
symmetryS S

Article

Hybrid Cuckoo Search for the Capacitated Vehicle
Routing Problem

Mansour Alssager 1 , Zulaiha Ali Othman 2,*, Masri Ayob 2 , Rosmayati Mohemad 3

and Herman Yuliansyah 4

1 Faculty of Information Technology, Sebha University, Sebha 18758, Libya; man.essgaer@sebhau.edu.ly
2 Center of Artificial Intelligence Technology (CAIT), Faculty of Information Sciences and Technology,

Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; masri@ukm.edu.my
3 Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, Kuala Nerus,

Terengganu 21030, Malaysia; rosmayati@umt.edu.my
4 Department of Informatics, Faculty of Industrial Technology, Universitas Ahmad Dahlan,

Bantul 55191, Indonesia; herman.yuliansyah@tif.uad.ac.id
* Correspondence: zao@ukm.edu.my

Received: 28 October 2020; Accepted: 9 December 2020; Published: 16 December 2020
����������
�������

Abstract: Having the best solution for Vehicle Routing Problem (VRP) is still in demand. Beside, Cuckoo
Search (CS) is a popular metaheuristic based on the reproductive strategy of the Cuckoo species and
has been successfully applied in various optimizations, including Capacitated Vehicle Routing Problem
(CVRP). Although CS and hybrid CS have been proposed for CVRP, the performance of CS is far from the
state-of-art. Therefore, this study proposes a hybrid CS with Simulated Annealing (SA) algorithm for the
CVRP, consisting of three improvements—the investigation of 12 neighborhood structures, three selections
strategy and hybrid it with SA. The experiment was conducted using 16 instances of the Augerat benchmark
dataset. The results show that 6 out of 12 neighborhood structures were the best and the disruptive
selection strategy is the best strategy. The experiments’ results showed that the proposed method could
find optimal and near-optimal solutions compared with state-of-the-art algorithms.

Keywords: cuckoo search; capacitated vehicle routing problem; neighborhood structures; selection
strategy; simulated annealing

1. Introduction

Having the best solution for the vehicle routing problem (VRP) is challenging. It is categorized as a
combinatorial optimization problem related to operations research, algorithm theory, and computational
complexity theory, which use mathematical and scientific studies with a robust experiment to obtain a
reliable solution. The VRP aims to optimize the delivery routing by finding the least-cost (distance, time)
route [1]. Determining the optimal solution for VRP without violating specific limitations is also known as
capacitated VRP (CVRP) [2] or NP-hard problem [3]. Several metaheuristics have been developed to solve
the CVRP that can be classified into two main categories: single-based and population-based. Single-based
solutions such as tabu search [4] and simulated annealing (SA) [5] have the ability to exploit the search space
in a short time but also have some limitations such as weak exploration as Lévy flight artificial bee colony
algorithm. Population-based solutions such as the genetic algorithm (GA) [6], particle swarm optimization
(PSO) [7–10], water flow-like algorithm [11,12] and membrane algorithm [13] are more concerned with
exploration rather than exploitation but have limitations in terms of premature convergence and low
convergence speed. Enhancement of perturbation based variable neighborhood search with adaptive
selection mechanism is also proposed to address the capacitated vehicle routing problem [14]. Hybridization
between a population-based and a single-based metaheuristic has been proposed for the CVRP to overcome
these two categories’ limitations [15].
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Recently, a metaheuristic called Cuckoo Search (CS) has emerged in the literature, which is based
on the reproduction strategy of the cuckoo species and the Lévy flight behavior of some birds and fruit
flies [16]. The CS has been successfully applied to a wide range of optimization problems, such as
selecting relevant genes in drug microarray data [17] and heart disease prediction [18]. For example,
Reference [19] proved that CS outperforms other metaheuristics in speed and accuracy in solving the
traveling salesman problem (TSP). Later, the CS algorithm also solves the problem of global-support
parametric surface approximation for reverse engineering applications [20]. Furthermore, CS is applied
to other VRP variants, as Reference [21] proposed CS to solve the VRP with a heterogeneous fleet with
mixed backhauls and time windows.

Initial work on CS has been applied for CVRP [2,22,23]. However, the performance is far from the
optimal solution. Therefore, this work proposes utilizing CS to solve the CVRP. Four things motivate
to use CS: (1) CS is population-based and similar to GA and PSO but it uses some sort of elitism and/or
selection similar to that used in harmony search [16], (2) CS is local search components that assist it
to attempt to achieve a balance between exploration and exploitation, (3) CS is very simple and has
some similarities with hill-climbing and only a few parameters need to be adjusted [24] and (4) CS
uses a Lévy flight randomization strategy, which preserves the search space step length (whether
large or small) so there is a better balance between exploration and exploitation [16,25]. Traditionally,
Gaussian distribution is used for this purpose. The importance of the Lévy flight strategy in various
combinatorial optimization problems has been addressed by others [26–30].

The CS has a stronger ability to find good quality solutions than GA and PSO, particularly for
non-heavily constrained and continuous problems, such as welded beam design problems [25] and
spring designs [31], constrained optimization problems such as business optimization applications [32]
the single-objective optimum synthesis of a six-bar double dwell linkage [33] and for phase equilibrium
and stability calculations [34]. It is because CS has fewer parameters. Moreover, it has a fine balance of
randomization and intensification using Lévy flight [16].

However, CS has limitations when applied to heavily constrained optimization problems, such as
web service composition [35], the job scheduling problem [36], multi-objective scheduling problem [37],
flow shop scheduling problem [38] and TSP [39], due to its stochastic characteristic in exploring the
search space. Some researchers have tried to accelerate the rate of convergence, which generally appears
in many metaheuristics, whilst others have tried to achieve a better balance between exploration and
exploitation [40]. CS performance improvements have been attempted by considering a variety of aspects.
For instance, Reference [41] used a crossover strategy so that a solution could gain part of the other solution’s
properties while [42] enhanced CS by modifying Lévy flight using Mantegna’s and McCulloch’s algorithm.
Several comprehensive surveys can also be referred for CS modifications [25,43–46].

Enhancement of the metaheuristic exploration process may involve the usage of neighborhood
structures [47,48]. Many neighborhood structures for solving the CVRP have been proposed [49],
some neighborhood structures may work well only at the early search, whilst others may perform
well towards the end [47]. Reference [50] argued that a meta-level optimization problem is the
finding process of suitable neighborhood structures for choosing the actual next neighbor. Recently,
Reference [22] applied basic CS to CVRP, the proposed CS employed 2-opt and double bridge as
neighborhood structures. However, the result is far from the state-of-art solution. On the other hand,
the algorithm performs very fast computational time. Reference [23] has proposed CS for solving
patient transportation problems, which is a kind of CVRP with consideration of reducing transportation
emissions. The algorithm initialized host nest using saving heuristic, which is enhanced with 3-opt and
used two neighborhood structures known as 2-opt and double-bridge moves. The result performed
better for some of the state-of-art algorithms. However, the algorithm shows its efficiency. Another type
of cuckoo algorithm has been applied to CVRP for optimization, which is not focus of this work [51].

The CS uses a random selection strategy but has a limitation to explore unfruitful areas in the
search space. Reference [19] solved the issue by enhancing the selection strategy by categorizing the
eggs based on their fitness. A good selection strategy has to be biased towards finding better solutions.
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In this case, the population may be driven towards better solutions much more quickly. Moreover,
the worse solution will not be eliminated and could have a chance of being selected [52]. One of the
major reasons for adopting a hybridization strategy when designing a metaheuristic is that it can
provide a good balance between exploration and exploitation [50,53]. The original CS lacks effective
communication between the individual eggs (solutions) and an attempt was made to overcome this
limitation by employing a hybrid methodology [15]. In fact, many studies have addressed this issue by
using hybridization techniques [26–30,54]. Moreover, Reference [55] has proposed a hybrid CS with
intelligent water drops to solve CVRP. The algorithm has reached all optimal solutions and outperforms
three instances compare with the state-of-art algorithm. However, the evaluation used the Christofides
benchmark dataset. Therefore, this study aims to hybridize CS with another metaheuristic to exploit
the search space for finding good quality solutions.

However, the adaptation of any metaheuristic involves a trade-off between exploration and
exploitation, both of which must ideally be optimized. The main objectives to CS in this work is the
enhancement of exploration and exploitation through the following:

1. Adopting a suitable multiple neighborhood structure strategy to improve CS exploration and to
help the algorithm to escape from local optima by observe the behaviors of a random sequence of
12 neighborhood structures and then select the most dominant ones to form the best sequence.

2. Adopting a suitable selection strategy for exploring the search space to find new solutions and
enhance CS exploitation by investigating three selection strategies, namely tournament, rank and
disruptive, to find the best-performing one.

3. Combining the advantages of CS with those of SA to improve their ability to cooperatively explore
the search space and quickly find good solutions within a small region of the search space and
also to prevent deterioration.

4. Lastly, evaluate the proposed hybrid CS with SA against other state-of-art methods based on
average, standard deviation and computational time. The algorithm is furthermore evaluated
using Freidman, Holm and Hochberg test, to identify whether there was a significant difference
between the proposed algorithm and the best methods in the literature.

The remainder of this paper is organized as follows: we discuss the basic CS, our propose
hybrid CS and explain how it can be applied to the CVRP. We present the results of our experiments
that were conducted to select the most suitable components for the proposed CS and then compare
the performance of the proposed hybrid CS, which we call Hybrid Cuckoo Search with Simulated
Annealing (HCS-SA), with that of state-of-the-art methods by way of computational experiments.
Finally, we conclude and suggest areas for further research.

2. Related Work

2.1. CVRP Description

In CVRP, a fleet of K vehicles with homogeneous capacity Q is available for serving customers.
The single depot and customers are defined as a set of node N = {0, . . . , n}, where node 0 represents
the depot and the other nodes represent the customers. Each vehicle trip must start from and end at
the depot. Each customer i with known demand di is visited by an exact one vehicle trip. The total
demand assigned to each vehicle trip must not exceed the vehicle capacity Q. dij > 0 corresponds to the
travel distance from node i and node j. The objective of the CVRP problem is to determine a set of
vehicle trips serving all customers while minimizing the total travel distance [2].

2.2. Standard Cuckoo Search

Brood parasitism is an interesting feature of the cuckoo bird, in which a female cuckoo lays her
eggs in another nest of the observed bird and lets the host bird hatch and brood the young cuckoo
chicks. The cuckoo adapting its eggs like a host bird in terms of patterns, shapes and colors to increase
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the probability of a new cuckoo being born and reducing the probability of the host bird abandoning
the eggs [16]. The behavior of the cuckoo in its search for a suitable nest is represented by a combination
of CS with Lévy flight [56]. Lévy flight represents a random walk model that is characterized by
step lengths that obey a power-law distribution. Studies have shown that hunters search for prey by
following a Lévy flight pattern, which commonly consists of small random steps followed in the long
term by large jumps [57].

The CS was recently developed by Yang and Deb [16] and was initially designed to solve
multimodal functions by following the rules that each cuckoo lays one egg at a time and selects a nest
randomly, the best nest with the highest quality egg can pass onto the new generations and the number
of host nests is fixed and the egg laid by a cuckoo can be discovered by the host bird with a probability
pa ≤ [0, 1].

A cuckoo i generates a new solution xi(t+1) via Lévy flight, according to Equation (1):

xi
(t+1) = xi

(t) + α⊕ Levy(s, λ), (1)

where α is the step size that follows the Lévy distribution that is shown in Equation (2):

Levy(s, λ) ∼ s−λ, (1 < λ ≥ 3), (2)

which has an infinite variance with an infinite mean [16] and s is a step size drawn from a Lévy
distribution. The Lévy flight is described by Reference [58] as a special type of random walk whose
step length in not constant, rather are chosen from a probability distribution with a power-law tail,
this means that very large step lengths are possible. The potential of using Lévy flight to enhance
met-heuristic is reported in various studies [59–61].

In CS, cuckoos are abstracted as entities that each has an associated solution (i.e., an egg) of the
optimization problem that they try to place in a solution container (i.e., the host bird’s nest). Table 1
provides an analogy between the behavior of the cuckoo in nature and the artificial behavior of the CS.
A detailed description of the basic CS for solving the CVRP is presented in Figure 1 [62].
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Table 1. The analogy between natural cuckoo bird behavior and cuckoo search.

Natural Cuckoo Bird Behavior Cuckoo Search Algorithm

Host nest Solution container (new/old solution)
Host nest egg Old solution

Cuckoo bird egg New solution
Abandoned nest/egg Worst solution

3. Proposed Method

3.1. Cuckoo Search for CVRP

To adapt CS to the CVRP these notions will appear in the discussion of the following three main
elements: egg, nest and search space, which extend the work of Reference [19]. These key elements can
have important implications for combinatorial problems.

3.1.1. The Egg

Assuming that a cuckoo lays a single egg in one nest, we can say that one egg in a nest is a solution
represented by one individual in the population. An egg can also be one new candidate solution laid
by a cuckoo for a place/location reserved by an individual in the population, while the nest is the
container of that new cuckoo egg. In the CVRP, one egg is the equivalent of multiple Hamiltonian
cycles of served routes that start and end at the central depot, as shown in Figure 2.
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The egg representation adopted in this study can be described as follows—assume a CVRP with
n clients and v available vehicles for delivery, then the number 0 denotes the depot and 1, 2, . . . , n
denotes the clients. Based on the v vehicle at the depot, so each egg has at most the v distribution path
(route), every path (route) starts at the depot and stops at the depot. Possible routes are shown in
Figure 3.
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3.1.2. The Nest

In CS, the number of nests is fixed and this number represents the size of the population. A nest is
a container of an individual of the population and its abandonment involves its egg being replaced in
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the population by a new one. By projecting these features on to the CVRP, we can say that a nest is
shown as an individual in the population with its Hamiltonian cycle route. Obviously, a nest can have
multiple eggs for future extensions but in this study, each nest contains only one egg.

3.1.3. The Search Space

In the CVRP, the visited customers on each route have fixed coordinates; however, the visiting
order between the customers can be changed either within the same route or between different routes.
The search space in the CVRP is a set of points (customers). Each point is representative of a route
that appears as a potential solution. These solutions are positioned in space according to the order of
their customers. Since the coordinates of customers are fixed, the movements are based on the order of
visited customers. There are several neighborhoods structure, methods, operators, or perturbations
that generate a new solution from another existing solution by changing the order of visited customers.

In the adaptation of CS to CVRP, one possible perturbation that can be used to change the order
of visited customers is the REINSERTION, SHIFT-1-0, K-SHIFT and EXCHANGE neighborhoods
structure. However, REINSERTION, SHIFT-1-0 is used for small steps, while larges jumps are made by
SWAP-2-2 and K-SHIFT. Moving a solution to another in the search space (combinatorial space) is made
by small steps in a small area around the current solution. Therefore, carrying out several steps leads to
additional solutions that are farther away. However, if we want to change the area of search and point
to another far area, the solution is perturbed by K-SHIFT and EXCHANGE neighborhood structures.

3.2. Propose Discrete Hybrid Cuckoo Search

In this section, we present the proposed hybrid discrete CS with SA to emulate cuckoo behavior
in nature. The main purpose of improving CS is to balance exploration and exploitation to find a better
quality solution in less time. In nature, there is what could be likened to an arms race between host
birds and cuckoo, where host birds evolve defenses and cuckoos respond with trickery to increase
their eggs’ chance of survival [63]. For this reason, cuckoo birds always try to adapt their eggs to
appear similar in pattern, shape and color to those of the host bird species. This arms race serves as an
inspiration to improve CS in this research. The proposed improvements are summarized in the four
phase, that is, the first phase is starts race when the host bird lays eggs that are enhanced in terms of
their pattern, shape and color. This step represents the generation of the initial population in CS and
for this purpose, a sequential insertion heuristic is used. The second phase is the enhancements of
the host bird eggs puts more pressure on the cuckoo bird to respond with trickery to increase its own
eggs’ chance of survival. For this purpose, two components are investigated (neighborhood structures
and acceptance criteria) to identify a suitable neighborhood structure strategy. The third phase is the
cuckoo bird in nature has some kind of surveillance to decide which host nest is the best choice in
which to lay its eggs. For this purpose, three selection strategies are investigated in order to find the
most suitable one. The last phase is the cuckoo chick starts to throw out the host eggs to get rid of
competition for food by using SA when the cuckoo egg is hatched. Thus, a kind of local search is
performed around the current solution.

The general pseudo-code for the proposed CS is presented in Figure 4. Note that the act of laying
eggs involves the cuckoo bird egg (new solution) and the act of selecting eggs involves the host bird
egg (old solution). Moreover, the nest always has one egg in it, which means that the selection and
lying of the egg in that nest actually relate to the same egg, which changes from a host to a cuckoo egg.

As shown in Figure 4, CS starts with an initial solution (empty host nest) and then an initial
population is generated using a sequential insertion heuristic (lines 5–7). The number of generated
solutions in the population is equal to the number of laid host nest eggs. Then the host nest eggs
are evaluated by the fitness function (line 8). After the initialization is finished and the host bird’s
nests are built with eggs in them, the cuckoo bird arrives to lay its egg in one of the host bird’s nests,
which is described in the pseudo-code as the iterative stage (lines 13–27). The cuckoo bird starts to
select a host bird nest in which to lay its egg (this act of laying the egg can be described as replacing the
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current (host) egg with a new, hopefully improved (cuckoo) one). The selection is made by using one
of the selection strategies, which ranks the host bird eggs in the population according to the selection
probability (in the basic CS, the solutions are ranked based on just the fitness value). The host bird
egg that has the highest rank is selected based on that selection strategy for local exploration. Later,
the selected egg is improved by the neighborhood structures.
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In the natural world, to increase its chance of surviving and hatching to become a bird, a cuckoo
bird egg has to imitate the host bird egg in the pattern, color and shape. The cuckoo bird must adapt
with nature and develop this imitation and this behavior is represented in line 17 of the pseudo-code,
where a local search mechanism is employed to explore the neighbor solutions of the selected host bird
egg, which will lead to further improvement in the pattern, color and shape of the selected egg. In this
study, SA is used for this purpose. The improved cuckoo bird egg is then compared to its previous state
(host bird egg); if its pattern, color and shape are better than the previous egg it is accepted, otherwise
it is discarded (lines 19–22). When the host bird goes to the nest, it starts to find the alien (cuckoo) eggs,
the discovery of which depends on parameter pa. The discovered cuckoo eggs are destroyed or the
nest is abandoned, in this case, a Lévy flight is used to replace the worse cuckoo eggs by applying
neighborhood structures followed by the acceptance criterion (lines 23–25). Finally, all the host nest
eggs are ranked based on their fitness value (line 27) and the iterative improvements stage starts again.

3.2.1. Initialization of Host Nest Using Sequential Cheapest Insertion Heuristic

In the context of the CVRP, the initial host bird eggs are generated using a sequential cheapest
insertion heuristic, whereby the customer with the minimum traveling cost is sequentially inserted
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into its respective route until all the vehicles are full. The main aim is to build initial quality solutions
using relatively simple and fast schemes.

3.2.2. Selection of Host Nest Egg to Lay a New Cuckoo Egg

The basic CS uses a random selection strategy. This does not fully reflect the behavior of the
cuckoo bird in nature, which is based on selecting the most apparently similar eggs in the pattern, color
and shape to increase the survival of the egg. Therefore, we incorporate a more advanced selection
strategy to emulate this behavior better. In the proposed approach, the calculation of the selection
probability is based on the fitness of solution for each egg is based on one of three selection strategies.
However, after the calculation of these probabilities is obtained, the solution selection is made based
on roulette wheel selection, as shown in Figure 5.
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Tournament Selection

Tournament selection is a selection process in which a number of eggs (Ntour) from the population
are chosen at random and then a comparison is made depending on their fitness in order to choose the
best egg. Parameter Ntour is called the tournament size. Normally, tournaments are held only between
two eggs (binary tournament) but the generalization is possible to an arbitrary group. Tournament
selection gives eggs with high fitness a greater chance to survive [64]. In this study, we select two eggs
from the population and compare their fitness values, then assign one score coded as (a) to the better
egg. This process is repeated for all the eggs in the population, as shown in Figure 6, where fi is the
fitness value of i = 0 . . . n and n is the population size [65].
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After calculating the value of (a) for all the eggs, the selection probability for each egg is calculated
by using Equation (3):

Pi =
ai∑n

i = 0 ai
. (3)

Rank Selection

In rank selection, eggs are sorted in descending order based on the fitness value. An index k value
is given to each egg from the best to the worst, that is, for the best fitness, k = 1, whilst for the worst
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fitness, k = n, where n is the population size and N is the maximum number of iterations. Finally,
the selection probability is calculated by using Equation (4) [66]:

Pk =
1
n
+ 0.2 +

3t
4n
×

n + 1− 2k
n(n + 1)

, k = (1, 2, . . . . . . n), t = (1, 2, . . . . . . n). (4)

Disruptive Selection

The disruptive selection gives higher and lower quality eggs the chance of being selected by
changing the definition of the fitness function as in Equation (5):

Pi =
f iti∑n

i = 0 f iti
, where f iti =

∣∣∣∣ fi − ft
∣∣∣∣, (5)

where fi is the fitness function and ft is the average value of the fitness function fi of the individuals in
the population.

3.2.3. Best Sequence of Neighborhood Structure and Lévy Flight

A multi-neighborhood structure is used to improve the cuckoo bird’s eggs’ imitation of the host
bird eggs in the nests in terms of pattern, color and shape and thus give them a good chance of survival.
The neighborhood structure consists of seven inter-routes (where a change occurs between two routes)
and five intra-routes (where a change occurs within the same route), that is, 12 neighborhood structures
in total, as shown in Table 2. Five of the seven inter-routes are based on the λ-interchange scheme [67],
which involves exchanging up to λ customers between two routes. In this study, λ = 2 is considered
due to the high computational cost associated with large λ.

Table 2. Neighborhood structures.

Name Category Details

SHIFT-1-0 Inter-route One customer is transferred from one route to another route.
SWAP-1-1 Inter-route Swap one customer from one route with one customer from another route.
SHIFT-2-0 Inter-route Move two adjacent customers from one route to another route.

SWAP-2-1 Inter-route Swap two adjacent customers from one route with one customer from
another route.

SWAP-2-2 Inter-route Swap two adjacent customers from one route with two adjacent customers
from another route.

CROSS Inter-route

The arc between two adjacent customers i and j belonging to a route one
and the arc between two adjacent customers i′ and j′ belonging to route two
are both removed. Next an arc is inserted connecting i and j′ and another is
inserted linking i′ and j.

K-SHIFT Inter-route A subset of consecutive customers is transferred from a route one to the end
of a route two.

REINSERTION Intra-route One customer is removed and later inserted into other position of the route.

OR-OPT2 Intra-route Two adjacent customers are removed and later inserted into other position
of the route.

OR-OPT3 Intra-route Three adjacent customers are removed and later inserted into other position
of the route.

TWO-OPT Intra-route Two nonadjacent arcs are deleted and later other two are added in such a
way that a new route is generated.

EXCHANGE Intra-route Permutation of two customers being swapped.

To avoid generating infeasible solutions, we include the following two restrictions, that is, checking
the vehicle capacity before adding a new customer and adding another restriction to avoid emptying
the vehicle of the customer, whereby at least one customer is retained to be served by a particular
vehicle. The above neighborhood structures need to be linked to the step length generated by the Lévy
flight. Lévy flight is generated by a probability density function that has a power-law tail. The Cauchy
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distribution is often used for this purpose [68]. The method we use to generate a random number from
a Lévy distribution is shown in Figure 7.
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In this study, the adaptation of CS for the discrete CVRP is similar to the neighborhood structure
adaptation for the TSP in Reference [69]. The 12 neighborhood structures are each associated
with a step length generated by Lévy flight that can be categorized into small (more frequent),
medium (most frequent) and large (less frequent) steps. Thus, the eggs’ pattern, color and shape
are changed according to neighborhood structures for each category: small (SHIFT-1-0, SWAP-1-1,
SHIFT-2-0, REINSERTION and OR-OPT2), medium (OR-OPT3, TWO-OPT, EXCHANGE and SWAP-2-1,
Whilst SWAP-2-2) and large (CROSS, K-SHIFT). To facilitate control over the size of the steps, an interval
between 0 and 1 is used. Therefore, according to the value given by the Lévy flight in this interval,
we can choose the appropriate step length as follows:

If the value of Lévy is:

1. 0, i, one step of a small neighborhood structure is performed..
2. (k−1) × i, k × i, one step of a medium neighborhood structure is performed.
3. k × i, 1, a big neighborhood step is performed.

The value of i in this process is I = (1/(n + 1)), where n is the maximum number of steps and k is
{0, ..., n}. So, if we assume that n = 12, then i = 0.07, thus the interval is divided into 12 parts, as listed in
Table 3.

The association of these steps with the neighborhood structures is set without any prior knowledge.
However, it is better to sequence them based on experimental knowledge in order to identify the most
successful neighborhood that has a high impact on improving the solutions. Therefore, an experimental
investigation of these neighborhood structures was carried out to identify their effectiveness in
improving the solution.
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Table 3. Lévy flight associations with neighborhood structures.

Step Length Generated by Lévy Flight Neighborhood Structures Used

1 {0, i} = (0, 0.07) SHIFT-1-0
2 {i, i × 2} = (0.07, 0.14) SWAP-1-1
3 {i × 2, i × 3} = (0.14, 0.21) SHIFT-2-0
4 {i × 3, i × 4} = (0.21, 0.28) REINSERTION
5 {i × 4, i × 5} = (0.28, 0.35) OR-OPT2
6 {i × 5, i × 6} = (0.35, 0.42) OR-OPT3
7 {i × 6, i × 7} = (0.42, 0.49) TWO-OPT
8 {i × 7, i × 8} = (0.49, 0.56) EXCHANGE
9 {i × 8, i × 9} = (0.56, 0.63) SWAP-2-1

10 {i × 9, i × 10} = (0.63, 0.7) SWAP-2-2
11 {i × 10, i × 11} = (0.7, 0.77) CROSS
12 {i × 11, 1} = (0.77, 1) K-SHIFT

3.2.4. Improve the Egg by Simulated Annealing as a Local Search

In this study, each selected egg is further improved using SA as a local search, whereby we
employed the same neighborhood structures mechanism in the previous Section 3.2.3. However,
only one neighborhood structure is fired at each iteration based on levy flight. In order to avoid getting
trapped in local minima, the fundamental idea is to allow moves to solutions with objective function
values that are worse than the objective function value of the current solution. Such a move is often
called an uphill-move. At each iteration a solution s’ is generated and later it is randomly chosen.
If f(s’) is better than f(s) (i.e., has a lower objective function value), then s’ is accepted as the new current
solution. Otherwise, if the move from s to s’ is a worse solution, s’ is accepted with a probability
calculated using Equation (6):

p = e−
∆ f
t . (6)

Usually, this probability is computed following the Boltzmann distribution, where ∆f = f(s’) − f(s)
is the difference in quality between the previous and the newly generated solution and t is the current
temperature. The temperature is reduced iteratively by the geometric scheduled g(t) = βt, where β is
the cooling rate (β < 1). The search process is repeated until the termination criterion is met.

4. Experiment Design

The proposed algorithm consists of three investigation process. The first is to identify a suitable
neighborhood strategy. The second identifies the selection strategy in which three selections strategy
was investigated and later investigated the performance of proposed hybrid CS with SA. Experiments
were conducted to evaluate the performance of the proposed CS on 16 instances Augerat benchmark [9],
which can be downloaded from www.branchandcut.org/VRP/data/. In the instances, the total number
of customers varies from 30 to 135 and the total number of vehicles varies from 3 to 10. The locations of
customers appear in some instances in clusters, whilst in other problems, the customers are randomly
scattered or semi-clustered. Experiments were performed on a 3.2 GHz Intel Core i3 CPU and the
heuristics were coded using C++ in a Microsoft Visual Studio 2013 environment.

The following details of these instances are presented in Table 4:

• Number of vehicles and customers (column 2 and 3)
• The capacity of each vehicle (column 4)
• Tightness of each problem instance (column 5), which is computed by
• Best-known solution (BKS) of each instance (column 6).

T =

∑n
i = 1 demandi

totalvehicle× vehicledemand
. (7)

www.branchandcut.org/VRP/data/
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The best (Min.), average (Avg.) and worst (Max.) solution and the standard deviation (Std.) were
computed 31 independent runs on each instance, along with the average computational time in seconds
required to reach the final best solutions. The best solutions found by the proposed algorithm that was
equal to the BKS are shown in bold in the tables in this section. The basic discrete CS parameters were
optimized based on the Taguchi method, which is part of the initial stage in this study published in
reference [2], the number of iterations equaled 200, the fraction of worse nests to be discarded was 0.1
and there were 50 nests.

Table 4. Characteristic of benchmark dataset.

Instance V Cs Ca Ti BKS

A-n33-k5 5 32 100 0.82 661
A-n46-k7 7 45 100 0.86 914
A-n60-k9 9 59 100 0.92 1354
B-n35-k5 5 34 100 0.87 955
B-n45-k5 5 44 100 0.97 751
B-n68-k9 9 67 100 0.93 1272

B-n78-k10 10 77 100 0.94 1221
E-n30-k3 3 29 4500 0.94 534
E-n51-k5 5 50 160 0.97 521
E-n76-k7 7 75 220 0.89 682
F-n72-k4 4 71 30,000 0.96 237

F-n135-k7 7 134 2210 0.95 1162
M-n101-k10 10 100 200 0.91 820
M-n121-k7 7 120 200 0.98 1034
P-n76-k4 4 75 350 0.97 593
P-n101-k4 4 100 400 0.91 681

V = Vehicle, Cs = Customer, Ca = Capacity, Ti = Tightness, BKS = Best-known solution.

Simulated annealing has three parameters: initial temperature, final temperature and cooling
schedule. Table 5 shows the parameter values that were used in this study. The final temperature
and cooling schedule were set based on a suggestion in Reference [70], whilst the value of the initial
temperature was set based on a preliminary experiment in which three different values of the initial
temperature were measured. Four instances (A-n33-k5, B-n35-k5, E-n51-k5 and P-n101-k4) of different
sizes were chosen to conduct this experiment. The result of the preliminary experiment is summarized
in Table 6. The SA performed better when the initial temperature was set to 100.

Table 5. Parameter Setting for Simulated Annealing (SA).

Parameter Value

Initial temperature 100 set in the preliminary experiment as in Table 6
Final temperature 0.5 as suggested by Reference [70]
Cooling schedule 0.99 as suggested by Reference [70]

Table 6. The average solution quality of different initial temperatures.

Instance
Initial Temperatures

50 100 200

A-n33-k5 671 661 669
B-n35-k5 966 965 960
E-n51-k5 559 542 568
P-n101-k4 715 720 716

Three experiments were performed in this study:
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• Experiment 1: First, we investigated the performance of the 12 neighborhood structures to identify
the best set of neighborhoods among them and then we formed a sequence based on the knowledge
obtained. Second, we investigated which of two acceptance criteria (best, first) was the most
suitable for improving the solution. All the neighborhood is evaluated and the best neighborhood
is chosen. We were then able to create a neighborhood-enhanced CS (NE-CS) whose performance
we compared with that of the basic CS.

• Experiment 2: We investigated three selection strategies and combined the best-performing one
(which we named Discrete Cuckoo Search or Dis-CS) with NE-CS and compared its performance
with the output from the first experiment.

• Experiment 3: We hybridized CS with SA (which we named HCS-SA) and compared its
performance with the output from the second experiment.

5. Experiment Result

5.1. Results of Comparison of Neighborhood Structures

First, we investigated the performance of the neighborhood structures on a random generated
solution. The results obtained by the CS on 11 independent runs for each instance were averaged.
The results of the experiment are summarized in Table 7, which shows the average neighborhood
structure frequency (avg neighborhood frequency) along with the average actual improvement of each
neighborhood structure. The frequency was calculated by taking into account all the executions until
the termination criterion was met. Based on this frequency, we ranked each neighborhood structure
according to its successful percentage rate in improving the solution. It can be seen from the table
that REINSERTION achieved the highest percentage of success, whereas K-SHIFT had the lowest
percentage. The lowest percentage indicates that the algorithm became stuck in local optima and
therefore the neighborhood structure was unable to improve the solution any further.

Table 7. Percentage of successful neighborhood structures.

Neigh ANF AAI SPR RK

1. SHIFT-1-0 16.8 15.9 94.8 5
2. SHIFT-2-0 16.1 9.4 58.5 11
3. SWAP-1-1 16.2 13.2 81.2 7
4. SWAP-1-2 17.5 13.7 78.3 8
5. SWAP-2-2 16.1 10.1 62.3 10
6. CROSS 16.9 12.0 70.8 9
7. K-SHIFT 16.1 7.1 43.9 12
8. REINSERTION 16.4 16.4 99.9 1
9. OR-OPT2 16.9 16.5 97.3 4
10. OR-OPT3 16.6 15.8 94.7 6
11. TWO-OPT 16.1 16.1 99.5 2
12. EXCHANGE 17.1 17.0 99 3

Average 16.6 13.6
Total frequency 199 163

Neigh = Neighborhood, ANF = Average Neighborhood Frequency, AAI = Average Actual Improvement,
SPR = Successful Percentage Rate, RK = Rank.

It can be seen from Table 7 that the neighborhood structures REINSERTION, TWO-OPT,
EXCHANGE, OR-OPT2, SHIFT-1-0 and OR-OPT3 are the most successful structures in the algorithm
with a percentage success rate of 99.9%, 99.6%, 99%, 97.4%, 94.8% and 94.8%, respectively. Most of these
neighborhoods are intra-route (REINSERTION, TWO-OPT, EXCHANGE, OR-OPT2 and OR-OPT3);
only one inter-route neighborhood structure (SHIFT-1-0) was able to achieve a comparable result.
The three neighborhoods that were least successful in improving the solutions were K-SHIFT, SHIFT-2-0
and SWAP-2-2 with 44%, 58.6% and 62.3%, respectively.
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Based on this finding, a neighborhood structure sequence called ‘best sequence’ was selected.
The three best neighborhood structures were chosen from each category (intra- and inter-route) as
the aim was to not concentrate on particular categories of neighborhood structure to better explore
the solution search space. The best sequences are REINSERTION, SHIFT-1-0, TWO-OPT, SWAP-1-1,
EXCHANGE and SWAP-1-2.

5.2. Results of Comparison of Accepting Criteria

We investigate the efficacy of two acceptance criteria by applying them to four instances of different
sizes: A-n33-k5 and B-n35-k5, which are small-sized instances; E-n51-k5, which is medium-sized; and
P-n101-k4, which is large. The two acceptance criteria were best and first. Best, where the algorithm
picks the best improvement neighborhood after examining all the neighborhoods of the current solution.
First, where the algorithm picks the first improvement neighborhood of the current solution. The result
of the experiment after 11 runs is shown in Figures 8–11. Figures 8 and 9 show the small A-n33-k5 and
B-35-k5 instances, respectively, whilst Figure 10 shows the medium E-n51-k5 instance and Figure 11
the large P-n101-k4 instance.
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Figure 10. Acceptance criteria applied on instance E-n51-k5.
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Clearly, the Best acceptance criterion achieved the best average objective for the four instances.
It was also able to achieve an optimal solution across all instances than the First acceptance criterion.
Moreover, the Best acceptance criterion was able to get a near to optimal solution (the lowest line) for
two instances, A-n33-k5 and B-n35-k5, as shown in Figures 8 and 9, respectively. Therefore, the Best
acceptance criterion was chosen to further investigate the performance of the proposed algorithm.

5.3. Result of Comparison of NE-CS with Basic CS

The result of a comparison of the basic CS with the above CS enhanced by the best sequence of
neighborhood structures and Best acceptance criterion, which we named neighborhood-enhanced
CS (NE-CS), is summarized in Table 8. From Table 8, it can be seen that NE-CS was able to get a
near-optimal solution for most of the instances based on the (Min.) value. The result shows the
sensitivity of the algorithm to the neighborhood structures and the positive impact that this has on the
search process. Furthermore, the result shows that the proposed NE-CS is much more stable than the
basic CS for all instances based on the (Std.) value. Therefore, we can conclude that NE-CS has the
ability to explore the search space more efficiently than the basic CS. Also, in terms of computational
time, NE-CS outperformed the basic CS for all instances.
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Table 8. The computational result using Basic CS and neighborhood-enhanced CS (NE-CS).

Instance BKS
CS NE-CS Computational

Time (s)

Min. Avg. Std. Max. Min. Avg. Std. Max. CS NE-CS

A-n33-k5 661 688 692.0 16.67 723 678 684.8 4.56 694 11.49 3.391
A-n46-k7 914 973 994.76 8.05 1011 966 975.45 6.05 985 12.15 8.782
A-n60-k9 1354 1414 1413.49 11.16 1436 1401 1412.6 9.24 1431 17.89 12.72
B-n35-k5 955 962 966.37 24.87 973 955 961.54 4.84 970 22.42 5.31
B-n45-k5 751 770 794.88 10.45 793 769 785.90 8.16 796 12.91 5.62
B-n68-k9 1272 1320 1326.73 15.39 1333 1303 1310.6 4.31 1317 39.94 24.44

B-n78-k10 1221 1284 1307.94 26.79 1323 1281 1301.6 13.00 1322 38.86 27.18
E-n30-k3 534 565 559.07 24.41 568 545 555.18 4.40 560 20.19 6.67
E-n51-k5 521 590 618.28 7.98 613 586 599.54 6.94 609 31.33 14.38
E-n76-k7 682 746 763.69 22.25 786 742 755.54 9.24 768 59.25 56.62
F-n72-k4 237 255 265.27 19.35 278 245 249.18 3.84 258 81.12 80.41
F-n135-k7 1162 1301 1319.58 11.32 1327 1289 1310.9 10.83 1329 1178.8 1165.8

M-n101-k10 820 844 843.69 12.84 870 836 841.36 3.32 846 41.46 24.51
M-n121-k7 1034 1088 1110.22 15.11 1107 1086 1094.8 6.58 1106 140.85 126.45
P-n76-k4 593 679 688.27 8.72 694 676 686.63 5.95 693 67.78 66.65

P-n101-k4 681 758 760.75 14.16 766 744 753.45 5.16 761 175.46 167.47

We also performed a Wilcoxon test to determine whether there is a significant difference between
the two methods, with a confidence level of 95%. The results are presented in Table 9. The p-values
indicate that there were significant differences in 13 out of 16 instances.

Table 9. p-value results for NE-CS vs. Basic CS.

Instance p-Value

A-n33-k5 0.000
A-n46-k7 0.000
A-n60-k9 0.008
B-n35-k5 0.001
B-n45-k5 0.000
B-n68-k9 0.000

B-n78-k10 0.000
E-n30-k3 0.029
E-n51-k5 0.000
E-n76-k7 0.000
F-n72-k4 0.000

F-n135-k7 0.001
M-n101-k10 0.000
M-n121-k7 0.000
P-n76-k4 0.02
P-n101-k4 0.11

5.4. Result of Comparison of Selection Strategies

Next, we compared the performance of the NE-CS when modified by three different selection
strategies, namely tournament, rank and disruptive, which were named Tour-CS, Rank-CS and Dis-CS,
respectively. The result of this comparison is summarized in Table 10. Note that the computational
time is not reported because it is similar for all three-selection strategies.

It is clear from the table that Dis-CS outperformed the other algorithms. It was able to obtain the
BKS for six out of 16 instances (A-n33-k5, B-n46-k7, B-n35-k5, E-n30-k3, F-n72-k4 and M-n101-k10).
On the other hand, Tour-CS obtained the BKS for two out of 16 instances (B-n35-k5 and E-n30-k3) and
Rank-CS obtained the BKS for three out of 16 instances (A-n33-k5, B-n35-k5 and B-n45-k5). We believe
that the better performance of the disruptive strategy is due to its ability to achieve a balance between
the selection of worse and better solutions in the population with a small bias towards the better ones;
it tries to improve most of the solutions whether they are worse or have high fitness concurrently.
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The other two selection strategies (tournament and rank) are biased much more towards high-fitness
solutions. However, all three-selection strategies outperformed the random selection strategy used by
NE-CS. Moreover, the Dis-CS was able to outperform the NE-CS in five instances.

To illustrate the superior performance of Dis-CS, Figure 12 provides boxplots for a range of instance
sizes (A-n33-k5, B-n35-k5, E-n51-k5 and P-n101-k4). It is clear from the figure that the disruptive
selection strategy performed better than the original random selection strategy for all four instances.
Moreover, in the case of B-n35-k5 and P-n101-k4 even the worst solution obtained by the disruptive
selection strategy was better than the best obtained by the random selection strategy. The disruptive
selection strategy also outperformed the tournament and rank selection strategies. Lastly, the algorithm
performed very well on the large instance, P-n101-k4, when using the disruptive selection strategy.
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Table 10. Result of comparison of performance of NE-CS, Tour-CS, Rank-CS and Dis-CS.

Instance BKS
NE-CS Tour-CS Rank-CS Dis-CS

Min. Avg. Std. Max. Min. Avg. Std. Max. Min. Avg. Std. Max. Min. Avg. Std. Max.

A-n33-k5 661 678 684.8 4.56 694 662 683.7 5.0 691 661 686.2 3.7 691 661 685.1 3.5 689
A-n46-k7 914 966 975.45 6.05 985 966 977.8 5.7 990 956 977.8 7.4 991 914 979.9 8.9 982
A-n60-k9 1354 1401 1412.6 9.24 1431 1374 1415.2 11.0 1425 1404 1420.6 8.6 1439 1369 1400.6 13.4 1419
B-n35-k5 955 955 961.54 4.84 970 955 963.6 4.4 872 955 964.1 6.3 975 955 960.4 4.7 972
B-n45-k5 751 769 785.90 8.16 796 768 789.0 8.0 799 751 790.0 7.1 802 759 774.9 10.0 793
B-n68-k9 1272 1303 1310.6 4.31 1317 1299 1311.8 5.8 1323 1301 1313.5 5.3 1322 1290 1303.3 4.6 1311
B-n78-k10 1221 1281 1301.6 13.0 1322 1286 1306.6 9.3 1322 1282 1314.2 7.4 1325 1261 1287 14.4 1310
E-n30-k3 534 545 555.18 4.40 560 534 556.7 3.6 563 546 556.9 3.7 566 534 554.9 4.2 559
E-n51-k5 521 586 599.54 6.94 609 586 598.2 5.2 607 590 599.9 5.5 611 562 585.2 12.9 605
E-n76-k7 682 742 755.54 9.24 768 752 760.3 5.5 771 758 754.9 3.5 774 732 751.6 9.9 766
F-n72-k4 237 245 249.18 3.84 258 247 253.1 3.0 259 247 255.3 3.6 262 237 245.4 3.6 253

F-n135-k7 1162 1289 1310.9 10.83 1329 1276 1314.7 13.1 1327 1262 1316.7 15.1 1334 124 1268.7 24.2 1314
M-n101-k10 820 836 841.36 3.32 846 836 846.2 6.1 860 839 850.1 6.2 859 820 834.4 6.8 847
M-n121-k7 1034 1086 1094.8 6.58 1106 1095 1102.9 5.7 1115 1095 1107.1 5.9 1120 1064 1086.0 11.3 1105
P-n76-k4 593 676 686.63 5.95 693 667 689.5 7.6 698 682 692.7 5.6 704 647 675.8 12.3 695

P-n101-k4 681 744 753.45 5.16 761 719 733.8 9.4 751 717 730.6 10.7 755 713 729.9 13.5 747
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We also conducted a Freidman test to examine whether there was any significant difference
between the algorithm with the best-performing selection strategy (Dis-CS) and the other two proposed
algorithms, with a significance level of 95%. Table 11 shows the p-value results of the statistical test.

Table 11. p-value results for Dis-CS vs. Tour-CS and Rank-CS.

Instance p-Value vs. Tour-CS p-Value vs. Rank-CS

A-n33-k5 0.001 0.000
A-n46-k7 0.000 0.000
A-n60-k9 0.000 0.000
B-n35-k5 0.048 0.073
B-n45-k5 0.000 0.000
B-n68-k9 0.000 0.000

B-n78-k10 0.000 0.000
E-n30-k3 0.123 0.108
E-n51-k5 0.010 0.000
E-n76-k7 0.002 0.000
F-n72-k4 0.000 0.000
F-n135-k7 0.000 0.000

M-n101-k10 0.000 0.000
M-n121-k7 0.000 0.000
P-n76-k4 0.001 0.000

P-n101-k4 0.000 0.000

We also carried out statistical analysis to identify the rank of each algorithm by conducting a
Friedman test followed by Holm and Hochberg tests as post-hoc methods to obtain the adjusted
p-value for each comparison when the control algorithm was Dis-CS. Table 12 summarizes the ranking
obtained by the Friedman test (the lowest is the best) and Table 13 provides the results of the Holm
and Hochberg tests. Table 12 shows that Dis-CS ranked first, followed by Tour-CS and Rank-CS,
respectively. The p-value computed by the Friedman test was 0.000017, which was below the significant
interval of 95% and thus indicates that there were significant differences between the observed results.
Table 12 shows that the Holm and Hochberg procedures revealed significant differences when Dis-CS
was the control algorithm. The comparison showed that Dis-CS was better than Rank-CS and Tour-CS
with a confidence level of α = 0.05 (2/3 algorithms).

Table 12. Average ranking of algorithms based on Friedman test.

Algorithm Ranking

Tour-CS 1.969
Rank-CS 2.844
Dis-CS 1.188

Table 13. Adjusted p-values (Friedman).

Algorithm Unadjusted p-Value pHolm pHochberg

Rank-CS 0.000 0.000 0.000
Tour-CS 0.027 0.027 0.027

5.5. Result of Comparison of HCS-SA with Dis-CS

Finally, we compared Dis-CS with HCS-SA in order to ascertain whether hybridization would
improve performance more than the best-performing selection strategy. Table 14 presents the results
of this comparison. It can be seen from the table that HCS-SA obtained a better result in 12 out of
16 instances. Moreover, it performed better than Dis-CS in all of the instances in terms of Avg., Std. and
Max., values when the search ended. In the case of the medium- and large-sized instances (A-n60-k9,
B-n45-k5, B-n68-k9, E-n51-k5 and P-n76-k4), HCS-SA found the BKS.
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Table 14. Result of comparison of performance of Dis-CS and HCS-SA.

Instance BKS
Dis-CS HCS-SA Computational

Time (s)

Min. Avg. Std. Max. Min. Avg. Std. Max. Dis-CS HCS-SA

A-n33-k5 661 661 685.1 3.5 689 661 662 0.7 667 9.95 31.6
A-n46-k7 914 914 979.9 8.9 982 914 919.8 4.1 929 19.28 70.6
A-n60-k9 1354 1369 1400.6 13.4 1419 1354 1370.9 9. 1387 15.53 89.3
B-n35-k5 955 955 960.4 4.7 972 955 959.2 4.3 974 6.06 42.1
B-n45-k5 751 759 774.9 10.0 793 751 755.7 3.5 765 8.35 48.0
B-n68-k9 1272 1290 1303.3 4.6 1311 1272 1293.7 4.4 1300 28.93 133.7

B-n78-k10 1221 1261 1287.3 14.4 1310 1239 1266.4 15.9 1292 32.41 168.8
E-n30-k3 534 534 554.9 4.2 559 534 537.1 2.5 543 9.00 38.5
E-n51-k5 521 562 585.2 12.9 605 521 541.7 11.6 562 17.62 72.2
E-n76-k7 682 732 751.6 9.9 766 690 701.2 7.8 719 64.56 442.0
F-n72-k4 237 237 245.4 3.6 253 237 242.5 6.7 270 107.71 584.7
F-n135-k7 1162 1224 1268.7 24.2 1314 1170 1230.3 15.3 1245 1301.88 2203.45

M-n101-k10 820 820 834.4 6.8 847 820 832.2 5 847 32.40 623.4
M-n121-k7 1034 1064 1086.0 11.3 1105 1034 1061.2 16.6 1089 145.23 691.6
P-n76-k4 593 647 675.8 12.3 695 593 620.4 8.1 644 95.48 399.4

P-n101-k4 681 713 729.9 13.5 747 695 702.2 10.2 725 171.47 2170.9

5.6. Result of Comparison of HCS-SA with State-of-the-Art Methods

In order to further assess the performance of HCS-SA, we compared it with the following
eight state-of-the-art approaches: Discrete Particle Swarm Optimization-Simulated Annealing
(DPSO-SA) [9], Particle Swarm Optimization-Second Representation (PSO-SR-2) [8], Capacitated
Particle Swam Optimization-Simulated Annealing (CPSO-SA) [7], Particle Swarm Optimization-Ant
Colony Optimization (PSO-ACO) [71], Improved Quantum Evolution Algorithm (IQEA) [72],
Capacitated Routing Problem using an island model based genetic algorithm (CGA) [73], improved
golden ball algorithm (IGB) [74] and Intelligent Water Drops (IWD) [75]. Table 15 shows the results of the
comparison based on the objective function value (quality). It can be seen from Table 15 that the solution
quality achieved by HCS-SA is better than that of all the other methods. The HCS-SA algorithm was able
to obtain exactly the same value as the BKS for 13 out of the 16 instances (A-n33-k5, A-n46-k7, A-n60-k9,
B-n35-k5, B-n45-k5, B-n68-k9, E-n30-k3, E-n51-k5, F-n72-k4, M-n101-k10, M-n121-k7, P-n76-k4 and
P-n101-k4). Moreover, it also obtained solutions that were very close to the BKS for some other
instances (B-n78-k10, E-n76-k7 and F-n135-k7).

We also compared the computational time of HCS-SA with that of the five state-of-the-art methods
for which data was available (DPSO-SA, PSO-SR-2, CPSO-SA, PSO-ACO and IQEA). As can be seen
from Tables 16 and 17, HCS-SA was faster than two methods (DPSO-SA and IQEA) for most instances,
which represents around 11 out of 16 instances (approx. 68%). On the other hand, the proposed
HCS-SA was slower than the other methods. This result was further analyzed using the percentage of
improvement, the result of which showed that some of the instances significantly improved (such as
A-n60-k9, B-n45-k5, B-n68-k9, B-n78-k10, E-n30-k3, E-n51-k5 and M-n121-k7) while others saw less
improvement (such as A-n35-k5 and E-n51-k5).

The performance of HCS-SA was further analyzed by using statistical tests to identify whether
there was a significant difference between the proposed algorithm and the best methods in the literature.
Only two methods (PSO-ACO and IQEA) reported the data necessary for this test. First, we employed a
Freidman’s test to identify the rank and then we applied Holm and Hochberg tests as post-hoc methods
to obtain the adjusted p-value for each comparison between the control algorithm (the best-performing
one) and the other two methods. Table 18 summarizes the average ranking (the lower the better)
obtained by the Freidman’s test and Table 19 presents the results of the Holm and Hochberg tests.
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Table 15. Comparison of performance of HCS-SA and state-of-the-art methods.

Instance BKS DPSO-SA PSO-SR-2 CPSO-SA PSO-ACO CGA IGB IWD IQEA HCS-SA

A-n35-k5 661 661 661 661 661 661 662.11/662 * 673 661 661
A-n46-k7 914 914 914 914 914 914 917.72/918 * - 914 914
A-n60-k9 1354 1354 1355 1354 1354 1354.7 1355.8/1356 * - 1363 1354
B-n35-k5 955 955 955 955 955 995 956.29/956 * 987 955 955
B-n45-k5 751 751 751 751 751 751 754.22/754 * - 751 751
B-n68-k9 1272 1272 1274 1275 1275 1272.3 1278.21/1278 * - 1281 1272

B-n78-k10 1221 1239 1223 1223 1221 1221.2 1229.27/1229 * 1311 1256 1239
E-n30-k3 534 534 534 534 534 534 535.8/536 * 551 534 534
E-n51-k5 521 528 521 521 521 521 524.61/525 * 538 524 521
E-n76-k7 682 688 682 687 685 682 687.6/688 * - 703 690
F-n72-k4 237 244 237 237 237 237 241.97/242 * 251 237 237
F-n135-k7 1162 1215 1162 1170 1170 1171.5 1164.54/1165 * 1243 1202 1170
M-n101-k10 820 824 820 820 820 - - - 956 820
M-n121-k7 1034 1038 1036 1034 1034 1034 1043.88/1044 * - 1082 1034
P-n76-k4 593 602 594 594 593 593 598.2/589 * - 594 593

P-n101-k4 681 694 683 683 683 682.2 691.29/691 * - 681 681

(-) Data not available, (*) rounded to nearest integer value.

Table 16. Computational times of HCS-SA and state-of-the-art methods.

Instance DPSO-SA PSO-SR-2 CPSO-SA PSO-ACO IQEA HCS-SA

A-n35-k5 32.3 13 5 0.87 32 31.6
A-n46-k7 128.9 23 8 6.02 129 70.6
A-n60-k9 308.8 40 16 52.88 309 89.3
B-n35-k5 37.6 14 6 2.65 38 42.1
B-n45-k5 134.2 20 9 5.85 134 48.0
B-n68-k9 344.3 50 21 62.97 344 133.7
B-n78-k10 429.4 64 26 98.78 429 168.8
E-n30-k3 28.4 16 6 4.38 28 38.5
E-n51-k5 300.5 22 14 19.46 301 72.2
E-n76-k7 526.5 60 55 46.85 527 442.0
F-n72-k4 398.3 53 112 30.64 398 584.7

F-n135-k7 1526.3 258 1062 248.77 1526 2203.45
M-n101-k10 874.2 114 64 113.28 874 623.4
M-n121-k7 1733.5 89 194 80.62 1734 691.6
P-n76-k4 496.3 48 104 53.48 496 399.4

P-n101-k4 977.5 86 575 0.87 32 2170.9

Table 17. Percentage improvement in time of HCS-SA and state-of-the-art methods.

Instance DPSO-SA PSO-SR-2 CPSO-SA PSO-ACO IQEA

A-n35-k5 2.2 - - - 1.3
A-n46-k7 45.2 - - - 45.3
A-n60-k9 71.1 - - - 71.1
B-n35-k5 - - - - -
B-n45-k5 64.2 - - - 64.2
B-n68-k9 61.2 - - - 61.1

B-n78-k10 60.7 - - - 60.7
E-n30-k3 - - - - -
E-n51-k5 76.0 - - - 76.0
E-n76-k7 16.1 - - -
F-n72-k4 - - - - -
F-n135-k7 - - - - -

M-n101-k10 28.7 - - - 28.7
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Table 17. Cont.

Instance DPSO-SA PSO-SR-2 CPSO-SA PSO-ACO IQEA

M-n121-k7 60.1 - - - 60.1
P-n76-k4 19.5 - - - 19.5

P-n101-k4 - - - - -

(-) No improvements. Note: DPSO-SA used an Intel Pentium IV CPU 1.8 GHz with 256 M RAM, PSO-SR-2 used an
Intel Pentium IV CPU 3.4 GHz with 1 GB RAM, CPSO-SA used an Intel Core 2 CPU E8400 3 GHz with 3.5 G RAM,
PSO-ACO used an Intel Core 2 CPU T7500 running at 2.20 GHz and IQEA used an Intel Pentium Dual-Core CPU
3.2 GHz with 2 GB RAM.

Table 18. Average ranking of algorithms based on Friedman test.

Algorithm Ranking

PSO-ACO 1.063
IQEA 2.813

HCS-SA 2.125

Table 19. Adjusted p-values (Friedman).

Algorithm Unadjusted p-Value pHolm pHochberg

IQEA 0.000 0.000 0.000
HCS-SA 0.003 0.003 0.003

Table 18 shows that the PSO-ACO ranked first, followed by HCS-SA and IQEA, respectively.
The p-value obtained by the Friedman test was 0.000004, which is below the significance interval
of 95% (α = 0.05). This shows that there was a significant difference between the observed results.
Furthermore, Table 19 shows that the control method (PSO-ACO) outperformed the proposed method
HCS-SA at the critical level of 0.05 (adjusted p-value < 0.05). The results of the Holm and Hochberg
statistical tests suggest that HCS-SA is not better than PSO-ACO. However, the results in Table 13
show that HCS-SA outperformed PSO-ACO on one instance and produced a comparable performance
across all the other instances.

6. Discussion

As mentioned earlier, this paper has proposed a hybrid HCS-SA for CVRP, however, it has been
developed with various stages, as shown in Table 20. The higher –ve value mean the proposed algorithm
performed far better. The first, improvement basic CS based on neighborhood structures (NE-CS). It has
improved the mean up to 3%, reduced standard deviation up to 20 and reduced computation time up
to 17 s. Furthermore, the Freidman test showed NE-CS was significantly improved (p-value < 0.05)
compared to basic CS in all instances. The second is improvement using a selection strategy known as
Dis-CS. Dis-CS has improved the mean up to 2%, 4% and 4% compare to NE-CS, Tour-DS and Rank-DS
respectively. The Freidman test also shows Dis-CS has significantly improved for all instances compare
with NE-CS, Tour-CS and Rank-CS except E-30-n3 and B-n45-k5. Besides, it has increased most of the
standard deviation and computational time. The third improvement is hybrid with SA, in which it
has improved the mean up to 6%, reduced standard deviation up to 8.9, however, it has increased
the computational time between 21.65 s to 1999 s. The comparison result between HCS-SA with the
state-of-art algorithms shown it has either obtained the same or outperformed for most instances from
0.3 up to 72, except for E-n78-k10 and E-n76-k7 instances, however still better compare with algorithm
IWD and IQEA. In terms of computational time, HCS-SA appears to even have performed better on
some algorithms such as DIPSO-SA and IQEA but on HCS-SA losses against other algorithms for all
problem instances.
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Table 20. Comparison of performance and computational time of HCS-SA and state-of-the-art methods.

Instance

NE-CS vs. Basic CS
Dis-CS

vs.
Tour-CS

Dis-CS
vs.

Rank-CS

HCS-SA vs.
Dis-CS(s) HCS-SA vs. State-Of-Art Algorithms Computational Time HCS-SA vs.

State-Of-The-Art(s)

D
iff

M
ean

D
iff

Std.

D
iff

Tim
e

p-value

p-value

p-value

D
iff

M
ean

D
iff

Std.

D
iff

Tim
e

D
PSO

-SA

PSO
-SR

-2

C
PSO

-SA

PSO
-A

C
O

C
G

A

IG
B

IW
D

IQ
EA

D
PSO

-SA

PSO
-SR

-2

C
PSO

-SA

PSO
-A

C
O

U
Q

EA

A-n35-k5 −7.2 −12.1 −8.099 0.000 0.001 0.000 −23.1 −2.8 21.65 0 0 0 0 0 −1 −12 0 −0.7 18.6 26.6 30.73 −0.4
A-n46-k7 −19.3 −2 −3.368 0.000 0.000 0.000 −60.1 −4.8 51.32 0 0 0 0 0 −4 - 0 −58.3 47.6 62.6 64.58 −58.4
A-n60-k9 −0.89 −1.92 −5.17 0.008 0.000 0.000 −29.7 −4.4 73.77 0 −1 0 0 −0.7 −2 - −9 −220 49.3 73.3 36.42 −220
B-n35-k5 −4.83 −20 −17.11 0.001 0.048 0.073 −1.2 −0.4 36.04 0 0 0 0 −40 −1 −32 0 4.5 281 36.1 39.45 4.1
B-n45-k5 −8.98 −2.29 −7.29 0.000 0.000 0.000 −19.2 −6.5 39.65 0 0 0 0 0 −3 - 0 −86.2 28 39 42.15 −86
B-n68-k9 −16.1 −11.1 −15.5 0.000 0.000 0.000 −9.6 −0.2 104.77 0 −2 −3 −3 −0.3 −6 - −9 −211 83.7 112.7 70.73 −210
B-n78-k10 −6.34 −13.8 −11.68 0.000 0.000 0.000 −20.9 1.5 136.39 0 16 16 18 17.8 10 −72 −17 −261 105 142.8 70.02 −260
E-n30-k3 −3.89 −20 −13.52 0.029 0.123 0.108 −17.8 −1.7 29.5 0 0 0 0 0 −2 −17 0 10.1 22.5 32.5 34.12 10.5
E-n51-k5 −18.7 −1.04 −16.95 0.000 0.010 0.000 −43.5 −1.3 54.58 −7 0 0 0 0 −4 −17 −3 −228 50.2 58.2 52.74 −229
E-n76-k7 −8.15 −13 −2.63 0.000 0.002 0.000 −50.4 −2.1 377.44 2 8 3 5 8 2 - −13 - - - - -
F-n72-k4 −16.1 −15.5 −0.71 0.000 0.000 0.000 −2.9 3.1 476.99 −7 0 0 0 0 −5 −14 0 186 532 472.7 554.1 187

F-n135-k7 −8.68 −0.49 −13 0.001 0.000 0.000 −38.4 −8.9 901.57 −45 8 0 0 −1.5 5 −73 −32 677 1945 1141.5 1955 677
M-n101-k10 −2.33 −9.52 −16.95 0.000 0.000 0.000 −2.2 −1.8 591 −4 0 0 0 - - - −136 −251 509 559.4 510.1 −251
M-n121-k7 −15.4 −8.53 14.4 0.000 0.000 0.000 −24.8 5.3 546.37 −4 −2 0 0 0 −10 - −48 - 603 497.6 611 -
P-n76-k4 −1.64 −2.77 −1.13 0.020 0.001 0.000 −55.4 −4.2 303.92 −9 −1 −1 0 0 4 - −1 −96.9 351 295.4 345.9 −96.6

P-n101-k4 −7.3 −9 −7.99 0.110 0.000 0.000 −27.7 −3.3 1999.43 −13 −2 −2 −2 −1.2 −10 - 0 1193 2085 1595.9 2170 2139
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7. Conclusions

This study introduced hybrid CS with SA for CVRP that consists of three improvements strategy.
The first strategy is to improve the CS exploration of search space by avoiding the trap in local
optima using 12 multiple neighborhood structure strategies. However, only six multiple neighborhood
structures are enough to obtain the best solution as it has improved both the cost and computational
time. The second strategy is to further increase the CS exploration using three selection strategies as
the disruptive strategy shown the best solution. The result showed it has significantly improved the
solution, however it also increased computational time as well. Therefore, the third strategy aims
to improve the exploitation of Disruptive CS ability by hybridizing with SA by targeting of having
higher improvement solution with less increase its complexity. The result shown that the HCS-SA
has outperformed compared with the state-of-art algorithms includes with other CS improvement.
Even though the complexity of HCS-SA is higher compare with most of the state-of-the-art algorithms.
However, the complexity of HCS-SA is far less compared with the state of art improvement CS
for CVRP. We found that the exploitation strategy has given a higher impact on CS improvement
compare with the two exploration strategies. So, it can be concluded that the strategy to maximize the
exploration first follows by exploitation as the best strategy for CVRP’s CS improvement. With such a
result, we believe the proposed algorithm can be applied to other variants of routing problems as well,
such as VRP with time windows [76–78], VRP for hazardous materials transportation [79], dynamic
vehicle routing problem [80], weighted vehicle routing problem [81], split delivery vehicle routing
problem [82] and VRP with outsourcing and profit balancing [83].
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