),

(17)

where n(r), (m + 1)(r+1) are respectively the falling and rising factorials. In particular, we have the following
relations for [a, b], 0 ≤ a ≤ b:

γ
(a,b)
n,m =

∫ b
a Gn(x)Gm(x)dx = γn,m(b) − γn,m(a)

=
n−1∑
r=0

(−1)r n(r)
(m+1)(r+1) (Gn−r(b)Gm+1+r(b) −Gn−r(a)Gm+1+r(a)),

γ
(0,1)
n,m =

n−1∑
r=0

(−1)r n(r)
(m+1)(r+1) (Gn−r(1)Gm+1+r(1) −Gn−r(0)Gm+1+r(0)),

(18)

Proof. See [26]. �

On the other hand, by applying Theorem 1, we can calculate the arbitrary function approximation
coefficients with the matrix approach by using the following theorem.

Theorem 2. Suppose that f (x) ∈ L2[0, 1] is an arbitrary function and
{
Gi(x) : i = 1, . . . , N

}
is the set of

the Genocchi polynomials up to order N. Let Y = span{G1, . . . , GN} . Since Y is a finite dimensional closed
subspace of L2[0, 1] , then ∃ f ∗(x) ∈ Y is the unique best approximation in the Genocchi polynomials such
that any arbitrary function f (x) can be expressed in terms of the Genocchi polynomials by unique coefficient
cn, n = 0, 1, . . . , N:

f (x) ≈ f ∗(x) =
N∑

n=1

cnGn(x) = CTG(x), (19)

where C consisting of the unique coefficient is called the Genocchi coefficient matrix C given by the following:

CT = FTT(0,1)−1
, (20)
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where F =
∫ 1

0 f (x)Gm(x)dx, m = 0, 1, . . . , N and T(0,1) =
[∫ 1

0 Gn(x)Gm(x)dx
]
N×N

is the matrix derived in

Theorem 1.

Proof. Assume that f (x) ∈ L2[0, 1]. Therefore, this arbitrary function can be approximated using
Equation (13) as follows:

f (x) ≈
N∑

n=1

cnGn(x) = CTG(x), (21)

Therefore, ∫ 1
0 f (x)Gm(x)dx =

∫ 1
0

(
N∑

n=1
cnGn(x)

)
Gm(x)dx

=
N∑

n=1
cn

∫ 1
0 Gn(x)Gm(x)dx.

(22)

Let the first side of Equation (22) have fm =
∫ 1

0 f (x)Gm(x)dx alternatives; thus, we have the following:

fm =
∫ 1

0

(
N∑

n=1
cnGn(x)

)
Gm(x)dx

=
N∑

n=1
cn

∫ 1
0 Gn(x)Gm(x)dx,

m = 1, . . . , N.

(23)

In fact, we can construct Equation (23) as a system of N equations for which the matrix representation
of the device is as follows:


f1
.
.
.

fN


= [c1, . . . , cN]



γ
(0,1)
1,1 . . . γ

(0,1)
1,N

γ
(0,1)
2,1 . . . γ

(0,1)
2,N

. . . . . .

. . . . .

. . . . .

γ
(0,1)
N,1 . . . γ

(0,1)
N,N


,

FT = CTT(0,1)

(24)

Therefore, we have the Genocchi coefficient matrix C as follows:

CT = FTT(0,1)−1
, (25)

where γi, j can be calculated by using Theorem 1. �

3. Implementation of the Genocchi Polynomial Method for Solving Nonlinear Volterra Integral
Equations with Weakly Singular Kernels

In this section, we implement a new spectral approach based on the Genocchi polynomials to
solve the following equation:

y(t) = f (t) −
∫ t

0

sβ

(t− s)α
g(y(s))ds, t > 0,

where f (t) is in L2(<) on the interval 0 ≤ t, s ≤ T; g is locally Lipchitz continuous, smooth, and a
Hammerstein nonlinear function; and α, β are real positive numbers.
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Let us assume that function f (x) ∈ L2[0, 1] is arbitrary; then, we can approximate it, as follows:

f (x) ≈
N∑

n=1

cnGn(x) = CTG(x) = CTGXx, (26)

where C = [c1, c1, . . . , cN]
T is a vector of unknown coefficient; Xx = [1, x, x2, . . . , xn]

T;
and G(x) = [G1(x), G2(x), . . . , GN(x)]

T = GXx, where G is a n × n matrix of coefficients that can be
approximated by Xx.

Thus, we need to compute the following integral before applying the new approach to
solve Equation (1). ∫ x

0

tm

(x− t)α
dt =

Γ(1− α)Γ(m + 1)
Γ(m− α+ 2)

x(m−α+1), m = 0, 1, . . . . (27)

Therefore, by considering Relation (27), we let

z(s) = g(y(s)), 0 ≤ s ≤ 1. (28)

since we have

y(t) = f (t) −
∫ t

0

sβ

(t− s)α
g(y(s))ds, t > 0. (29)

By substituting Equation (29) into Equation (28), we have

z(t) = g( f (t) −
∫ t

0

sβ

(t− s)α
g(y(s))ds), 0 ≤ t ≤ 1. (30)

We approximate Equation (30) as follows:

CTG(t) = g( f (t) −
∫ t

0

sβ

(t− s)α
CTGXsds), 0 ≤ t ≤ 1, (31)

and

CTG(t) = g( f (t) −CTG
∫ t

0

sβ

(t− s)α
Xsds), 0 ≤ t ≤ 1. (32)

Thus, we need to convert the integral part of Equation (32) to the matrix form. Therefore,

by assuming Xs =
[
1, s, s2, . . . , sn

]T
, we can write the following:

∫ t
0

sβ
(t−s)α .Xsds =

[∫ t
0

sβ
(t−s)α ds,

∫ t
0

sβ
(t−s)α .sds, . . . ,

∫ t
0

sβ
(t−s)α .snds, . . .

]T

=
[∫ t

0
sβ

(t−s)α ds,
∫ t

0
sβ+1

(t−s)α ds, . . . ,
∫ t

0
sβ+n

(t−s)α ds, . . .
]T

,
(33)

and using Equation (27), we have∫ t

0

sβ+m

(t− s)α
ds =

Γ(1− α)Γ(β+ m + 1)
Γ(β+ m− α+ 2)

t(β+m−α+1), m = 0, 1, 2, . . . . (34)

Therefore, by using Relation (34), we can rewrite Equation (33) as follows:∫ t
0

sβ
(t−s)α .Xsds =

[
Γ(1−α)Γ(β+1)

Γ(β−α+2) t(β−α+1), Γ(1−α)Γ(β+2)
Γ(β−α+3) t(β−α+2), . . .

, Γ(1−α)Γ(β+m+1)
Γ(β+m−α+2) t(β+m−α+1), . . .

]T
.

(35)
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If we consider γm,m =
Γ(1−α)Γ(β+m+1)

Γ(β+m−α+2) , m = 0, 1, 2, . . ., then, we can reconstruct Equation (35) in
the matrix form as follows:

∫ t

0

sβ

(t− s)α
.Xsds =



γ0,0 0 0 · · · 0
0 γ1,1 0 0 0
0 0 γ2,2 0 0
...

...
...

. . .
...

0 0 0 · · · γm,m





tβ−α+1

tβ−α+2

...
tβ+m−α+1

...


= ΩΠ, (36)

where Ω is an infinite diagonal matrix and

Π =
[
tβ−α+1, tβ−α+2, · · · , tβ+m−α+1, · · ·

]T
. (37)

Now, each element of infinite vector Π can be approximated by using the Genocchi polynomials
as follows:

tβ+m−α+1 =
∞∑

i=1

am,iGi(t) = ∂mGXt, ∂m = [am,1, am,2, . . .], m = 0, 1, . . . , (38)

and we obtain

Π = [∂1GXt, ∂2GXt, . . . , ∂mGXt, . . .]
T = AGXt, A = [∂1, ∂2, . . . , ∂m, . . .]T. (39)

Substituting (39) in (32), we have∫ t

0

sβ

(t− s)α
.Xsds == ΩAGXt. (40)

By using Equations (40) and (39), we get

CTG(t) = g( f (t) −CTGΩAGXt), 0 ≤ t ≤ 1. (41)

We select N nodal points of the Newton–Cotes rule for finding vector C as follows:

xp =
2p− 1

2N
, p = 1, 2, . . . , N, (42)

By collocating Equation (41) at the points xp, we have

CTG(xp) = g( f (xp) −CTGΩAGXxp), 0 ≤ t ≤ 1,
p = 1, 2, . . . , N.

(43)

We can solve the nonlinear system (43) by using the Newton iteration scheme to calculate
unknown vector C. After calculating unknown vector C by solving the nonlinear Equation (43), we use
Equations (29), (31), and (32) to obtain the approximate solution of Equation (1), as follows:

yn(t) = f (t) −CTGΩAG(t), 0 ≤ t ≤ 1. (44)

4. Error Analysis

In this section, we perform error estimation of the approximation solution to find the error
boundaries of the new numerical approach by applying the Genocchi polynomials. Consider the
nonlinear Volterra integral equations with weakly singular kernels of the form Equation (1),
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We suppose that Ω = L2[0, 1],
{
G1(t), G2(t), . . . , Gn(t)

}
⊂ Ω, and T = Span

{
G1(t), G2(t), . . . , Gn(t)

}
.

Here, we let y(t) be an arbitrary function of Ω, so, it has the best approximation of T. Let yn ∈ T, that is,

∃yn ∈ T : ∀h ∈ T
∥∥∥y− yn

∥∥∥
2 ≤

∥∥∥y− h
∥∥∥

2, (45)

where
∥∥∥y(t)

∥∥∥2
2 =

∫ 1
0

∣∣∣y(t)∣∣∣2dt. y(t) is approximated by using the truncated Genocchi polynomials:

y(t) ' yn =
N∑

n=1

cnGn(t) = CTG(t), (46)

where CT = [c1, c2, . . . , cN] and G(x) = [G1(x), G2(x), . . . , GN(x)]
T.

In the following study, we present an upper bound for the error of Equation (45).
Let en(t) = y(t) − yn(t) be the error function of Equation (1), where y(t), yn(t) are the exact and
approximate solutions

Therefore, the mean error bound is presented as follows:∥∥∥en(t)
∥∥∥2

2 =
∥∥∥y(t) − yn(t)

∥∥∥
2 =

∫ 1
0

∣∣∣y(t) − yn(t)
∣∣∣2dt

=
∫ 1

0

∣∣∣∣∣( f (t) −
∫ t

0
sβ

(t−s)α g(y(s))ds
)
−

(
f (t) −

∫ t
0

sβ
(t−s)α g(yn(s))ds

)∣∣∣∣∣2dt

=
∫ 1

0

∣∣∣∣∫ t
0

sβ
(t−s)α (g(y(s)) − g(yn(s)))ds

∣∣∣∣2dt.

(47)

On the other hand, g(s) is continuous on the interval [0, 1] and locally Lipchitz continuous in
s ∈ R; therefore, there is a constant C1 > 0 such that∣∣∣g(y(s)) − g(yn(s))

∣∣∣ ≤ C1
∣∣∣y(s) − yn(s)

∣∣∣. (48)

Then, by using Equations (47) and (48), we have

∥∥∥en(t)
∥∥∥2

2 ≤

∫ 1
0

(∫ t
0

sβ
(t−s)α ·C1

∣∣∣y(s) − yn(s)
∣∣∣ds

)2
dt

=
∫ 1

0

(∫ t
0

sβ
(t−s)α ·C1

∣∣∣∣∣∣y(s) − N∑
n=1

cnGn(s)

∣∣∣∣∣∣ds
)2

dt

=
∫ 1

0

(∫ t
0

sβ
(t−s)α ·C1

∣∣∣∣∣∣ ∞∑
n=N+1

cnGn(s)

∣∣∣∣∣∣ds
)2

dt

≤

∫ 1
0

(∫ t
0

sβ
(t−s)α ·C1

∞∑
n=N+1

|cn|
∣∣∣Gn(s)

∣∣∣ds
)2

dt.

(49)

By substituting (4) into (49), we get

∥∥∥en(t)
∥∥∥2

2 ≤

∫ 1
0

(∫ t
0

sβ
(t−s)α ·C1

∞∑
n=N+1

|cn|

∣∣∣∣∣∣ n∑
k=0

(
n
k

)
Gn−ksk

∣∣∣∣∣∣ds
)2

dt

≤

∫ 1
0

(∫ t
0

sβ
(t−s)α ·C1

∞∑
n=N+1

|cn|
n∑

k=0

(
n
k

)
|Gn−k|skds

)2

dt

=
∫ 1

0

(
n∑

k=0

∞∑
n=N+1

·C1|cn|

(
n
k

)
|Gn−k|

∫ t
0

sβ+k

(t−s)α ds
)2

dt,

(50)

where γ(t, β,α) is defined by

γ(t, β,α) =
∫ t

0

sβ

(t− s)α
ds = B(1− α, 1 + β)t1−α+β. (51)
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On the other hand, B(α, β) is the beta function that is usually defined by

B(α, β) =
∫ 1

0
τα−1(1− τ)β−1dτ, (Re(α) > 0, Re(β) > 0). (52)

Therefore, by using Inequality (51) and Equation (52), we get

∥∥∥en(t)
∥∥∥2

2 ≤

∫ 1

0

 n∑
k=0

∞∑
n=N+1

·C1|cn|

(
n
k

)
|Gn−k|B(1− α, 1 + β+ k)t1−α+β+k

2

dt. (53)

and ∥∥∥en(t)
∥∥∥

2 ≤

√√√ n∑
k=0

∞∑
n=N+1

1
2(−α+ β+ k) + 3

(
C1|cn|

(
n
k

)
|Gn−k|B(1− α, 1 + β+ k)

)2

. (54)

5. Illustrative Examples

In this section, two numerical examples are performed to check the perfection of the proposed
method as well as the accuracy and efficiency of the Genocchi polynomials scheme.

In order to demonstrate the error of a new numerical approach based on Genocchi polynomials,
we define the notations as follows:

e2(N) =
∥∥∥y− yn

∥∥∥
∞
= max

∣∣∣y− yn
∣∣∣,

0 ≤ t ≤ 1
en(t) =

∣∣∣y− yn
∣∣∣,

ξn =
(∫ T

0 w(t)e2
n(t)dt

) 1
2
,

(55)

where y(t) is the exact solution and yn(t) is the approximate function to the proposed method and
we have w(t) = 1. In our implementation, the calculations are done on a personal computer with
core-i5 processor, 2.67 GHZ frequency, and 4 GB memory, and the codes were written in Mathematica
11 software.

Example 1. We consider the following nonlinear Volterra integral equation which was proposed in [10]:

y(t) = t
1
3 +

4Γ
(

4
3

)
Γ
(

13
6

)
√
π

t
3
2 −

∫ t

0

s1/2y2(s)

(t− s)2/3
ds, t ∈[0, 1]. (56)

The exact solution of this equation is y(t) = t1/3.

We solved this equation with the proposed numerical method by using different values of N.

The diagonal matrix Ω with elements Γ[1−α]Γ[m+1+β]
Γ[m−α+2+β] , m = 0, 1, . . . , N, and vector Π for N = 5 are obtain

in the following forms:

Ω =



2.52393 0 0 0 0 0
0 2.06503 0 0 0 0
0 0 1.82209 0 0 0
0 0 0 1.66364 0 0
0 0 0 0 1.54891 0
0 0 0 0 0 1.4604


,

Π = [x5/6, x11/6, x17/6, x23/6, x29/6, x35/6]
T

.
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Also, the unknown vector elements C are as follows:

c0 = 0.529883, c1 = 0.598039, c2 = −0.351362, c3 = 0.343517,
c4 = −0.104667, c5 = 0.0717268

After numerical computations, a system of algebraic nonlinear equations is obtained under the
proposed method. Therefore, by solving this system, we obtain the approximate solution for N = 5
as follows:

y5(t) = f (t) −CTGΩAG(t) = t1/3
− 0.151891t5/6 + 2.18117t3/2

− 3.56596t11/6

+ 3.71576t17/6
− 4.02725t23/6 + 2.47707t29/6

− 0.628499t35/6.

According to the error boundaries in Relation (55), we have∥∥∥e5(t)
∥∥∥

2 ≤ 0.000598532.

Figure 2 is devoted to comparing the exact solution with the approximate solution obtained from
the proposed method for N = 5. Observing Figure 2, overlap of the exact and approximate solutions
shows the exactness and correctness of the proposed method. The absolute error functions with
N = 5, 10, 18, 20 are shown in Figures 3–6. Therefore, these plots quickly explain that the proposed
approach has small absolute errors.

Figure 2. Plot of comparison between the exact and approximate solutions of Example 1 for N = 5.

Figure 3. Plot of the absolute error with N = 5 for Example 1.
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Figure 4. Plot of the absolute error with N = 10 for Example 1.

Figure 5. Plot of the absolute error with N = 15 for Example 1.

Figure 6. Plot of the absolute error with N = 20 for Example 1.

We reported the numerical results of the exact and approximate solutions for various values N on
the interval [0, 1] in Table 1. On the other hand, numerical results are showed for different values N in
Table 2. The absolute error functions are displayed for various values of N on the interval [0, 1] for
this problem in Table 3. Also, Table 4 compares the numerical results of a new proposed numerical
approach with Euler’s method [10] for different values of N. Also, Table 4 indicates that the new
numerical method has better accuracy and efficiency compared to the old method.
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Table 1. Approximate and exact values of nonlinear Volterra integral equations with N = 5, 10, 15, 20
for Example 1.

N = 5 N = 10 N = 15 N = 20 yExact

0.0 0.000000 0.000000 0.000000 0.000000 0.000000
0.2 0.585076 0.584768 0.584793 0.584797 0.584804
0.4 0.736620 0.736795 0.736802 0.736804 0.736806
0.6 0.843508 0.843427 0.843431 0.843434 0.843433
0.8 0.928164 0.928313 0.928317 0.928319 0.928318
1.0 1.00041 0.99996 1.000001 1.000001 1.000000

Table 2. Numerical results of ζN for different values N on the interval [0, 1] for Example 1.

N ζN Computing Time (s)

5 5.98532 × 10−4 0.321
10 1.14944 × 10−4 0.357
15 4.48214 × 10−5 0.420
20 2.85973 × 10−5 0.451

Table 3. The absolute error function of various values N on the interval [0, 1] for Example 1.

t e5(t) e10(t) e15(t) e20(t)

0.0 0.000000000 0.0000000000 0.00000000 0.00000000
0.2 0.000272294 0.0000359627 0.00001089 6.67632 × 10−6

0.4 0.000185829 0.0000111075 3.8548 × 10−6 2.25757 × 10−6

0.6 0.000075540 5.5081 × 10−6 1.83763 × 10−6 9.72768 × 10−6

0.8 0.000153622 4.62581 × 10−6 1.11576 × 10−6 2.18163 × 10−6

1.0 0.000406512 0.0000397521 8.73408× 10−6 9.0017 × 10−6

Table 4. Comparison of maximum absolute errors between a new approach approximate solution and
Euler’s method on [0, ε] for Example 1.

Euler’s Method [10] Our Method (Genocchi Polynomials)

N
ε = 0 ε = 0.01 ε = 0.02 ε = 0.03

N
ε = 0 ε = 0.01 ε = 0.02 ε = 0.03

e∞(N) e∞(N) e∞(N) e∞(N) e∞(N) e∞(N) e∞(N) e∞(N)

80 0.67 × 10−2 6.60 × 10−3 6.50 × 10−3 6.30 × 10−3 5 0.000 1.851 × 10−3 2.343 × 10−3 2.427 × 10−3

160 3.21 × 10−3 3.10 × 10−3 3,10 × 10−3 3.03 × 10−3 10 0.000 6.595 × 10−4 6.704 × 10−4 6.704 × 10−4

320 1.55 × 10−3 1.50 × 10−3 1.50 × 10−3 1.50 × 10−3 15 0.000 3.193 × 10−4 3.193 × 10−4 3.178 × 10−4

640 753 × 10−4 7.40 × 10−4 7.20 × 10−4 7.20 × 10−4 20 0.000 2.305 × 10−4 2.305 × 10−4 2.305 × 10−4

Example 2. Next, we discuss the following Lighthill’s equation which was proposed in [10] and extensively
studied in [10,29,30]. The authors employed the iterative method and schemes to solve this integral equation.

y(t) = 1−

√
3
π

∫ t

0

s
1
3 y4(s)

(t− s)
2
3

ds, t ∈[0, 1]., (57)

The numerical results for this example are obtained by the presented approach for different values
of N and are given in Tables 5 and 6. Also, in Table 7, the maximum absolute errors can be compared
with those that were achieved by Euler’s method in [10] by different values of N on the interval [0, ε].
We can see that our proposed method is very fast compared to Euler’s method. Figure 7 displays the
convergence approximate solutions using our method (Genocchi polynomials) and the Picard iteration
y2 with different values of N on the interval [0, ε] with ε = 0.002 for this problem.
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Table 5. Numerical results on the interval [0, ε], with ε = 0.002 for Example 2.

N ζN Computing Time (s)

5 1.912914 × 10−4 0.351
10 1.087754 × 10−4 0.402
15 9.106063 × 10−5 0.457
20 7.200394 × 10−5 0.530

Table 6. The approximate solutions by different values of N and M for Example 2.∥∥∥yN − yM

∥∥∥
∞

t N = 5; M = 7 N = 7; M = 10 N = 10; M = 12 N = 12; M = 13

0.0000 1.11022 × 10−16 1.12022 × 10−16 0.000000000 0.000000000

0.0004 0.000507344 0.000477524 0.000214749 0.0000875408

0.0008 0.000800212 0.000750437 0.000336102 0.0001366621

0.0012 0.001041861 0.000973492 0.000434214 0.0001761062

0.0016 0.001254042 0.001167461 0.000518585 0.0002097873

0.002 0.001445845 0.001341082 0.000593241 0.000239374

Table 7. Comparison of maximum absolute errors e∞(N) =
∥∥∥y2 − yN

∥∥∥
∞

between our method (Genocchi
polynomials) and Euler’s method: the Picard iterate y2 was used on [0, ε] for Example 2.

Euler’s Method [10] Our Method (Genocchi Polynomials)

N
ε = 0.002 ε = 0.003 ε = 0.008

N
ε = 0.002 ε = 0.003 ε = 0.008

e∞(N) e∞(N) e∞(N) e∞(N) e∞(N) e∞(N)

40 3.60 × 10−2 3.00 × 10−2 1.70 × 10−2 5 6.165 × 10−3 7.441 × 10−3 9.878 × 10−3

80 2.10 × 10−2 1.7 × 10−2 9.10 × 10−3 10 3.378 × 10−3 3.386 × 10−3 4.162 × 10−3

160 1.01 × 10−2 8.4 × 10−3 4.00 × 10−3 12 2.785 × 10−3 3.113 × 10−3 3.222 × 10−3

320 4.00 × 10−3 3.00 × 10−3 1.30 × 10−3 15 2.151 × 10−3 2.311 × 10−3 2.232 × 10−3

Figure 7. Plot of approximate solutions by our method (Genocchi polynomials) with different values of
N on the interval [0, ε] with ε = 0.002 for Example 1.

6. Conclusions and Future Work

In the study of many nonlinear problems in heat conduction, boundary-layer heat transfer,
chemical kinetics, and superfluidity, we are often led to singular Volterra integral equations that are
difficult to solve analytically. In this article, a spectral method based on Genocchi polynomials is
presented for solving nonlinear Volterra integral equations with weakly singular kernels. An error
analysis of the spectral approach has been done. Two numerical examples are provided to confirm the
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applicability and accuracy of the scheme. Also, the proposed method results have been compared
with Euler’s method to show the superiority of the present method with better results in smaller N.
For future works, we can use other polynomials like Chebyshev, Lagger, etc. for implementation,
and by comparing the archived results, we can expand the present method and implement it on the
system of nonlinear Volterra integral equations and nonlinear Volterra integral equations of mix type
or the first kind of Volterra integral equations with discontinuous kernels.
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