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Joint Laboratory of Optics of Palacký University and Institute of Physics AS CR, Faculty of Science,
Palacký University, 17. listopadu 12, 771 46 Olomouc, Czech Republic; petr.baron@upol.cz
* Correspondence: jiri.kvita@upol.cz
† These authors contributed equally to this work.

Received: 13 November 2020; Accepted: 15 December 2020; Published: 17 December 2020 ����������
�������

Abstract: Regularization extensions to the Fully Bayesian Unfolding are implemented and studied
with an algorithm of combined sampling to find, in a reasonable computational time, an optimal value
of the regularization strength parameter in order to obtain an unfolded result of a desired property,
like smoothness. Three regularization conditions using the curvature, entropy and derivatives
are applied, as a model example, to several simulated spectra of top-pair quark pairs that are
produced in high energy pp collisions. The existence of a minimum of a χ2 between the unfolded
and particle-level spectra is discussed, with recommendations on the checks and validity of the usage
of the regularization feature in Fully Bayesian Unfolding (FBU).
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1. Introduction

This study is motivated by unstable results of unfolding in the case of spectra with a large number
of bins or with a poorly diagonal migration matrix. In order to obtain the expected smooth results,
a bias is carefully introduced via a regularization function. We focused on the Fully Bayesian Unfolding
(FBU) method [1].

Other unfolding methods than FBU have already been introduced, including regularization
features. Because FBU has the ability to provide the full probability posterior of the result and thus
stands out from other methods, it is interesting to also provide FBU with the regularization option.

This study uses several over-binned spectra, so the unfolding without regularization results
in fluctuating, high-variance unfolded spectra. These were constructed by fine binning, so that
the migration matrix is under-represented on diagonal. Five typical spectra considering the
production of top quark pairs in pp collisions were chosen, namely the pseudorapidity ηt,had

and transverse momentum pt,had
T of the hadronicaly decaying top quark, and pseudorapidity ηtt̄,

transverse momentum ptt̄
T , and mass mtt̄ of the tt̄ system.

The regularization feature was introduced as a prior in the likelihood. However, the problem
which remains is how strongly should user apply the regularization to get the optimal unfolded
spectrum, which should be close to the particle spectrum, but, at the same time, respects the
desired regularization property, e.g., low curvature. The power of regularization is governed by
the regularization strength parameter τ. The higher the τ, the stronger the regularization.

An algorithm for finding the optimal value of τ in a reasonable time via a combined sampling is
given so that the best unfolding result is achieved, representing the main message of this paper.
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2. Unfolding

The unfolding procedure corrects measured spectra for the resolution, efficiency, and acceptance
effects of the detector usually to the particle level. The principles of the Fully Bayesian Unfolding
method are based on the Bayes theorem

P(A|B) = P(B|A) · P(A)

P(B)
, (1)

where the conditional probability P(A|B) reads the probability of A, given as B. Fully Bayesian
Unfolding provides the full probability posterior P(A|B) of the result, which gives extra information
when compared to other unfolding methods [2]. Rewriting Equation (1), the probability of the truth
spectrum T, given the data D, is

P(T|D) =
P(D|T) · π(T)

Norm.
, (2)

where the Norm. is a normalization factor, P(D|T) is the likelihood function, and π(T) is a prior
probability density for T. In the case of π(T) = 1 the algorithm is non-regularized. By inserting an
arbitrary regularization function instead of π(T), one can intentionally bias the final result towards a
suitable property, e.g., to be smooth, and unfolding is then called regularized. The convenient way is
to use an exponential function with regularization strength parameter τ and an inner function S(T)

P(T|D) =
P(D|T) · e−τS(T)

Norm.
. (3)

If the parameter τ = 0, the prior π(T) = 1, and no regularization is applied; on the other hand,
the higher value of τ, the more dominant the regularization term.

2.1. Simulated Spectra

The input pseudo-data spectrum Dsim is simulated for the process pp→ tt̄ at
√

s = 14 TeV while
using MadGraph5 [3] software, Pythia8 generator [4], and Delphes [5] detector simulation with an
ATLAS card while using basic kinematics cuts in order to obtain a realistic sample of top quark pairs
decaying in a semi-leptonic way tt̄→ bWbW → `+ jets, with more details being described in [6].

2.2. Defining Equations of Unfolding

The necessary ingredients for unfolding are the data spectrum D and the migration matrix M,
which is normalized, so that it maps the probability of an event at the truth (particle) level bin i to be
reconstructed (measured) at the detector level bin j.

The schematic formula describing unfolding for the case of a simple migration matrix inversion is

T̂i =
1
εi
· (M−1)ij · ηj · (D− B)j. (4)

In this paper, the background spectrum B is not taken into account. The efficiency and acceptance
corrections are derived from projections of the migration matrix M divided by the simulated particle
level T or data spectrum D, as

ε =
T̃proj. from M

T
; η =

D̃proj. from M

D
. (5)

Because our data are simulated we set D = Dsim and Equation (4) becomes

T̂ =
1
ε
·M−1 · η ·Dsim. (6)
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The production of spectra was divided into two statistically independent sets A and B, where set
A is used for unfolding components and set B is taken as pseudo data DsimB input to unfolding

T̂B =
1

εA
·M−1

A · ηA · (DsimB). (7)

The result of unfolding T̂B is compared to the corresponding particle level spectrum TB (green
line in Figure 1a). The χ2 test between the unfolded and particle spectrum divided by the number of
degrees of freedom (number of the bins), χ2/ndf, is calculated in the standard way, as follows

χ2/ndf =
1
N

N

∑
i=1

(T̂i
B − Ti

B)
2

σ2
T̂i

B
+ σ2

Ti
B

. (8)

The input components that are needed for the unfolding process are visualized for the case of the
ηtt̄ spectrum presented in Figure 1.
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Figure 1. Unfolding components of the spectrum ηtt̄: (a) particle spectra (green), pseudo data (blue),
unfolding result T̂ (red), (b) efficiency ε and acceptance η corrections of statistically independent sets
A and B, and (c) normalized migration matrix MA.

In essence, the FBU unfolding technique exploits the response matrix to fold a probe truth-level
spectrum, obtaining the detector-level spectrum, and computing a likelihood between such folded
spectrum and the actual data. This elegantly avoids issues of singularities in explicit matrix inversion
or their regularization, as e.g., in the SVD technique [7]. The tricky part of the FBU is how to effectively
sample the truth space in the region giving large likelihood values.

2.3. Likelihood Function P(D|T)

The likelihood function is given by the product of Poisson distributions in case of counts as

P(T|D) ∝ L(D|T) · π(T) =

(
N

∏
i=1

λ
ki
i

ki!
e−λi

)
e−τabsS(T), (9)

where

λi =
N

∑
j=1

MijTj (10)

and
ki = ηi(D− B)i. (11)
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After unfolding, the probability P(T|D) is divided by the efficiency correction ε. The acceptance
correction η that is shown in Figure 1b takes on values [0,1] and, thus, the factorial is computed using
the Gamma function as

x! = Γ(x + 1). (12)

In the simplified case of no background (B = 0), pseudo data D = Dsim, and introducing the
natural logarithm, since the sampling of the functions is more numerically stable, Equation (9) becomes

log P(T|Dsim) ∝ log(L(Dsim|T) · π(T)) =

=
N

∑
i=1

log

(
λ
[ηi(Dsim)i ]
i

[ηi(Dsim)i]!
e−λi

)
− τabsS(T),

(13)

which can be rewritten as
log P(T|Dsim) ∝ log L(T)− τabsS(T). (14)

This expression has the advantage of allowing one to find the maximum of log P(T|Dsim) by
sampling the log-likelihood function log L(T) and the regularization function S(T) separately and
tune the regularization parameter τ, so that the optimal τ can be found in a much shorter time than
sampling the full likelihood for every possible value of τ.

In this study, both of the approaches were used: the one when sampling was applied to
the function P(T|Dsim) as a whole, denoted as full sampling, and the one when sampling of the
two components log L(T) and S(T) is performed separately, denoted as combined (fast) sampling.
These methods will be described in detail in Section 2.6.

Figure 2a shows an example of the log-likelihood, sampling of the function log L(T) for the
spectrum ηtt̄ and its projection to the 6th and 9th bin log L(T6, T9). Figure 2b is created while using the
highest points of the log L(T6, T9) and, thus, represents an envelope of the log L(T6, T9), while Figure 2c
represents the exponential of the envelope of the original L(T6, T9), with the posteriors plotted along
the x and y axes (red lines), which are the marginalized binned probability densities that are analytically
given as

pi(Ti|D) =
∫
· · ·

∫
P(T|D)dT1 . . . dTi−1dTi+1 . . . dTN . (15)
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Figure 2. (a) View of a part of the 16-dimensional log-likelihood log L(T) function as function of the
6th and 9th bin (b) normalized maximal values of log L(T6, T9), and (c) normalized maximal values of
L(T6, T9).

The mean and standard deviation of the posteriors are taken as the unfolded result in each bin in
this study in order to construct the unfolded spectrum and its statistical uncertainty. Another approach
is to fit the posteriors and use parameters from the fit, see Figure 3, but this method is not used in this
paper, since the regularization can change the shape of the posterior to non-Gaussian.
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Figure 3. Marginalized 1D posteriors in the 6th (a) and 9th (b) bin of the ηtt̄ spectrum without regularization applied.

The advantage of the FBU in comparison to other unfolding methods is in providing the whole
probability distribution. Marginalizing this probability to one-dimensional posteriors the user gains
the probability distribution of the unfolded result for each bin and it can decide a custom statistical
property to define the unfolding result and its uncertainty in the particular bin while other methods
usually provide only a single number with some uncertainty. Thus, FBU provides more user control
over the unfolded output interpretation. Furthermore, marginalizing the whole probability into
two dimensions enables one to study cross-bin correlations, accessible only via dedicated pseudo
experiments in other methods. Another advantage is the possibility of a natural inclusion of systematic
uncertainties variation by introducing prior distributions for corresponding nuisance parameters
directly into the likelihood function and performing a simultaneous fit, which is a procedure known
as profiling.

2.4. Motivation for the Regularization

Figure 4 illustrates the unfolding process and proceeds from the (blue) pseudo data line to the
(red) unfolded line in Figure 4a, which fluctuates due to low occupied diagonal of the migration matrix
M (Figure 1c). One can improve the variance of the result by introducing a regularization term aiming
to diminish the curvature of the unfolding result (Figure 4b) with the optimal strength parameter
τopt = 2089 derived using the full sampling algorithm discussed in Section 2.3 (Figure 5), so that the
resulting χ2/ndf between particle and unfolded spectra is minimal.

On the other hand, if one sets the strength of regularization to a very large number, e.g., τ ≈ 105,
the corresponding χ2/ndf is high and the unfolded result departs from the particle level spectrum,
see Figure 4c.

This implies that χ2(τ)/ndf may have a minimum as function of τ (see Figure 5) and the aim of
this study is to provide a way to find such a minimum in a reasonable computational time. In the next
section, we describe three regularization functions used in this study.
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(b) τopt = 2089
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(c) τ ≈ 105

Figure 4. Unfolding the double-peaked ηtt̄ over-binned spectrum for different values of the
regularization strength parameter τ. The parameter τ is normalized, such that τ = τrel, see Section 3.
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Figure 5. Relative χ2(τ)/ndf as function of the regularization strength parameter τ and its minimum
at τopt = 2089. The parameter τ is normalized, such that τ = τrel, see Section 3. The vertical line
represents the minimum of χ2/ndf.

2.5. Regularization Functions S(T)

While the regularization function can be taken as any arbitrary function, we motivate several
choices [1]. The aim of the negative entropy, curvature and derivatives is to smoothen the
unfolded spectra.

• Entropy regularization

S1(T) = −
[
−

N

∑
t=1

Tt

∑ Tt′
log
(

Tt

∑ Tt′

)]
. (16)

• Curvature regularization

S2(T) =
N−1

∑
t=2

(∆t+1,t − ∆t,t−1)
2, (17)

where
∆t1,t2 = Tt1 − Tt2 . (18)



Symmetry 2020, 12, 2100 7 of 19

• First derivative regularization

S3(T) =
N−1

∑
t=2

|δt+1,t − δt,t−1|
|δt+1,t + δt,t−1|

, (19)

where

δt1,t2 =

Tt1
Wt1
− Tt2

Wt2

Ct1 − Ct2

(20)

and N is the number of bins, Wt is the width of tth bin, and Ct is the bin center of the tth bin.

Each of the regularization functions has a different effect on the full likelihood, see Figure 6.
While sampling the likelihood according to gradient of Lreg(T) = L(T)− S(T), i.e., leaving τ = 1 for
the moment, the values of S(T) are stored.
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Figure 6. The envelope of normalized regularization functions S(T) in the 6th and 9th bin. For
sampling purposes, the gradient of L(T)− S(T) was used.

2.6. Sampling the Likelihood Function

Effective sampling plays a crucial role in finding extremes of the likelihood function. In this paper,
a private implementation of the Markov chain Hamiltonian Monte Carlo [8] method is used when each
point of a function is derived from the previous point, thus forming a chain. The problem of finding
the maximum of the likelihood function is transformed to generate a sample via the study of motion of
a virtual particle in the potential represented by the likelihood function in an N-dimensional space.

The Hamiltonian of a particle with momentum p in potential V(x), depending on position vector
x, can be reformulated from the classical expression

H(p, x) =
p · p

2
+ V(x) (21)

to the studied problem, where the position vector x is substituted by the vector of particle-level truth
values T and the potential V(x) by the negative log-likelihood function − log L(T), so that

H(p, T) =
p · p

2
− log L(T). (22)

The first Hamiltonian equation of motion

∂H
∂x

= −dp
dt

(23)
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becomes in the space of truth values and momentum

∂H
∂T

= −dp
dt

(24)

and numerically

∇T log L(T) =
(pt+ε/2 − pt)

ε/2
(25)

where ε is the time interval. Each point in momentum space is updated as

pt+ε/2 = pt +
ε

2
∇T log(L(T)). (26)

Similarly, the second equation of motion

∂H
∂p

=
dx
dt

(27)

becomes

p =
(Tt+ε − Tt)

ε
(28)

so the truth (position) value is updated in time, according to

Tt+ε = Tt + εpt+ε/2 (29)

and the momentum as
pt+ε = pt+ε/2 +

ε

2
∇T log L(Tt+ε). (30)

Equations (26), (29) and (30) provide one and two-step updates for T and p, respectively. The time
interval ε is adapted in first few steps and it then stays constant for the rest of the sampling. The initial
momentum p is chosen randomly according to normal distribution and the initial truth vector T is
randomly chosen while using uniform distribution within limits set by user or using a default expected
range in i-th bin

[
0, 3 · (Dsim)iηi

εi

]
. These limits create a hyper-cube, in which the sampling is performed.

The algorithm details are described in [8].
The introduction of the canonical momentum and shifting the N dimensional problem to 2N

dimensions is one of the key features of the Hamiltonian MC chain generator. Classical mechanics
Hamiltonian equations of motions are then employed, with the negative likelihood playing the role
of a potential for a particle moving in the generalized phase-space, under the conservation of the
total energy. The invariance of the system w.r.t. time translations is the motivation for exploring the
trajectory of such a particle for different initial conditions, which leads to effectively sampling a larger
phase space and more of the classical trajectories, thus increasing the probability of reaching the global
minimum of the potential, i.e., the likelihood maximum.

3. Regularization

This section provides an overview of unfolding characteristics as function of the regularization
strength parameter τ. Throughout this paper, the original τabs parameter is normalized while using the
number of bins N and the curvature, entropy, or derivatives of the particle spectrum that are generally
symbolized by S(Tpart) as

τabs =
τrel

(N − 2) · S(Tpart)
(31)

and, in the τ dependence, figures τ ≡ τrel are used, so different spectra and regularization functions
acquire similar values of τ, which are then more comparable.
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3.1. Evolution of Posteriors with τ

Two effects come into shaping the posteriors with stronger regularization applied. First is
the shifting of the peak, which is welcome in obtaining the expected modified unfolded spectrum.
The second effect decreases the posteriors width and this effect decreases the uncertainty in the mean
for each bin sometimes down to an artificially infinitesimal small width with extremely high τ and,
thus, undesirably somewhat increases the χ2 when comparing unfolded and truth spectra.

Because these are two competing effects, a minimum of the χ2(τ)/ndf may or may not appear.
Figure 7 shows the posterior in the 15th bin of the ηtt̄ spectrum for three scenarios. First, when no
regularization is applied, so τ = 0, then with regularization with optimal τ = 2089, so the final χ2/ndf
is the smallest, and finally with an extremely high τ ≈ 104 when the posterior becomes almost a
Dirac δ-function.
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Figure 7. Posterior shifting and narrowing with increasing the regularization strength parameter τ in a
selected single bin: (a) no regularization applied τ = 0 (b) τ = 2089 (c) τ ≈ 104.

3.2. Evolution of Curvature, Entropy, and Derivatives with τ

One of the first checks whether the regularization works properly is to study the curvature,
entropy and derivatives of the unfolded spectra with respect to the increasing regularization strength τ.
The expected result is that, with higher τ, the curvature decreases and the unfolded spectrum is
smoother. The same characteristics also holds for entropy and derivatives. Figure 8 shows the decrease
of curvature, entropy, and derivatives with increasing τ, as expected.
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Figure 8. Mostly decreasing (a) curvature, (b) entropy, and (c) derivatives of the unfolded spectrum ηtt̄

with respect to τ. The uncertainty band is evaluated as a standard deviation over 20 independent
unfolding runs initiated with different random seeds.
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3.3. Evolution of Bin Cross-Correlations with τ

Using the likelihood projection to two different bins, the cross-bin correlations can be derived.
Figure 9 shows the overall matrix built from these correlation factors. While, in case of (a) (τ = 0),
the bin correlations are minimal, the progressing trend in case (b) (τ = 912), and finally (c) (τ ≈ 104) is
evident. Thus, the stronger regularization is the more bins of the unfolded spectrum are correlated
between each other.
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(c) τ ≈ 104

Figure 9. Cross-bin correlation matrix built from the correlation factor of likelihood, L(Ti, Tj) while
using the curvature regularization for three different values of τ.

In order to quantify the increase of correlations, the averaged sum of off-diagonal elements of bin
correlation matrix A is shown for various τ, given by

C̄ ≡ 1
Noff

∑
i 6=j

Aij (32)

and also its absolute value version to study the sum of correlations and anti-correlations

C̄abs ≡
1

Noff
∑
i 6=j
|Aij|. (33)

These bin-averaged cross correlations C̄ and C̄abs are shown in Figure 10, and the increasing trend
proves that, the stronger regularization, the more correlated the unfolding result over bins.
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Figure 10. The averaged cross bin correlations C̄abs (black) and C̄ (pink) using (a) curvature, (b) entropy,
and (c) derivative regularization for the ηtt̄ spectrum. The uncertainty band is evaluated as a standard
deviation over 20 independent unfolding runs initiated with different random seeds.
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3.4. Evolution of χ2/ndf and Bin Uncertainties with τ

The χ2/ndf is calculated as

χ2/ndf ≡ 1
N

N

∑
i

(Ti − T̂i)
2

σ2
Ti
+ σ2

T̂i

; (34)

where each T̂i for one particular bin is taken as the mean of the posterior and the uncertainty σT̂i
as

the standard deviation of the posterior. Because the width of the posterior is observed to decrease
with rising τ, the χ2/ndf also has to rise. In order to naively separate effects of spectra smoothing and
posteriors narrowing, two variables χnum and χdenom were studied, being defined as

χnum ≡
1
N

N

∑
i
(Ti − T̂i)

2 (35)

χdenom ≡
1
N

N

∑
i
(σ2

Ti
+ σ2

T̂i
), (36)

and shown in Figures 11 and 12.
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Figure 11. Variable χnum(τ) of the spectrum ηtt̄ using (a) curvature (b) entropy and (c) derivative
regularization illustrating the effect of spectra smoothing. The uncertainty band is evaluated as a
standard deviation over 20 independent unfolding runs initiated with different random seeds. The red
line indicates the minimal value of the χnum(τ).
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Figure 12. Variable χdenom(τ) of the spectrum ηtt̄ using (a) curvature, (b) entropy, and (c) derivative
regularization illustrating the effect of narrowing the posteriors and decreasing the uncertainty.
The uncertainty band is evaluated as a standard deviation over 20 independent unfolding runs initiated
with different random seeds.
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If the effects of shifting and narrowing the posterior are independent then χ2/ndf and ratio
χnum/χdenom should be comparable

χ2/ndf ≡ 1
N

N

∑
i

(Ti − T̂i)
2

σ2
Ti
+ σ2

T̂i

→ χnum

χdenom
≡

1
N

N
∑
i
(Ti − T̂i)

2

1
N

N
∑
i

σ2
Ti
+ σ2

T̂i

(37)

which can be seen in Figure 13.
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Figure 13. Variables χ2/ndf and χnum/χdenom of the ηtt̄ spectrum using (a) curvature, (b) entropy,
and (c) derivative regularization showing good correspondence. The uncertainty band is evaluated as
a standard deviation over 20 independent unfolding runs initiated with different random seeds.

The problem of finding the optimal τ by finding the minimal χ2/ndf is the time that is needed
to create such a graph as in Figure 13, while each point of the graph is obtained by running the full
unfolding. In the next section, an algorithm is described, which enables one to estimate the minimum
of χ2/ndf in a much faster way.

4. Combined Sampling as a Faster Algorithm

In order to speed up the algorithm which estimates the minimum χ2/ndf value, the algorithm of
combined sampling is proposed. The main idea is to sample separately the function log L0(T) and the
regularization function S(T) and then vary the τ parameter to obtain the overall likelihood

log Lτ(T) = log L0(T)− τS(T). (38)

A problem arises with sampling the regularization function S(T) since this function is not
smooth and sampling algorithm can end up mapping only the local minima. To avoid this is,
an auxiliary function

log L1(T) = log L0(T)− S(T) (39)

is sampled, where τ = 1 so the global minimum is dominated by L0(T). The function log L1(T) stands
in sampling only for the purpose of providing a correct gradient, while values of log L0(T) and S(T)
are stored separately, so post-unfolding these values can be used to compute in a fast way the full
desired posterior of

log Lcomb(T) = log L0(T)− τS(T) (40)

for any τ.
This faster combined sampling approach is shown in blue in Figure 14, while the red points stand

for the full sampling, where, for each point in τ, a new sampling had to be performed. Figure 14
shows a very good agreement between combined and full sampling methods in terms of their minima.
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In the case of derivative regularization in Figure 14c the full sampling method (red) does not cover the
highest values of τ in the range of approximately [5× 103, 105]. The reason is that the regularization
function of derivatives, as compared to the curvature and entropy, is very narrow, approaching for
high τ almost a δ-function, see Figure 6c and, thus, the sampling either takes infinite time to find such a
peak in the wide domain of the function or is stopped by reaching the maximum number of iterations
and the resulting χ2/ndf is very high as the global maximum is not found.
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Figure 14. Variable χ2(τ)/ndf of the spectrum ηtt̄ using (a) curvature, (b) entropy, and (c) derivative
regularization comparing combined (faster) sampling (blue) and full sampling (red). The uncertainty
band is evaluated as a standard deviation over 20 independent unfolding runs initiated with different
random seeds. The vertical dotted lines indicate positions of χ2/ndf minima for each sampling case.

5. Accidental Minima of χ2(τ)/ndf

In the case of unfolding without regularization being effective enough so no smoothing is actually
needed, the narrowing of posteriors can cause an accidental minimum in the χ2(τ)/ndf function.
The example of the mtt̄ spectrum shows the variable χnum as a flat function with increasing tail in
high τ values, see Figure 15a. At the same time, the χdenom decreases rapidly and the ratio of these
components as well as χ2/ndf exhibit a minimum at τ ≈ 7000 solely due to the narrowing of posteriors.
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Figure 15. Variables (a) χnum(τ), (b) χdenom(τ) for the full sampling method; and (c) χ2(τ)/ndf using
full (red) and combined (blue) sampling of the mtt̄ spectrum with an accidental minimum at τ ≈ 7000
(curvature regularization). The vertical dotted lines indicate positions of χ2/ndf minima for each
sampling case.

This accidental minimum does not improve the smoothness of the spectrum, as illustrated
in Figure 16. The unfolded spectrum while using regularization in Figure 16b only decreases the
uncertainties (red line) when compared to Figure 16a while not providing a smoother spectrum, as can
be seen in the ratio and only a minor decrease of χ2/ndf.
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(b) τopt ≈ 7000
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(c) τopt(tail) ≈ 104

Figure 16. The result of unfolding (a) without regularization (b) with regularization and (c) with
regularization applied only at second half of the spectrum mtt̄ while using the curvature in the case of
a accidental minimum in χ2(τ)/ndf for one representative random seed.

The regularization is not effective due to the fact that the tail of the mtt̄ spectrum has lower
number of events compared to the first half of the spectrum. The contribution to the curvature is thus
small in the tail. The solution would be to switch on the regularization only for the second half of the
spectrum as shown in Figure 16c where χ2(τ)/ndf(tail) computed in the tail region of the spectrum
decreases when compared to Figure 16a,b, also affecting the full χ2/ndf via a change of the global
maximum of the full likelihood.

6. Hidden Minima of χ2(τ)/ndf

If the smoothing effect that is expressed by χnum in Figure 17a has a minimum and if the narrowing
effect described by χdenom in Figure 17b starts to decrease with a similar or sharper slope than χnum

(τ ≈ 102), then the real minimum in χ2/ndf in Figure 17c vanishes and flattens, so finding the optimal τ

for the pt,had
T spectrum in Figure 18 cannot be identified by minimizing χ2/ndf as a function of τ.

Figure 18b shows the improved unfolded spectrum that was obtained while using the minimum of
χnum. However, due to the narrowing of posteriors, the χ2/ndf increases as compared to Figure 18a
(no regularization).
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Figure 17. Variables (a) χnum(τ), (b) χdenom(τ) for the full sampling method; and, (c) χ2(τ)/ndf
using full (red) and combined (blue) sampling of the pt,had

T spectrum with a vanishing minimum
(derivative regularization). The vertical dotted lines indicate positions of χ2/ndf minima for each
sampling case.
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(a) τ = 0

0 100 200 300 400 500 600 700 8000

5

10

15

20

25

30

35

40

45

310×

E
ve

nt
s

Particle

Pseudodata

Unfolded

/ndf = 19.02χ

0 100 200 300 400 500 600 700 800
 [GeV]t,had

T
p

0.4

0.6

0.8

1

1.2

1.4

1.6

U
nf

ol
de

d 
/ P

ar
tic

le
   

 

(b) τopt(χnum) = 912

Figure 18. Result of unfolding (a) without regularization and (b) with regularization of the spectrum
pt,had

T using the derivatives in case of a hidden minimum in χ2(τ)/ndf for one representative random
seed. Spectrum becomes smoother, but χ2/ndf does not improve due to the narrowing of posteriors.

7. Real Minima of χ2(τ)/ndf

If the smoothing effect expressed by χnum in Figure 19a has a global minimum and, if the
narrowing effect described by χdenom in Figure 19b starts to decrease around the same region of τ

values as χnum (τ ≈ 102), then a real minimum in χ2/ndf in Figure 19c is observed and it helps to
improve the desired property the unfolded spectrum, as shown for the spectrum of ηtt̄ in Figure 20.
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Figure 19. Variables (a) χnum(τ), (b) χdenom(τ) for the full sampling method; and (c) χ2(τ)/ndf
using full (red) and combined (blue) sampling of the ηtt̄ spectrum with the real minimum at τ ≈ 900
(curvature regularization). The vertical dotted lines indicate positions of χ2/ndf minima for each
sampling case.
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(a) τ = 0
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(b) τopt = 912

Figure 20. The result of unfolding (a) without regularization and (b) with regularization of the spectrum
ηtt̄ while using the curvature in case of a real minimum in χ2/ndf for one representative random seed.

8. Results

The results for the spectra of mtt̄, pt,had
T and ηtt̄ were already shown in Figures 16, 18 and 20.

In this section, remaining two studied spectra ηt,had and ptt̄
T are shown in Figures 21 and 22, where,

for ηt,had, the regularization is unnecessary.
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(c) τopt = 1698

Figure 21. Result of unfolding (a) without regularization and (c) with regularization of the spectrum
ηt,had using the curvature regularization for one representative random seed. Variable χ2(τ)/ndf (b)
while using full (red) and combined (blue) sampling of the ηt,had spectrum with minimum at τ = 1698
(curvature regularization). In this case, the regularization is not needed. The vertical dotted lines
indicate positions of χ2/ndf minima for each sampling case.

The results of all five spectra and their characteristics are summarized in Tables 1–3 in order
to attempt finding a common feature that could predict the existence of real minima. Firstly,
a characteristic of the migration matrix M was studied defined as

fdiag ≡
1
N

N

∑
i

Mii =
1
N

TrM (41)
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where fdiag has the meaning of averaged diagonal elements. As a second characteristic, the correlation
factor ρ is computed while using the ROOT’s TH2D class and the GetCorrelationFactor() method [9].
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(c) τopt = 141

Figure 22. Result of unfolding (a) without regularization and (c) with regularization of the spectrum ptt̄
T

using entropy regularization for one representative random seed. Variable χ2(τ)/ndf (b) using full (red)
and combined (blue) sampling of the ptt̄

T spectrum with minimum at τ = 2089 (entropy regularization).
The vertical dotted lines indicate the positions of χ2/ndf minima for each sampling case.

Table 1. Results of minima type and basic characteristics of the migration matrix M: averaged
on-diagonal factor fdiag and correlation matrix ρ.

Spectrum Type Minimum Method fdiag ρ

mtt̄ falling Accidental Curvature 0.51 0.92

pt,had
T falling Hidden Derivative 0.48 0.86

ηt,had double-peaked Real Curvature 0.75 0.93

ηtt̄ double-peaked Real Curvature 0.49 0.94

ptt̄
T falling Real Entropy 0.29 0.86

Another characteristic that is shown in the Table 2 corresponds to the shape of the unfolded
spectra. The curvature C0, entropy E0 and derivatives D0 of unfolded spectra without regularization
are given relative to the curvature Cptcl, entropy Eptcl, and derivatives Dptcl of the truth particle spectra.

Table 2. Relative curvature, entropy and derivatives of the unfolded spectra (τ = 0) with respect to the
curvature, entropy, and derivatives of the particle level spectra.

Spectrum Minimum C0
Cptcl

E0
Eptcl

D0
Dptcl

mtt̄ Accidental 1.1 1.0 2.7

pt,had
T Hidden 0.98 1.0 11

ηt,had Real 1.1 1.0 0.96

ηtt̄ Real 3.7 1.0 3.5

ptt̄
T Real 14 0.97 11
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Table 3. Time needed to produce χ2/ndf(τ) curve using combined sampling Tcomb and full sampling
Tfull for 68 points of τ in the region [0; 105]. Time in seconds is rounded to hundreds.

Spectrum Minimum Tcomb[s] Tfull[s] Tcomb
Tfull

mtt̄ Accidental 900 30,700 0.029

pt,had
T Hidden 1200 41,300 0.030

ηt,had Real 600 14,500 0.039

ηtt̄ Real 1000 33,700 0.029

ptt̄
T Real 1300 44,700 0.030

9. Discussion

We studied a method of finding an optimal regularization strength parameter τ and developed
an independent implementation of two methods of adding regularization terms to the Fully Bayesian
Unfolding and proposing a fast combined sampling method for finding an optimal value of
the regularization strength parameter τ. The C++ version of the Fully Bayesian Unfolding was
implemented into a private modification to RooUnfold [10], which is a widely used unfolding package
in HEP.

The recommended option for the user is to use the combined sampling algorithm, which returns
the χ2/ndf(τ) curve in a shorter time than the regular full sampling method, see Table 3.

The time that is needed to produce χ2(τ) curve while using the full sampling depends on
the number of points in τ the user wishes to obtain (here, 67 points × three methods), while,
using the combined method, the sampling algorithm is only run four times: first, to sample the
log-likelihood function without the regularization part and afterwords three times for each of the
regularization functions (curvature, entropy, and derivative), which roughly explains the time-saving
ratio 4:(3×67) ' 0.02.

While no clear relation between the spectra characteristics in Tables 1 and 2 and real minima of
χ2/ndf was observed, the user is encouraged to evaluate χ2/ndf, χnum, and χdenom him/herself in
order to convince oneself of the validity and usefulness of the regularization.

While we provided an example for the spectra of reconstructed top quarks that are produced in
pp collisions, the applicability of the method is not at all unique to spectra in high energy physics.
Any inverse problem with finite migrations and a large number of bins is a potential candidate for
benefitting from the fast sampling regularization that is introduced for the FBU method.
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