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Abstract: Similarity analysis of DNA sequences can clarify the homology between sequences and
predict the structure of, and relationship between, them. At the same time, the frequent patterns of
biological sequences explain not only the genetic characteristics of the organism, but they also serve
as relevant markers for certain events of biological sequences. However, most of the aforementioned
biological sequence similarity analysis methods are targeted at the entire sequential pattern, which
ignores the missing gene fragment that may induce potential disease. The similarity analysis of such
sequences containing a missing gene item is a blank. Consequently, some sequences with missing
bases are ignored or not effectively analyzed. Thus, this paper presents a new method for DNA
sequence similarity analysis. Using this method, we first mined not only positive sequential patterns,
but also sequential patterns that were missing some of the base terms (collectively referred to as
negative sequential patterns). Subsequently, we used these frequent patterns for similarity analysis
on a two-dimensional plane. Several experiments were conducted in order to verify the effectiveness
of this algorithm. The experimental results demonstrated that the algorithm can obtain various
results through the selection of frequent sequential patterns and that accuracy and time efficiency
was improved.

Keywords: negative sequential patterns; frequent patterns; similarity analysis

1. Introduction

In recent years, a large volume of biological sequence data has been generated. When a new DNA
sequence is obtained, similarity analysis is used in order to determine whether it is similar to a known
sequence. If it is homologous, this will save time and effort in re-determining the function of the new
sequence. In bioinformatics research, similarity analysis of biological sequences is by no means a
straightforward mechanical comparison. However, numerous mathematical and statistical methods
are used to assist in analysis. In sequence similarity analysis, alignment and classical research methods
are the most common. In sequence alignment, two problems exist that directly affect the similarity
score: the substitution matrix and gap penalty. Gap penalty is used to compensate the influence of
insertion and deletion on sequence similarity and no suitable theoretical model exists to describe the
slot problem. Therefore, vacancy penalty points lack a functional theoretical basis and are subjectivity.

First, the drawbacks of sequence alignment have caused researchers to explore other methods
for comparing DNA sequence similarities. For example, experts have devised various mathematical
schemes. The graphical representation of biological sequences can identify the information content
of any sequence to help biologists to choose another complex theoretical or experimental method.
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However, several problems still exist with these methods. For example, biological sequences
often comprise thousands of base sequences and a large amount of time and storage space is
consumed with mathematical representation and similarity analysis. Second, the aforementioned
similarity analysis method can only produce a unique evolutionary relationship or distance matrix.
Different methods will produce different analytical results, which greatly affect the accuracy and
efficiency of analysis. In addition, existing similarity analysis methods are for positive sequential
patterns (PSPs). For negative sequential patterns (NSPs), still no unified similarity measurement
method exists. We know that the presence of NSPs in biological data is inevitable and is even crucial to
some types of disease-causing genes. This motivated us to explore a method for performing similarity
analysis of DNA with a missing base sequence. We will graphically represent the maximum frequent
sequential patterns of a two-dimensional plane and then analyze the similarity with the represented
DNA sequences.

Before performing similarity analysis, we need to perform sequential pattern mining on
biological data. Mining NSPs is a difficult yet crucial task in DNA similarity analysis. Sequential
pattern mining can locate all of the frequent sequential patterns in a given sequence database and
it has been widely used in numerous fields [1-3], such as sequence classification and prediction,
Web access pattern analysis, customer purchase pattern analysis, natural language sequence analysis,
and biological sequence analysis. PSP mining only considers events (behaviors) that have already
occurred, which is different from traditional sequential pattern mining. NSPs take into account
events (behaviors) that have not yet occurred [4], which is, items not in the sequence that provide
comprehensive information regarding human beings. Examples include the different degrees of
impact on various existing situations in a student’s life [5] and a missing gene that may induce
potential diseases, but that is ignored by humans. Similarity analysis of biological sequences also exists,
which describes the evolutionary relationships between species. However, if a species has a missing
gene that is treated as a normal gene, this can have a significant effect on the results of the analysis. It is
more meaningful to study the sequence of missing base pairs than it is to find the sequential patterns
of frequent sequences. The NSPs in this paper refer to a sequence containing a missing base.

In the past, PSP mining was at the center of biological sequential pattern mining. However,
the progress of NSP mining research in recent years has been very limited, and most mining algorithms
show low efficiency and high computational complexity. In 2011, our team proposed an e-NSP [6]
algorithm. However, e-NSP time efficiency is not high and it consumes more storage space. Therefore,
Dong further improved the e-NSP and proposed the f-NSP [7], which is based on bit operation, greatly
improving the time and space efficiency of the algorithm. Accordingly, we apply the f-NSP frequent
pattern mining of biological sequences, which can mine a large number of useful PSPs. Furthermore,
this method can also mine a large volume of NSPs, for which efficiency is significantly improved,
and the result of this mining is the data set for our subsequent work.

Not only does our method describe biological evolutionary relationships more accurately, but
various pattern combinations can produce different results. The similarity analysis that we performed
on the basis of frequent patterns caused the sequence length to be very short, which saved time and
decreased space consumption. When compared with other methods, we also added similarity analysis
for NSPs, which we proved experimentally.

The structure of this paper is as follows. Section 2 discusses the work that is related to the research
objective. Section 3 provides the corresponding definitions and concepts of several specialized terms
that are encountered in the research. Section 4 briefly introduces the relevant knowledge of {-NSP.
Section 5, in detail, introduces the similarity analysis method and the process of negative biological
sequencing. Section 6 demonstrates the research and experimentation on similarity analysis using real
data that was performed and compared with other methods. We prove that the analysis performed
with our method can make the results more accurate. Section 7 presents conclusions and future work.
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2. Related Work

This section is divided into two parts: the first describes the pattern similarity analysis of biological
sequences and the second describes the biological sequential pattern mining technique that we used.

2.1. Pattern Similarity Analysis of Biological Sequences

In recent decades, numerous DNA sequence similarity analysis methods have been proposed.
At present, DNA similarity analysis [8,9] primarily focuses on elucidating a homologous
relationship between sequence or predicting the structure and function of unidentified sequences in
known sequences. The DNA sequence consists of four bases, adenine, thymine, cytosine, and guanine,
which are represented by the letters A, T, C, and G, respectively. Most of the methods cannot process
this sequence of letters, so we need to convert them into a sequence of numbers. Most DNA similarity
analysis methods can also be divided into a graphic representation and other schemes according
to their digital forms. Of these methods, graphic representation is a popular research field in DNA
sequence similarity analysis. This method was first proposed by Hamori and Ruskin [10] and it has
been subsequently widely used.

The graphics-based approach can be further divided into several categories that are based
on the spatial dimension of the sequence, from two-dimensional (2-D) to three-dimensional (3-D),
and other categories. The two-dimensional graphical representation of DNA sequences is a useful
method for studying gene sequences [11]. The primary objective of representing nucleotides as
digital vectors and mapping the DNA sequence in curves on a two-dimensional plane, based on the
numerical characteristics of the DNA sequence that can be obtained. Gong et al. proposed new DNA
sequence descriptors [12] that are derived from geometric concepts of curvature approximation and
eigenvalue absence, which have the complexity of linear sequence length growth. Guo et al. proposed
another similarity analysis method of DNA sequences that were built on two-dimensional graphical
representation [13]. One DNA sequence corresponds to 24 different curves, which are organized in a
two-dimensional Cartesian coordinate system. However, this ignores the chemical structure of the
DNA sequence and omits most of its chemical information. In 2014, Ma et al. introduced a new
type of iterative functional system in order to outline the two-dimensional graphical representation
of protein sequences [14], which combines the various physic-chemical properties of amino acids.
Lee et al. proposed a similarity measure that is capable of handling non-overlapped data and analyzed
its characteristics on data distributions [15]. In order to obtain discriminative similarity values for
non-overlapped data, Lee considered two approaches. The first was to adopt the traditional similarity
measurement method after preprocessing the non-overlapping data. The second was to consider the
neighbor data information when designing the similarity measure, where the relationship to specific
data and residual data information was considered. In 2018, Xie et al. proposed the F-B curve and its
corresponding single-base correlation 2D curve method [16]. The construction of these graphic curves
is based on the allocation of individual bases of four different sine (or tangent) functions. In 2019,
Abo-Elkhier et al. numerically represented each amino acid in the protein sequence and proposed a
new 2-D graphical representation method [17]. They introduced a new descriptor that consisted of
a vector (At, SA) consisting of the mean and standard deviation from the total number of protein
sequences. In addition, numerous 3-D methods also exist. For example, based on 64 codons and
four nucleotide chemical DNA sequences, Jafarzadeh et al. proposed another 3-D representation
method (C-Curve) [18]. However, this three-dimensional approach may require more storage space
and pose a larger computational challenge than a 2-D approach. Numerous other types of graphical
representations also exist, such as those that were proposed by Liao et al. [19]. According to the
classification of the four bases of DNA, the main sequence is converted into a structure diagram.
Invariants, such as topological index, were extracted from the graphical representation of these
primary DNA sequences and then used to compute the similarity between the 11 species.

None of the above methods can effectively analyze the sequence of missing bases. Furthermore,
in order to effectively analyze DNA sequence similarity, several key issues need to be considered: (1)
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how to effectively represent a DNA sequence with a digital sequence; (2) how to select appropriate
descriptors that can be regarded as DNA sequence characteristics and then characterize them according
to the digital sequence; and, (3) how to effectively process DNA sequences of various lengths and
maintain their consistency. In this regard, we propose graphically representing the maximum frequent
sequential patterns on a two-dimensional plane and analyzing the similarity with the represented
DNA sequences.

2.2. Biological Sequential Pattern Mining Technique

In this section, we begin with PSP mining of biological sequences and then introduce NSP mining.

Biological sequential pattern mining is a major research topic for mining frequent sub-sequences
in biological sequence databases as patterns and it has a wide range of application prospects, such
as the early STAR algorithm [20]. Kurtz et al. proposed the REPuter algorithm that is based on the
suffix tree [21], which overcomes the limitation of input sequence size, but with which is difficult to
find repeat sequences with a high occurrence frequency of DNA sequences that are based on paired
sub-sequences. Deng et al. [22] proposed a new method for frequent pattern mining in DNA sequences,
which is based on two levels of nested hash table data structures and set operations. Scanning the
DNA sequence one time reveals all frequent patterns and their positions in the DNA sequence. In 2018,
Zhang proposed MulMer [23], which effectively mines all distinct multi-mers. MulMer first utilizes the
inverted-index technique in order to project the original sequence and the method of pattern growth is
then adopted to generate potential multi-mers; each multi-mers accurately records its location in the
original sequence.

Few papers exist on NSP mining and none have applied NSP mining to DNA and protein
sequences. We briefly introduce this below. Hsueh and colleagues designed an NSP mining method,
named PNSP [24], which comprises three mining process steps. The first step is to use traditional
algorithms to mine PSPs. The second step is to derive the negative item sets from the positive
item sets. The third step is to join the positive and negative item sets to generate the positive and
negative candidate sequential patterns using a method that is similar to prior concatenation. Finally,
the candidate sequence support is obtained based on a database repeat scan, and the PSPs and NSPs
are determined. Zheng et al. have introduced a GSP method in order to determine NSPs, referred to as
Negative-GSP [25]. It first discovers PSPs through GSP after using a modified connection method and
pruning operation in order to generate and trim a negative sequential candidate (NSC). The negative
pattern is then generated by rescanning the database to calculate the support degree of the NSCs.
Ouyang et al. proposed a discoverable from the NSP mining algorithm, such as (—A, B), (A, —B)
and (—A, -B). The pattern mining negative association rules are very close. This method needs to
meet (AN B) = ¢. The primary objective of this method is to obtain all frequent item sets, after
the use of frequent item sets to generate frequent and infrequent sequences. The NSP is then mined
from infrequent positive sequences. The work that was published in [26] raised the issue of NSPs,
but did not provide a concrete solution; the work that was published in [27] used the same NSP as
in the existing literature and applied it to an incremental database. Lin proposed an NSP mining
algorithm, named NSPM [28]; however, the NSP defined in this algorithm only allows for the last
element of the sequence to be a negative term and all other elements must be positive terms. Repetitive
sequence patterns capture repetitions of sequence patterns in various sequences and understanding
their behavior from the repeated relationship between them is crucial. Therefore, Dong et al. proposed
a type of effective algorithm, called an e-RNSP [29], in order to mine the repetitions of NSPs (RNSPs).
This method can convert repeated negative constraints to repeated positive constraints, and it can
quickly calculate repetition supports by only using the corresponding RPSP information without
rescanning the entire database. However, NSP mining is still in its infancy and it faces numerous
challenging problems, one of which is how to select useful NSPs. In order to solve this first problem,
Dong et al. proposed a Topk-NSP [30] algorithm to mine k of the most common negative patterns
and, of these, the authors proposed three optimization strategies. Topk-NSP was the first algorithm
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that is capable of mining the most commonly used k NSPs. A fairly good e-NSP exists, but it has its
drawbacks, which we will not describe here, because they were mentioned in the first section above.
The {-NSP was selected to mine DNA sequences, which not only efficiently mined frequent sequential
patterns, but also numerous NSPs, which are crucial for our next similarity analysis of DNA.

The current similarity analysis methods of biological sequences continue to be of interest to
researchers. Numerous approaches have been proposed, but room for improvement still exists.
In particular, no method exists for similarity analysis of NSPs. This paper proposes the adoption of
frequent sequence patterns for measuring similarity.

3. Basic Principles

In this section, we introduce several basic principles and related instructions.

3.1. Definition

Definition 1. A DNA sequence, which is also known as a gene sequence, is the first order structure of a real or
hypothetical DNA molecule that carries genetic information, represented by a string of letters.

Definition 2. Maximal frequent patterns. Given a DNA sequence S = (si,5y,...,5n), where s;(1 <
i < n) is a character from the charset Q = {A,-A,T,—T,C,—C,G,—~G}. Additionally, a pattern
S = (Sg, Ski1, - Sm) (1 <k <m < n) is a frequent pattern if its support is no less than min-sup. A maximal
frequent pattern is one in which none of its super-sequences are frequent and its sub-sequences are frequent [31].

Definition 3. Dynamic time warping, which has a simple purpose, has been widely used in the field of speech
recognition. It is a nonlinear programming technology that combines time planning and distance measurement
in order to calculate the maximum similarity between two time series, namely minimum distance.

3.2. Data Sets of DNA Sequence

At present, few DNA sequence data sets can be used in order to study sequence similarity and
finding a more suitable DNA sequence set is still a problem. The f—globin gene from 15 different
species are the most commonly used DNA sequences [32]. These data sets can be found at https:
/ /www.ncbinlm.nih.gov/genbank/.

3.3. Similarity Distances

Calculating the distance between DNA sequences is essential for DNA similarity analysis.
Euclidean distance and correlation angles are the most commonly used methods for calculating
distance. We can calculate the Euclidean distance between the sequences or the correlation angle
between them. When the Euclidean distance or correlation angle is smaller, the sequence is more similar,
which is, the sequence is more homologous.

3.4. Output Data

Generally speaking, a distance matrix is used to represent the output data of DNA sequence
similarity analysis. Phylogenetic trees are often constructed based on the distance matrix in order to
better show the homology relationship between various species.

4. F-NSP Algorithm Based on Biological Sequences

We use the f-NSP [7] to mine negative sequence patterns. In order to provide the readers with
better understanding of the algorithm, we will briefly describe the process of the algorithm below.
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4.1. Preprocessing

For each sequence or genome to be processed, each is preprocessed before frequent pattern
mining. First, the letters of the data set are replaced with numbers. Subsequently, when the DNA
sequence length is long, preprocessing reduces the memory and time consumption of sequence
processing. The sequence is broken into blocks, each consisting of the same number of bases. Unlike
the FPE method, we do not discard any base sequences when we block the sequence patterns of
species. The length of the blocks is chosen. We used our lab’s f-NSP algorithm to mine frequent DNA
sequential patterns, because this is currently a relatively fast algorithm and it is able to mine negative
DNA sequential patterns.

4.2. The Main Idea and Data Structure of f-NSP
The main idea of {-NSP is as follows:

(1) the GSP algorithm is used in order to obtain all positive frequent sequences, and the bitmap
corresponding to each sequence is stored in a hash table;

(2) corresponding NSCs based on all the positive sequences are generated; and,

(38) support of NSCs can be calculated by bit operation. If the support of a NSC is greater than
min_sup, then it is a frequent sequential pattern;

In general, the f-NSP creates a bitmap for PSP to store its information, and then calculates NSC’s
support through related bit operations. If a positive sequence is contained in the i-th data sequence,
the i-th position of this positive sequence bitmap is set to 1, otherwise to 0. The length of each bitmap
is the number of sequences that are contained in the data sequence. Table 1 shows the data set, such as
the bitmap (AT) |1|1|1|1|0 |, indicating that (AT) is contained by the first four data sequences.

The generation process of the f-NSP data structure can be referred to in [7].

Table 1. Data Set.

Sid  Data Sequence

<ATCTG>
<GGACCT>
<CAGTC>
<AGTCA>
<CCA>

QL W IN =

4.3. Calculating the Supports of Negative Sequences in f~NSP

We have adopted a new bitmap storage structure, where we can use the bit OR operation to
replace the original union operation. Assuming that s is a positive sequence, its bitmap is represented
by B(s), and the number ‘1" in the bitmap is represented by N(B(s)). Subsequently, a negative sequence
ns of m-size and n-neg-size is given, and its support degree is:

sup (ns) = sup (MPS (ns)) — N (OR_; {B (p (1 — negMS;))}) @

Figure 1 explains the bit OR operation. If a positive sequence is <G C T A>, then sup(CA) = 5.
According to the negative candidate generation method, a negative candidate sequence ns is <~G C
—T A>. The corresponding MPS(ns) = <C A>, P(1-negMS;) = <G C A>, and P(1-negMS;) = <C T A>.
Assuming that B(<GCA>)= 11101011101, B(<CTA>) = 11111011111. Subsequently, Figure 1 shows
the bitmap union bitmap of B(<GCA>) OR B(<CTA>). Therefore, we can easily obtain N(unionbitmap)
=4, and then obtain sup(<-G C =T A>) =1 from Equation (1).

If ns only contains one negative element, then the support of sequence ns is obtained by
the Equation (2).

sup (ns) = sup (MPS (ns)) —sup (p (ns)) @
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In particular, the support for a single element negative sequence <-~G> is obtained by
the Equation (3).

sup ((=G)) = [D| —sup ((G)) ®)
<GCA> <CTA> <Unionbitmap>
1 1 1
0 1 1
or result
0 — > 0 > 0
1 1 1
0 1 1

Figure 1. Operation process of bit OR.

4.4. The f-NSP Algorithm

Algorithm 1 shows the f-NSP algorithm. The information of the algorithm can be found
in Dong [7].

Algorithm 1 f-NSP Algorithm .

1: Input: Sequence dataset (D) and minimum support(min_sup);
2: Output: NSP;

3: PSP=GSP(D);

4: HashTable PSPHash=CreatPSPHashTable(PSP);

5: for each psp in PSP do

6: NSC=NSC_Generation(psp);
7: for each nsc in NSC do
8: if (nsc.size==1 && nsc.nsize==1) then
9: nsc.support= | D | -p(nsc).support;
10: end if
11: if (nsc.size>1 && nsc.nsize==1) then
12: nsc.support=MPS(nsc).support-P(nsc).support;
13: else
14: 1-negMSSsc={1-negMS; | 1<=i<=nsc.nsize};
15: Bitmap unionbitmap=1-negMS1.getBitmap;
16: fori=2;i<=1-negMSSy;..size; i++ do
17: unionbitmap=0OR(1-negMS;.getBitmap);
18: end for
19: nsc.support=MPS(nsc).support-unionbitmap.GetOneSize();
20: end if
21: if (nsc.support_count/ | D | >=min_sup) then
22: NSP.add(nsc);
23: end if
24: end for
25: end for

26: Return NSP.
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5. Similarity Analysis of Negative DNA Sequences

5.1. 2-D Representation of Negative DNA Sequential Patterns

Bai et al. [33] proposed a similarity analysis method for the positive sequential sequence. Based
on this, we first propose a similarity analysis method for negative sequential patterns. We constructed
a purine-pyrimidine diagram on the complex plane, as shown in Figure 2. The first and third quadrants
are purines (A, A, G and —G), the second and fourth quadrants are pyrimidines (T, =T, C and -C),
which represent the unit vectors of the eight nucleotides A, -A, G, =G, C, =C, T and -T, and their
corresponding sequences are as follows:

(b+di) > A, (d+Dbi) =G
(b—di)—>T, (d—bi)>C
(—b—di)—)ﬂA,(—d—bi)—)ﬁG
(=b+di) =T, (—d+bi)—~C

where b and d are non-zero real numbers. Here, we have b =1\ 2,d = V3 \ 2. A and T are conjugate,
=A and —T are conjugate, C and G are conjugate, =C and =G are conjugate. A, T, C, G stands for the
existing base pair. Additionally, —A, =T, =C, =G stands for the base pair that should have appeared but
did not (or the missing base pair), and is termed the negative base, as shown in Figure 2.

N

Y

~C(-d+bi)

A 4

~G(-d-bi)

Figure 2. A purine-pyrimidine graph.

By this means, we can restore each frequent sequence pattern to a set of vectors. We numbered
the DNA sequence and then thought of it as a finite complete ordered set with t elements, which is the
same as [t| = {1,2, ..., t}.

s(n) =s(0)+)_y(j), n € [{] 4)
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where s(0) = 0, and y(j) satisfies the following situation (see Equation (5)).

1443, if j=A,
@Jr%i’ if j=G,
1o, if j=T,
3 1.- . .
yp={ ToH o Hi-C ©)
—1-%i,  if j=-a,
—L i if j=-G,
“1Bi i j=T,
~P Ll i j=-C,

j=0,1,2,...,n, where j represents the base type at the 0, 1, 2,..., n-th position in the sequence S,
and n is the length of the DNA sequence being studied. We can uniquely obtain the original DNA
sequence in the DNA diagram by connecting the points on the curve.

5.2. Algorithm Principle of DTW Distance

Set the time series S! (t) = {s},s},....s},}, S*(t) = {s3,53,..., 53}, and the lengths are m and n,
respectively. According to their position time sorting, construct the matrix Ay, x, of m x n, and each
element of the matrix, ajj = d (s},sjz) = (szl — 5]2)2. In the matrix, the collection of a group
of adjacent matrix elements is called the winding path, which is denoted as W = wy,wy, ..., wy,
the k-th element of W is wy = (a;;) , and this path is used in order to satisfy the following conditions:
(1) max{m,n} < K <m+m—1;(2) wy = a1, W = amy; and, (3) for wy = a;;, wx_1 = a;y must

meet0 <i—i <1,0<j—j <1, then DTW (§',8?) = min (}(, [YE wl-). The DTW algorithm can

be summarized in order to apply the idea of dynamic programming to find an optimal path to the

smallest bending cost, namely,
D(l,l) = a1l (6)
D(i,j) =aj+min{D(i—1,j-1),D(i,j—1),D(i—1,j)}

Of these, i = 2,3,...,m.j = 2,3,...,n. D(m,n) is the minimum cumulative value of the bending
pathin Ay xp.

5.3. Similarity Analysis of Negative DNA Sequences

Because the DNA sequence corresponds to its time series of one-to-one [33], the similarity of
DNA sequences can only be compared by comparing the similarity of their corresponding time series.
The DTW algorithm is one of the classical methods used to measure the similarity of the time series.
The DTW distance algorithm is used here in order to compare the similarity of DNA sequences.

6. Experiment Results

We first used the f-NSP algorithm to obtain frequent sequence patterns, and then used the mined
maximum frequent sequence patterns for similarity analysis. All of the experiments were performed
on an Intel Core i5 computer with a 2.4-GHz CPU and 8 GB of memory, as well as using the Windows
7 operating system.

6.1. Experiment Data Set

Because the DNA sequence corresponds to its time series one to one, the similarity of the DNA
sequence can only be compared by comparing the similarity of their corresponding time series.
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We compared the results of the frequent patterns mining of the first exon of the B-protein gene of
the 10 different species based on our proposed graphical representation. Table 2 shows the coding
sequences of the first exon of the B-globin gene of the 10 different species. Additionally, Table 3 lists
the sequences information.

Table 2. The coding sequences of the first exon of the B-globin gene of 10 different species.

Data Set Code Sequences

Human ATGGTGCACCTGACTCCTGAGGAGAAGTCTGCCGTTACTGCCCTGTGGGGCAAGGT
GAACGTGGATTAAGTTGGTGGTGAGGCCCTGGGCAG

Opossum ATGGTGCACTTGACTTCTGAGGAGAAGAACTGCATCACTACCATCTGGTCTAAGGTG
CAGGTTGACCAGACTGGTGGTGAGGCCCTTGGCAG

Rat ATGGTGCACCTAACTGATGCTGAGAAGGCTACTGTTAGTGGCCTGTGGGGAAAGGT
GAACCCTGATAATGTTGGCGCTGAGGCCCTGGGCAG

Chimpanzee ATGGTGCACCTGACTCCTGAGGAGAAGTCTGCCGTTACTGCCCTGTGGGGCAAGGT
GAACGTGGATGAAGTTGGTGGTGAGGCCCTGGGCAGGTTGGTATCAAGG

Gallus ATGGTGCACTGGACTGCTGAGGAGAAGCAGCTCATCACCGGCCTCTGGGGCAAGGT
CAATGTGGCCGAATGTGGGGCCGAAGCCCTGGCCAG

Goat ATGCTGACTGCTGAGGAGAAGGCTGCCGTCACCGGCTTCTGGGGCAAGGTGAAAGT
GGATGAAGTTGGTGCTGAGGCCCTGGGCAG

Gorilla ATGGTGCACCTGACTCCTGAGGAGAAGTCTGCCGTTACTGCCCTGTGGGGCAAGGT
GAACGTGGATGAAGTTGGTGGTGAGGCCCTGGGCAGG

Lemur ATGACTTTGCTGAGTGCTGAGGAGAATGCTCATGTCACCTCTCTGTGGGGCAAGGT
GGATGTAGAGAAAGTTGGTGGCGAGGCCTITGGGCAG

Mouse ATGGTGCACCTGACTGATGCTGAGAAGTCTGCTGTCTCTTGCCTGTGGGCAAAGGT
GAACCCCGATGAAGTTGGTGGTGAGGCCCTGGGCAGG

Rabbit ATGGTGCATCTGTCCAGTGAGGAGAAGTCTGCGGTCACTGCCCTGTGGGGCAAGGT

GAATGTGGAAGAAGTTGGTGGTGAGGCCCTGGGC

Table 3. Information of the first exon of the B-globin gene of the 10 different species.

No. Species i::e]::ir:)l; Number Location Nucleotide Length
1 Human u01317 62,187-62,278 92
2 Opossum J03643 467-558 92
3 Rat X06701 310401 92
4 Chimpanzee X02345 4189-4293 104
5 Gallus V00409 465-556 92
6 Goat M15387 279-364 86
7 Gorilla X61109 4538-4630 93
8 Lemur M15734 154-245 92
9 Mouse V00722 259-367 93
10 Rabbit V00882 277-366 90

6.2. Result of Mining Patterns

Two positive and one negative maximum frequent sequential patterns of the 10 species were
selected as the data set, as shown in Table 4. The min_sup was set to 0.3 during mining.
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Table 4. 30 frequent sequential patterns.

Data Set Frequent Pattern Data Set  Frequent Pattern

Human1 Goat

(Hum1) GTGGAG (Goal) GGTGGT

Human?2 Goat

(Hum?) GGGGGA (Goa?) GCCTGC

Human3 Goat

(Hum3) -AGTG-CGA-CG (Goa3) C-ATGA-AG-A

Opossuml1 Gorilla

(Opol) GGCGCA (Gorl) GGGGCA

Opossum?2 Gorilla

(Opo2) GGCTTA (Gor2) GTGGAG

Opossum3 Gorilla

(Opo3) GGC-GGCA-G (Gor3) -AGGG-CGAG

Ratl GCCTGA Lemur =~ ccgge
(Lem1)

Rat2 GGTGGG Lemur -~ rccca
(Lem2)

Rat3 GCC-ATGA-C (Lfé?n‘g) -AGTG-CG-TCA

Chimpanzeel Mouse

(Chil) GGGGAG (Mou1) TGGGGG

Chimpanzee2 Mouse

(Chi2) GTGGAG (Mou2) GGCCTG

Chimpanzee3 ) cGG-CGAG Mouse = o ccoaTG-AC

(Chi3) (Mou3)

Gallus Rabbit

(Gall) GGCGCT (Rab1) GGTGGC

Gallus Rabbit

(Gal2) GGCTTC (Rab2) CCTGAT

Gallus Rabbit

(Gal3) GGC-GGG (Rab3) -ATGA-CTG

6.3. DNA Sequence Similarity Analysis

First, we used Equations (4) and (5) to convert 30 sequential patterns into the time series.
Subsequently, we utilized the DTW distance algorithm in order to calculate the distance between two
sequences. Finally, we obtained the distance matrix between the frequent patterns of the 10 species,
as shown in Tables 5 and 6.

Here, we introduce the similarity analysis process of the sequences in detail. For example,
the complex number sequence that is obtained by the sequence Humanl through Equations (4)
and (5) is s(H1) = {0.866 + 0.5i, 1.366 — 0.3661, 2.2321 + 0.134i, 3.0981 + 0.634i, 3.5981 + 1.5i, and 4.4641
+ 2i}. The time series made up of modules is S(H1) = {1.0000, 1.4142, 2.2361, 3.1623, 3.8982, and 4.8916}.
Similarly, we obtained the time series after the transformation of the other 29 frequent sequences and
we used our method to calculate the similarity with different data groups listed in Table 4, and the
results are given in Tables 5 and 6.
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Table 5. Distance matrices between 20 frequent PSPs.

Frequent Huml Hum2 Opol Opo2 Ratl Rat2 Chil Chi2 Gall Gal2 Goal Goa2 Gorl Gor2 Leml Lem2 Moul Mou2 Rabl Rab2
PSPs
Huml  0.0000 X 0.1451 0.2739 0.1319 0.1876 0.0310 0.0000 0.1021 0.4808 0.0902 0.1086 0.0115 0.0000 0.1288 0.0313 0.0462 0.1998 0.0731 0.1589
Hum?2 0.0000 0.1390 0.8654 0.1355 0.3845 0.0297 0.0992 0.0978 0.9575 0.0864 0.6786 0.0115 0.0121 0.0311 0.5149 0.0299 0.4719 0.0701 0.5361
Opol 0.0000 X.XXXX0.0339 0.0354 0.1510 0.1201 0.1690 0.0720 0.1594 0.0829 0.1497 0.1393 0.1560 0.1298 0.1535 0.1289 0.1675 0.1018
Opo2 0.0000 0.5405 0.1163 0.2513 0.2739 0.7460 0.2069 0.5194 0.1653 0.8670 0.2739 0.2411 0.3052 0.4471 0.0741 0.3881 0.1150
Ratl 0.0000 X 0.1374 0.1274 0.1527 0.0446 0.1399 0.1074 0.1360 0.1295 0.1387 0.1147 0.1385 0.1419 0.1429 0.0970
Rat2 0.0000 0.2081 0.1576 0.8291 0.3232 0.5142 0.0503 0.3871 0.1576 0.1557 0.1889 0.2025 0.0422 0.3168 0.0013
Chil 0.0000 X 0.1090 0.1137 0.0774 0.0808 0.0276 0.0288 0.0443 0.0462 0.0411 0.0523 0.0764 0.0798
Chi2 0.0000 0.9591 0.4808 0.7322 0.1086 0.0937 0.0000 0.5479 0.0313 0.5200 0.1998 0.5720 0.1589
Gall 0.0000 X 0.1388 0.1449 0.0979 0.1021 0.0829 0.0865 0.1296 0.1353 0.1083 0.1130
Gal2 0.0000 1.0320 0.3722 0.9600 0.4808 0.3009 0.5121 0.8288 0.2810 0.6227 0.3219
Goal 0.0000 X 0.0873 0.0911 0.1052 0.1098 0.1332 0.0480 0.0488 0.0509
Goa2 0.0000 0.0641 0.1086 0.2352 0.1399 0.3309 0.0912 0.4349 0.0503
Gorl 0.0000 X 0.0274 0.0286 0.0278 0.0498 0.0732 0.0764
Gor2 0.0000 0.2123 0.0313 0.4702 0.1998 0.5354 0.1589
Lem1 0.0000 X 0.0696 0.0727 0.0913 0.0953
Lem?2 0.0000 0.3877 0.2311 0.2671 0.1902
Moul 0.0000 X 0.1342 0.0461
Mou2 0.0000 0.1572 0.0096
Rab1 0.0000 X
Rab2 0
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Table 6. Distance matrices between 10 frequent negative sequential patterns (NSPs).

Frequent PSPs Hum3 Opo3 Rat3 Chi3 Gal3 Goa3 Gor3 Lem3 Mou3 Rab3

Hum3 0.0000 0.4038 0.3671 0.0862 0.2843 0.2511 0.0321 0.0902 0.0886 0.2035
Opo3 0.0000 0.0985 0.3341 0.3403 0.2307 0.3878 0.3613 0.3587 0.2832
Rat3 0.0000 0.3544 0.3240 0.2989 0.3602 0.3191 0.3950 0.2700
Chi3 0.0000 0.3165 0.2248 0.0803 0.1286 0.1156 0.2220
Gal3 0.0000 0.4034 0.2841 0.2408 0.3766 0.3145
Goa3 0.0000 0.2537 0.3055 0.1336 0.1417
Gor3 0.0000 0.0795 0.0787 0.2127
Lem3 0.0000 0.2023 0.2653
Mou3 0.0000 0.1283
Rab3 0.0000

The phylogenetic tree was generated according to the distance matrix. A phylogenetic tree is
a tree-like branching graph that summarizes the genetic or evolutionary relationships of various
organisms. Here, we used MEGA-X to construct our phylogenetic tree. If it could be reasonably
constructed, as shown in Figure 3, different sequence combinations would provide different results,
but all of them were consistent with the evolutionary genetic relationship among organisms.
For example, we noted that the results of the phylogenetic tree of Hum1, Opo2, Rat2, Chi2, Gal2,
Goa2, Gor2, Lem2, Mou2, and Rab2 were the same as those in citation [34], and this introduced
a group representation vector to represent each protein sequence to generate a similar/different
vector, rather than a regular similar/different matrix. The phylogenetic tree of Hum?2, Opol, Ratl,
Chil, Gall, Goal, Gorl, Lem1, Moul, and Rab1l were similar to [16]. The phylogenetic tree of
Hum1, Opo2, Rat2, Chil, Gal2, Goa2, Gor2, Lem1, Mou2, and Rab2 were the same as that in [35],
which constructs a graphic representation of the DNA sequence according to the Fermat spiral curve.
When considering the local characteristics of the DNA sequence, each point on the Fermat spiral
curve then related to the corresponding mass according to the relationships between the four adjacent
nucleotides. The homology of the selected NSP combination was similar to the result presented in [16],
but there was still a certain gap between them in terms of evolutionary matrix. Because more than one
maximum frequency pattern was mined, and this was particularly true of NSPs, we could derive more
pattern combinations and, thus, more evolutionary relationships between species, particularly those
that were missing some of their bases, which we could still effectively partition.

We compared the first group of frequent pattern combinations that were obtained above with
three existing methods and Blastn [36]. By using Blasten, we will obtain a score, and our results can
be directly generated by using the software. Readers can refer to https://blast.ncbi.nlm.nih.gov/.
The higher the score, the better the homology and the closer the distance. For the other three methods,
the one proposed by Mo et al. [35] in 2018, and the other by Yu [37]. The third method is FPE,
as proposed by Xie et al. [31], which used the prefix span algorithm to find the maximum frequency
pattern, and then calculated the entropy of each block according to the probability of the pattern,
and finally constitutes the vector component of the sequence by the obtained entropy. MEGA is
a well-known alignment based tool, called Sequence Alignment Tools, so, here, we also used the
results of MEGA [38] software as a benchmark. Molecular Evolutionary Genetics Analysis version 5
(MEGAD5), user friendly software for online mining databases, was used to build sequence alignments
and phylogenetic trees. It is available free of charge from http://www.megasoftware.net. MEGA
software development is currently supported by research grants from the National Institutes of Health.
The Pearson correlation coefficients between the results of our method and the four comparison
methods and the results of MEGA were calculated. Table 7 outlines the distance between the six
methods and the other species and humans. The values in the brackets are the true distances that
are normalized to a range between 0 and 1. We processed the score data of BLASTn according to
the method that was proposed by Xie [31]. Finally, the Pearson correlation coefficient between the
results of our method and the four comparison methods was calculated. Our method had the highest
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correlation coefficient with MEGA and, thus, our method had the highest correlation with MEGA,
indicating that our method could more accurately calculate the similarity between DNA sequences.
In addition, Figure 4 shows that the curve of our method was closer to that calculated while using the
MEGA method, which again indicates that our method had the highest correlation with it.

Gallus2 _|: Human2
Gorilla1

Mouse2
i Rabbit2 ‘|7 Chimpanzee1
— Rat2 Mouse1

Goat2 ] ————————— Lemur1
L—————— Opossum2 Goat1
Gorilla2 { Rabbit1
Chimpanzee2 — Gallus1
Human1 — Opossum1
Lemur2 I— Rat1
f f f I f f f f f f f I
0.15 0.10 0.05 0.00 0.070 0.060 0.050 0.040 0.030 0.020 0.010 0.000
(a) (b)

Human3
Gorilla2 _|:
Gorilla3

Human1
L———— Chimpanzee3
Chimpanzee1

Mouse3

Rat2
Mouse2

Goat3
Lemur1
Rabbit3

Rabbit2
| Opossum2 Gallus3
—|: Goat2 Rat3
Gallus2 I— Opossum3
f f f { f f f I
0.150 0.100 0.050 0.000 0.150 0.100 0.050 0.000

(c) (d)

Figure 3. The phylogenetic tree was generated according to the distance matrix. (a) Hum1, Opo2, Rat2,
Chi2, Gal2, Goa2, Gor2, Lem2, Mou2, and Rab2. (b) Hum2, Opol, Ratl, Chil, Gall, Goal, Gorl, Lem1,
Moul, and Rabl1 (¢) Hum1, Opo2, Rat2, Chil, Gal2, Goa2, Gor2, Lem1, Mou2, and Rab2 (d) Negative
sequential pattern combination.

We learned that the overall variation of our method was consistent with the other comparison
methods, so the method that was proposed in this paper was effective and feasible. We experimentally
proved that our method was more accurate than other methods and that the proposed method is
applicable for both short and long sequences. Because the data we used were frequent patterns after
mining, the length of the sequence used for comparison was generally shortened and the characteristics
of the original sequence were retained. The calculation was simple and memory consumption of
the computer was reduced. In addition, more than one maximum frequency pattern was mined
and this was particularly true of NSPs. Therefore, more pattern combinations could be derived.
By comparing the similarities among the 10 species, we saw that various combinations of patterns
yielded unique results, which may be useful for various considerations.
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Table 7. Comparison of the distances between humans and the other species.

Opo- Rat Chimp- Gallus Goat Gorilla Lemur Mouse Rabbit CORREL
Ssum Anzee

MEGA 0.4823 0.2985 0.0000 0.7308 0.1599 0.0000 0.0600 0.2336 0.2659 X
(0.6600)  (0.0000)  (0.0000)  (1.0000)  (0.2188)  (0.0000)  (0.0821)  (0.3197)  (0.3639)

ZYMo. 0.2696 0.1198 0.0309 0.2983 0.2114 0.0038 0.1604 0.1470 0.1670 0.8327

[35] (0.9026)  (0.3939)  (0.0920)  (1.0000)  (0.7049)  (0.0000)  (0.5318)  (0.4863)  (0.5542) ’

H.J.Yu. 25.9952 27.0102 5.3704 23.5869 26.8209 5.3704 25.2515 25.8007  20.5706 0.5294

[36] (0.9531)  (1.0000)  (0.0000)  (0.8418)  (0.9913)  (0.0000)  (0.9187)  (0.9441)  (0.7024) ’

Blastn 0.9567 0.7315 0.0000 1.0000 0.5486 0.0000 0.8874 0.6008 0.4235 0.7323

0.9567)  (0.7315)  (0.0000)  (1.0000)  (0.5486)  (0.0000)  (0.8874)  (0.6008)  (0.4235)

FPE 0.1237 0.0664 0.0000 0.2537 0.0820 0.0000 0.0478 0.0663 0.0664 0.9505
(0.4876)  (0.2617)  (0.0000)  (1.0000)  (0.3232)  (0.0000)  (0.1884)  (0.2613)  (0.2617) ’

Our 02739 01876 00000 ~ 04808 01086 00000 ~ 00313 01998 01589 oo
moog (05697) (03902)  (0.0000)  (1.0000)  (0:2259)  (0.0000)  (0.0651)  (04156)  (0.3305)

1.2
1
0.8
0.6
0.4
0.2
0
X < S X R \ 2 N\
oQo%"\)@ o .\@Q?’&Z @\\0 & (»,0‘\\\ \e@\) @oy & 4
&
e [\[EGA = Ref.[34] Ref.[36] Blastn e FPE s Qur method

Figure 4. Normalized species distance graph (the ordinate is the normalized distance).

7. Conclusions Future Work

We proposed a DNA sequence representation and similarity analysis method based on frequent
patterns, which were presented as eight vectors in a 2-D space. The frequent pattern consisted
of the frequent pattern in general and the frequent pattern with some bases missing. Different
pattern combinations have unique evolutionary results, which can adequately classify species.
Some noise could be tolerated because we only considered maximum frequency patterns and retained
the characteristics of the sequence. Our method reduced the consumption of computer memory
by a large amount. The calculations were very simple. Testing the B-globin gene of 10 species
showed that our method shared similarities to several recently developed alignment-free methods.
Crucially, the correlation comparison of several methods and MEGA showed that our results had
the highest correlation, indicating that our method more accurately calculated the similarity between
DNA sequences.

Our future work will be to find a more effective way to mine biological sequences, which will
not only maintain the continuity of biological sequences, but also effectively mine NSPs. In addition,
we aim to find a method for selecting optimal frequent patterns in order to reduce the errors in
similarity analysis.
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