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Abstract: Inverse planning is a method of radiotherapy treatment planning where the care team
begins with the desired dose distribution satisfying prescribed clinical objectives, and then determines
the treatment parameters that will achieve it. The variety in symmetry, form, and characteristics of
the objective functions describing clinical criteria requires a flexible optimization approach in order
to obtain optimized treatment plans. Therefore, we introduce and discuss a nonlinear optimization
formulation called the split common coincidence point problem (SCCPP). We show that the SCCPP
is a suitable formulation for the inverse planning optimization problem with the flexibility of
accommodating several biological and/or physical clinical objectives. Also, we propose an iterative
algorithm for approximating the solution of the SCCPP, and using Bregman techniques, we establish
that the proposed algorithm converges to a solution of the SCCPP and to an extremum of the inverse
planning optimization problem. We end with a note on useful insights on implementing the algorithm
in a clinical setting.

Keywords: coincidence point; inverse planning; convex optimization; fixed point; iterative algorithm;
tumor control probability; radiobiological criteria; pseudocontraction

1. Introduction

The grail of modern radiotherapy is to ensure sufficient and conformal irradiation of tumor cells
devoid of normal tissue(s) complications. This is achieved through a process known as radiotherapy
treatment planning (RTP). A core component of RTP is the fluence map optimization, which involves
determining a beam intensity (fluence) profile that would yield a dose distribution closest to a desired
clinical outcome. In intensity-modulated radiation therapy (IMRT), for instance, radiation beams from
an external source are split into smaller fields called beamlets, whose individual intensities can be
regulated (modulated) [1]. To obtain an optimized treatment plan, the inverse problem of finding a set
of beamlet intensities that would result in a dose distribution satisfying a set of prescribed clinical
objectives is solved. The quality of any treatment plan is usually measured by how well the set of
objectives are achieved. Therefore, the objective functions used in describing clinical requirements for
treatment plan optimization are an important index in plan quality evaluation.

To this end, several authors have, on the one hand, proposed and analyzed different objective
functions for optimizing treatment plans based on physical criteria (such as maximum dose,
minimum dose, mean dose, etc.) and/or biological criteria (such as equivalent uniform dose (EUD),
tumor control probability (TCP), normal tissue complication probability (NTCP), etc.) [2–9]. On the
other hand, other studies have focused on the comparative analysis of objective functions using clinical
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data [10–17]. From these studies, specific merits and limitations of physically- and biologically-based
objectives can be identified. While target coverage enforced by physical criteria is desirable, it has
also been reported that better critical organ sparing is achieved using biological criteria. Other results,
however, favor hybrid (combination of biological and physical) criteria over just physical or biological
criteria. Hence, it is safe to say that no particular objective function can be described as “the best”,
that is, better in all respects.

Consequently, inverse planning optimization has been a subject of extensive research. This has led
to the development of several optimization formulations based on different objective functions [3,4,9,18],
the most widely used being the linear programming approach, largely due to its simplicity and speed.
However, this framework has a major drawback: lack of flexibility. Only a relatively limited number
of objective functions and constraints can fit into the linear framework. Hence, “with any particular
linear programming formulation, it is unlikely that a physician could always achieve an acceptable
result” [19]. On the contrary, with nonlinear optimization formulations, a wide range of possible
objective functions and constraints including mathematical models for predicting radiobiological
responses can be accommodated. This is no doubt advantageous to RTP, even though the uncertainty
in determining input parameters of some radiobiological models poses some difficulties.

Therefore, in this paper, we introduce and discuss a nonlinear optimization formulation called the
split common coincidence point problem (SCCPP). We propose an iterative algorithm for approximating
the solution of the SCCPP, and using Bregman techniques, we establish that the proposed algorithm
converges weakly to a solution of the SCCPP. Furthermore, using some biological and/or physical
objective criteria recommended for RTP optimization, we show that the SCCPP is a suitable formulation
for inverse planning optimization and that the proposed algorithm converges to an extremum of the
(bio)physically-based inverse planning optimization problem. It will be interesting to illustrate the
performance of the algorithm under conditions obtainable in a clinical setting. Thus, we provide useful
computational insights for implementation of the algorithm in such setting.

2. Preliminaries

In this section, we provide some useful definitions and results. We shall denote a reflexive real
Banach space and its dual by E and E∗, respectively.

Definition 1. A function ψ : E −→ R is said to be:

(a) convex if for any λ ∈ [0, 1] and points u, v ∈ E,

ψ(λu + (1− λ)v) ≤ λψ(u) + (1− λ) ψ(v)

(b) strictly convex if the inequality in (a) is strict
(c) totally convex if there exists a function ϕ : [0,+∞) −→ [0,+∞) varnishing only at zero such that:

ψ(u) −ψ(v) ≥ 〈v∗, u− v〉+ ϕ(‖ u− v ‖), v∗ ∈ ∂ψ(v)

The set dom (ψ)
{
u ∈ E : ψ(u) < +∞

}
is called the effective domain of ψ. When dom (ψ) is nonempty,

is said to be proper.

Definition 2. Let ψ : E −→ R be convex, and u ∈ dom(ψ). The set

∂ψ(u) :=
{
u∗ ∈ E∗ : 〈u∗, v− u〉 ≤ ψ(v) −ψ(u), ∀ v ∈ E

}
,

is called the subdifferential of ψ at u. If ∂ψ(u) is nonempty, then an element p ∈ ∂ψ(u) is called the subgradient
of ψ at u.

Remark 1. It is well known that if ψ is a proper, lower semi-continuous convex function, then for any
u ∈ dom(ψ), ∂ψ(u) is nonempty. Moreover, 0 ∈ ∂ψ(u) iff u is a minimizer of ψ.
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Definition 3. A function ψ : E −→ R is said to be Legendre, if

(a) ∂ψ is both locally bounded and single-valued on its domain

(b) ψ is strictly convex on every subset of dom(ψ) and (∂ψ)−1 is locally bounded in its domain.

Definition 4. (See [20]) Let ψ : E −→ R be a proper, lower semi-continuous convex function. Then:

(a) the generalized Bregman distance with respect to ψ and a subgradient p is defined as:

Bp
ψ
(u, v) = ψ(u) −ψ(v) − 〈p, u− v〉, p ∈ ∂ψ(v)

It is immediate that Bp
ψ
(u, v) ≥ 0 ∀ u, v ∈ dom(ψ). Furthermore,

Bp
ψ
(u, w) = Bq

ψ
(u, v) + Bp

ψ
(v, w) + 〈u− v , q− p〉, p ∈ ∂ψ(w), q ∈ ∂ψ(v)

when ∂ψ(u) is a singleton, we shall denote Bp
ψ
(., .) simply by Bψ(., .).

(b) the Bregman projection relative to ψ of a point uu ∈ dom(ψ) onto a nonempty, closed, and convex subset

K, is defined as the unique vector
K∏
ψ
(u) satisfying Bψ

 K∏
ψ
(u), u

 = in f
{
Bψ(v, u) : v ∈ K

}
. If ψ is totally

convex and Gateaux differentiable, then
K∏
ψ
(u) is the unique solution contained in K of the following

variational inequalities (see [21]);

(i) 〈∇ψ(u) −∇ψ(z), z−w〉 ≥ 0 ∀ w ∈ K
(ii) Bψ(w, z) + Bψ(z, u) ≤ Bψ(w, u)∀ w ∈ K

Definition 5. A mapping M : E −→ 2E∗ is said to be:

(a) monotone, if 〈m− n, u− v〉 ≥ 0 ∀ u, v ∈ dom(M), m ∈M(u), n ∈M(v)
(b) maximal monotone if M is monotone, and the graph of M is not contained in the graph of any other

monotone map
(c) ϕ-strongly monotone if there exists a non-negative function ϕ which varnishes only at zero such that:

m− n, u− v ≥ ϕ(u− v), ∀ u, v ∈ dom(M), m ∈M(u), n ∈M(v)

If ϕ is the function ϕ(x) = k0x2, k0 > 0, M is called strongly monotone. Note that
dom(M) :=

{
z ∈ E : M(z)is nonempty

}
.

Definition 6. A mapping φ : E −→ X (X is a normed space) is said to be Lipschitz if there exists L > 0
such that:

‖ φ(u) −φ(v) ‖X≤ L ‖ u− v ‖E ∀ u, v ∈ E.

Definition 7. (See [22]) Let φ1, φ2 : E −→ E be two mappings. A point u ∈ E is called a coincidence point of
φ1 and φ2 iff φ1(u) = φ2(u).

Lemma 1. [23] (a) If ψ is a lower semi-continuous, proper convex function on E, then ∂ψ is a maximal
monotone operator from E to E∗. (b) Let T : E −→ E∗ be a multivalued mapping. In order that there exists a lower
semi-continuous proper convex function on E such that T = ∂ψ, it is necessary and sufficient that T be a maximal
cyclically monotone operator. Moreover, in this case, T determines ψ uniquely up to an additive constant.
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Proposition 1. [24] Let ψ be a lower semi-continuous convex function, such that int(dom(ψ)) is nonempty.
Then, the function ψ is differentiable at u ∈ int(dom(ψ)) iff ∂ψ(u) is a singleton. If ψ is differentiable on
int(dom(ψ)), then the derivative is norm to weak* continuous on int(dom(ψ)).

Proposition 2. [24] Let ψ be a convex function such that int(dom(ψ)) is nonempty. Then, the following
are equivalent:

(i) The function ψ is locally bounded from above on int(dom(ψ))

(ii) The function ψ is locally bounded on int(dom(ψ))

(iii) The function ψ is locally Lipschitz on int(dom(ψ))

(iv) The function ψ is continuous on int(dom(ψ)).

Moreover, if ψ is lower semi-continuous, then all these conditions are satisfied.

Lemma 2. [25] Let ψ be uniformly convex on every nonempty, bounded and convex subset of dom(ψ).
Then, given two sequences {uk}

∞

k=1 in dom(ψ) and {vk}
∞

k=1 in int(dom(ψ)) satisfying

lim
k→∞

Bψ(uk, vk) = 0,

if one of these sequences is bounded, then, the other is bounded too. Moreover,

lim
k→∞

‖ uk − vk ‖= 0

3. Main Results

3.1. Split Common Coincidence Point Problem (SCCPP)

Definition 8. (Generalized Coincidence Point) Let T, S : E1 −→ E2 be two multivalued mappings. A point
u0 ∈ E1 will be called a coincidence point of T and S iff there exists η0 ∈ T(u0)∩ S(u0).The problem of finding
a coincidence point of T and S is called a generalized coincidence point problem.

Remark 2. A multivalued version of Definition 7 is obtained immediately by setting E1 = E2. If in addition,
the map T or S is the identity operator, then the coincidence point problem reduces to the fixed point problem.
It is worthy of mention that a particular case of the generalized coincidence point problem resulting when E1 is a
normed space, E2 = E∗1, T is monotone and S = J (the normalized duality map) was introduced and studied by
Chidume and Idu [26] as the J-fixed point problem. As a tool for solving optimization problems, the J-fixed point
problem has awaken further research in that direction (See [27–29]).

The split common coincidence point problem follows naturally from Definition 8 as Definition 9.

Definition 9. Let T, S be as in Definition 8, let P, Q : E3 −→ E4 be two multivalued mappings.
Let A : E1 −→ E3 be a bounded linear map. Denote by C0(T, S) and C0(P, Q), the set of coincidence
points of T and S, and the set of coincidence points of P and Q, respectively. Then, the SCCPP is

f ind u0 ∈ E1 such that u0 ∈ C0(T, S) and Au0 ∈ C0(P, Q).

It follows that by setting S = IE1 , Q = IE2 (I is the identity map), the split common fixed point problem (SCFP)
introduced by Censor and Segal [30] and studied extensively (see e.g., [31–35]), is a sub-class of the SCCPP.
The SCFP formalism, and its variant introduced and studied by Moudafi [36], has been used in modelling
significant real-world inverse problems (see for example [37,38]).
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3.2. Optimization by Generalized Coincidence Point Problem

Here, we establish an interconnection between optimization problems and coincidence point
problems for a special class of operators, T and S. For this purpose, we shall assume that E1 in Definition
8 is a reflexive Banach space, and simply denote it as E, and E2 = E∗.

Definition 10. (S-pseudocontraction) Let T and S be as in Definition 8. Then, T will be called S-pseudocontraction
(or pseudocontractive with respect to S) if for every u, v ∈ E,

〈t1 − t2, u− v〉 ≤ 〈s1 − s2, u− v〉 ∀ t1 ∈ Tu, t2 ∈ Tv, s1 ∈ Su, s2 ∈ Sv

The concept of S-pseudocontraction generalizes that of J -pseudocontraction studied in [26].

Lemma 3. Let T and S be as in Definition 10; then, the following are equivalent:

(i) T is monotone.
(ii) S− T is S-pseudocontractive.

Proof. Let Γ := S− T
(i) =⇒ (ii)

Let u, v ∈ E be arbitrary; then, for every tu ∈ Tu, tv ∈ Tv, su ∈ Su, sv ∈ Sv and γu ∈ Γu, γv ∈ Γv such
that γu = su − tu and γv = sv − tv, we have that

〈γu − γv, u− v〉 = 〈su − tu − (sv − tv), u− v〉
= 〈su − sv, u− v〉 − 〈tu − tv, u− v〉

≤ 〈su − sv, u− v〉.

Thus, Γ := S− T is S-pseudocontractive.

(ii) =⇒ (i)

We first note that T = S− Γ.
Now, let u, v ∈ E be arbitrary, let tu ∈ Tu and tv ∈ Tv, then tu = su − γu and tv = sv − γv for some

su ∈ Su, sv ∈ Sv, γu ∈ Γu, and γv ∈ Γv. Thus,

〈tu − tv, u− v〉 = 〈su − γu − (sv − γv), u− v〉 = 〈su − sv, u− v〉 − 〈γu − γv, u− v〉 ≥ 0.

Therefore, T is monotone. �

It is easily deducible from Lemma 3 that if T is S-pseudocontractive, then a coincidence point
of T and S corresponds to a zero of the monotone map S − T. Hence, well known existence results
for zeros of monotone operators naturally carry over for coincidence points of operators of this
class. The crucial role of zeros of monotone operators in the analysis of solutions to minimization
problems (see for example [39–42]) underscores the interplay between coincidence point problems and
optimization problems.

3.3. Examples of S-Pseudocontraction

(1) Let E = H, a real Hilbert space, S = I, the identity map on H. Then, any pseudocontraction on H
is S-pseudocontraction.

(2) Every J-pseudocontraction is S-psuedocontraction with S = J + M, where M is any single-valued
monotone map.
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(3) Let E be a smooth real Banach space, fix p > 1. Define Tp : E −→ E∗ and Sp : E −→ E∗ by:

Tp(u) = pJ(u)
Sp(u) = (p + µ)J(u)+ ‖ u ‖p−2 J(u), µ > 0.

Then, Tp is Sp-pseudocontractive and 0 ∈ C0
(
Tp, Sp

)
.

We remark that the map, Tp, failed to be pseudocontractive in the usual sense for E = H.
Furthermore, Tp is not J-pseudocontractive. In fact, for every mapping T : E −→ E∗ , there exists a
mapping S : E −→ E∗ such that T is S-pseudocontractive (Take S = T + A, where A is any monotone
map on E).

Lemma 4. Let T : E −→ E∗ be a single valued map. Let S : E −→ 2E∗ be such that Ψ := S−1
◦ T is well

defined and single valued. If T is S-pseudocontractive, then for every u, v ∈ E,

T(Ψ(u)) − T(Ψ(v)), Ψ(u) −Ψ(v) ≤ T(u) − T(v), Ψ(u) −Ψ(v)

Proof. Let u, v ∈ E. By definition of Ψ, we have that
T(u) ∈ S(Ψ(u)) and T(v) ∈ S(Ψ(v)). Since T is S-pseudocontractive, then 〈T(Ψ(u)) −

T(Ψ(v)), Ψ(u) −Ψ(v)〉 ≤ 〈T(u) − T(v), Ψ(u) −Ψ(v)〉 as required. �

3.4. Approximation of Coincidence Points

Theorem 1. Let E1 and E2 be reflexive real Banach spaces, with dual spaces E∗1 and E∗2 respectively.
Let T1 : E1 −→ E∗1 and T2 : E2 −→ E∗2 be single-valued cyclically maximal monotone maps.
Let S1 : E1 −→ E∗1 and S2 : E2 −→ E∗2 be mappings such that T1 is S1-pseudocontractive, T2 is
S2-pseudocontractive and g1 := S−1

1 ◦ T1, g2 := S−1
2 ◦ T2 are well defined and single-valued.

Let A : E1 −→ E2 be a bounded linear map with adjoint A∗. Assume that T−1
1 exists and generate inductively

the sequence: 
w0 ∈ E1

vn = T−1
1 (T1(wn) − rA∗(T2(Awn) − T2(g2(Awn))))

wn+1 = T−1
1 (αT1(vn) + (1− α)T1(g1(vn)))

r > 0, 0 ≤ α < 1.

(1)

Suppose that the set sol(SCCPP) is nonempty, where

sol(SCCPP) =
{
z ∈ E1 : z ∈ C0(T1, S1) and Az ∈ C0(T2, S2)

}
.

Then, given z ∈ sol(SCCPP),

Bψ1(z, wn+1) ≤ Bψ1(z, wn) − Bψ1(vn, wn) − αBψ1(g1(vn), vn)

− r
[
Bψ2(g2(Awn), Awn) − Bψ2(Avn, Awn)

]
ψ1, ψ2 are convex functions guaranteed by Lemma 1 for T1, T2, respectively.

Proof. Let z ∈ sol(SCCPP) and ψ1, ψ2 as in Lemma 1, using (1), definition of Bψ(., .) and property of
adjoint, we have that

Bψ1(z, vn) ≤ Bψ1(z, wn) − Bψ1(vn, wn) + rT2(Awn) − T2(g2(Awn)), Az−Avn
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Applying the fact that z ∈ sol(SCCPP), simple arithmetic, Lemma 4, and second property of Bψ(., .) in
Definition 4(a), we obtain

Bψ1(z, vn) ≤ Bψ1(z, wn) − Bψ1(vn, wn) − rBψ2(g2(Awn), Awn) − rBψ2(Avn, g2(Awn)) + rBψ2(Avn, Awn)

≤ Bψ1(z, wn) − Bψ1(vn, wn) − rBψ2(g2(Awn), Awn) + rBψ2(Avn, Awn)
(2)

Next, observe from (1) that

wn+1 = T−1
1 (T1(vn) − (1− α)[T1(vn) − T1(g1(vn))])

Then, applying same steps used in the above argument yield

Bψ1(z, wn+1) ≤ Bψ1(z, vn) − αBψ1(wn+1, vn) − αBψ1(g1(vn), vn) (3)

Thus, combining (2) and (3) gives

Bψ1(z, wn+1) ≤ Bψ1(z, wn) − Bψ1(vn, wn) − αBψ1(g1(vn), vn) − rBψ2(g2(Awn), Awn) + rBψ2(Avn, Awn) (4)

�

Corollary 1. Under the conditions of Theorem 1, let T1 = T2, S1 = S2, A = I and α = 0, then direct
substitution gives

Bψ(z, wn+1) ≤ Bψ(z, wn) − (1− r)Bψ(wn+1, wn) − Bψ(g(wn), wn)

Theorem 2. Under the conditions of Theorem 1, assume that T1 is strongly monotone with constant k1 and weakly
sequentially continuous, and T2 is k2-Lipschitz andϕ-strongly monotone on bounded sets. Take r < k1

k1+k2‖A‖2
and

α > 0, if IE1 − g1 and IE2 − g2 are demi-closed at zero, then, the sequence {wn} generated by (1), converges weakly
to a point z0 ∈ sol(SCCPP).

Proof. The added properties of T1 and T2, (4) and the fact that 0 < r < k1
k1+k2A2 give the following:

• Bψ1(z, wn+1) ≤ Bψ1(z, wn) − vn− ‖ wn ‖
2

• lim
n→∞

Bψ1(z, wn) exists

• {wn} is bounded
• lim

n→∞
‖ vn −wn ‖= 0 and {vn} is also bounded.

Also from (4), we deduce that

lim
n→∞

Bψ1(g1(vn), vn) = lim
n→∞

Bψ2(g2(Awn), Awn) = 0

Hence, the boundedness of the sequences {vn} and {Awn} together with Lemma 2 gives the following:

•
{
g1(vn)

}
and

{
g2(Awn)

}
are bounded

• lim
n→∞

‖ g1(vn) − vn ‖= lim
n→∞

‖ g2(Awn) −Awn ‖= 0

Next, denote the set of weak limit points of {wn} by W(wn). The boundedness of {wn} guarantees
that W(wn) is nonempty. To conclude our proof, it suffices to show the following:

(i) W(wn) ⊆ sol(SCCPP)
(ii) W(wn) is a singleton
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Now, for (i), pick p0 ∈W(wn) arbitrarily, then there exists
{
wn j

}
⊆ {wn} such that wn j ⇀ p0 . Thus,

vn j ⇀ p0 and Awn j ⇀ Ap0 . Since ‖ g1
(
vn j

)
− vn j ‖−→ 0 and ‖ g2

(
Awn j

)
−Awn j ‖−→ 0 , we have by

demi-closedness that p0 = g1(p0) and Ap0 = g2(Ap0).
This gives that T1(p0) ∈ S1(p0) and T2(Ap0) ∈ S2(Ap0). Therefore, p0 ∈ sol(SCCPP).
Next, we show that W(wn) is a singleton. For a contradiction, suppose that there exists u0,

u1 ∈W(wn) such that u0 , u1, then, there exists
{
wnk

}
,
{
wni

}
subsequences of {wn} such that wnk ⇀ u0

and wni ⇀ u1 . Now we know that

lim
n→∞

[
ψ1(u0) −ψ1(u1) + Bψ1(u1, wn) − Bψ1(u0, wn)

]
= lim

n→∞
〈u0 − u1, T1(wn)〉

exists. Hence,
lim
k→∞
〈u0 − u1, T1

(
wnk

)
〈 = lim

i→∞
〈u0 − u1, T1

(
wni

)
〉

By weak sequential continuity of T1, we have that

〈u0 − u1, T1(u0) − T1(u1)〉 = 0 −→ u0 = u1contradicting that u0 , u1

Therefore W(wn) is a singleton. �

Corollary 2. Let K1 and K2 be nonempty, closed, and convex subsets of reflexive spaces E1 and E2 respectively.
Let A : E1 −→ E2 such that A(K1) ⊆ K2. Let T1, T2, S1, S2, g1, g2, r and α satisfy the assumptions of
Theorem 2 on K1 and K2. Then, the sequence {wn} inductively generated by

w0 ∈ K1

yn =
K1∏
ψ1

(
T−1

1 (T1(wn) − rA∗(T2(Awn) − T2(g2(Awn))))
)

wn+1 =
K1∏
ψ1

(
T−1

1 (αT1(vn) + (1− α)T1(g1(vn)))
)
,

(5)

weakly converges to a solution of the K1, K2 constrained SCCPP.

Proof. By simple computation using the definition of Bψ1(. , .) and characterization of yn as in
Definition 4(b), we have for z ∈ sol(SCCPP) that

Bψ1(z, yn) ≤ Bψ1(z, wn) − Bψ1(yn, wn) + r〈T2(Awn) − T2(g2(Awn)), Az−Ayn〉

By z ∈ sol(SCCPP), simple arithmetic, Lemma 4, and second property of Bψ1(. , .) in Definition 4(a),
we obtain that

〈T2(Awn) − T2(g2(Awn)), Az−Ayn〉

≤ Bψ2(Ayn, Awn) − Bψ2(g2(Awn), Awn) − Bψ2(Ayn, g2(Awn))

Hence,
Bψ1(z, yn) ≤ Bψ1(z, wn) − Bψ1(yn, wn) + rBψ2(Ayn, Awn) − rBψ2(g2(Awn), Awn)

Similarly,
Bψ1(z, wn+1) ≤ Bψ1(z, yn) − αBψ1(g1(yn), yn) − αBψ1(wn+1, yn)

Thus,

Bψ1(z, wn+1) ≤ Bψ1(z, wn) − Bψ1(yn, wn) + rBψ2(Ayn, Awn) − rBψ2(g2(Awn), Awn) − αBψ1(g1(yn), yn) (6)

It follows from (6) that
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• lim
n→∞

Bψ1(z, wn) exists

• {wn} is bounded
• lim

n→∞
‖ yn −wn ‖= 0 and

{
yn

}
is also bounded.

• lim
n→∞

Bψ1(g1(yn), yn) = lim
n→∞

Bψ2(g2(Awn), Awn) = 0, thus
{
g1(yn)

}
and

{
g2(Awn)

}
are bounded. Moreover, lim

n→∞
‖ g1(yn) − yn ‖= lim

n→∞
‖ g2(Awn) −Awn ‖= 0

Finally, using a similar argument as in Theorem 2, we deduce that

W(wn) ⊆ sol(SCCPP) and W(wn) = {u0}

�

4. Application to Inverse Planning Optimization

4.1. An Inverse Planning Optimization Problem (IPOP)

Prior to treatment optimization, the patient’s volume (usually a 3D representation of the patient’s
anatomy obtained from medical images such as computed tomography (CT) and magnetic resonance
imaging (MRI) scans) is discretized into sub-volumes called voxels. The anatomy is further outlined into
various structures grouped as planning target volume (PTV) and organs at risk (OAR). Individual voxels
may belong to several structures, but for simplicity, it is usual to associate each to one structure.

Now suppose there are N number of voxels indexed by i = 1, 2, . . . , N and M candidate beams
(beamlets) indexed by j = 1, 2, . . . , M. Then, the total dose absorbed in the ith voxel is given by

di =
M∑

j=1

ai ju j

where ai j is the (i× j)th entry of the dose influence matrix A : RM
−→ RN and u j is the intensity of the

jth beam (beamlet) [19].The IPOP is formulated as

find u∗ ∈ RM
+ such that Au∗ ∈ min( f )

where f : RN
−→ R is a dose dependent objective function modeled based on clinical goals, and min( f )

denotes the set of minimizers of f . For analysis of some convex reformulation of commonly used
objective criteria in RTP, we refer the reader to [9,43].

4.2. SCCPP Reformulation of IPOP

We begin with the following assumptions:

(a) f is convex
(b) f is “partly” differentiable, that is, f can be written as a sum of two convex functions f1 and

f2 such that f1 or f2 is differentiable. Without loss of generality, we shall always assume f2 to
be differentiable.

(c) There exists a differentiable convex function h and a positive constant θ, such that θh − f2 is
Legendre, totally convex, cofinite, and has Lipschitz continuous gradient

Now, let E1 = RM, E1 = RN, K1 =
⋂ρ

l=1

{
u ∈ RM

+ : σl(u) ≤ ρl
}

for some convex constraint
functions σl and scalars ρl ∈ R and K2 = RN

+. Let A be the dose influence matrix, then A(K1) ⊆ K2.
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Let f : E2 −→ R , a dose dependent objective function modeled based on clinical goals,
satisfy assumptions (a)–(c). Define the following operators

T1 := τIE1 = S1, τ > 0
T2 := κ

(
∇h− 1

θ∇ f2
)
, κ > 0

S2 := κ
(
∇h + 1

θ∂ f1
)
, κ > 0

Then, it can easily be shown that

(i) T1 is strongly monotone, cofinite, sequentially continuous, and T1 inverse exists
(ii) T1 is S1-pseudocontractive, and T2 is S2-pseudocontractive.
(iii) T2 is Lipschitz continuous and ϕ-strongly monotone
(iv) the mappings g1 := S−1

1 ◦ T1 and g2 := S−1
2 ◦ T2 are well defined and single-valued [44].

Also IE1 − g1 and IE2 − g2 are demi-closed at zero.
(v) a solution of the constrained SCCPP associated with T1, S1 and T2, S2 solves the constrained

IPOP (see Lemma 3 and Remark 1). (i)–(iv) verifies all the assumptions of Corollary 2; hence,
by (v), (5) converges to a solution of the IPOP.

4.3. Common Biological and/or Physical Objective Criteria in RTP

We now demonstrate that the reformulation presented in Section 4.2 accommodates several
important physical and/or biological objective functions applied in RTP. We consider five examples.
In each example, we provide f1, f2, h, and θ for which assumptions (a)–(c) in Section 4.2 are satisfied.
We adopt the following notations:

T := number of voxels in the target volume (or PTV)

O := number of voxels in Organs at Risk (OAR)

for a total of N voxels, we index voxels in OAR by T+ 1, T+ 2, . . . , T+O = N.

Example 1. (Physical criteria)

f (w) =
T∑

j=1

a j
(
w j −D j

p

)q1
+

N∑
j=T+1

b j
(
w j −D j

max

)q2

+

where (.)+ := max{., 0}, D j
p is the dose prescription for voxel j, D j

max is the maximum dose allowed for voxel j,
a j and b j are positive weighting factors, and the exponents q1 and q2 are even. Clearly, f is convex.

f1 := 0
f2 := f

h := f + λ
2 ‖ . ‖2, λ > 0
θ = 1

A very similar objective function was studied in [4]. Part of the results obtained indicates that with choice of
exponents greater than 2, dose homogeneity inside the target can be effectively improved.

Example 2. (Biological criteria)

f (w) = − ln
(
TCPLQ(w)

)
− ln(1−NTCPAN(w))
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where

TCPLQ(w) = exp

−N0
T∑

j=1
v j exp

(
−αw j −

βw2
j

n f

)
NTCPAN(w) = 1− exp

− N∑
j=T+1

v j

αw j+
βw2

j
n f

α∆


a, 1 ≤ a < +∞

N0 is the initial number of clonogenic cells, v j is the relative volume of voxel j , α and β are radiobiologic
parameters of the linear quadratic (LQ) cell survival model such that α2n f > 2β, and n f is the number of
treatment fractions. Clinical α, β , n f values in this category for prostate, brain, breast, and liver tumors can be
found in [45–49]. ∆ and a are structure-dependent scalars.

We remark that f is a negative log transform of an uncomplicated tumor control model derived
from the LQ-Poisson TCP and a biological effective dose (BED) version of the Alber and Nusslin NTCP
model [50]. The convexity of f follows from Appendix A and E in [43].

f1 := 0
f2 := f

h := f + λ
2 ‖ . ‖2, λ > 0
θ = 1

Example 3. (Biological criteria)

f (w) = − ln
(
1− (NTCPRS(w))s

)
, s > 0

where

NTCPRS(w) =

1− N∏
j=1

1− exp

−sN0 exp

−αw j −
βw2

j

n f





v j
1
s

s is the relative parameter characterizing the internal organization of a structure (or organ). Other parameters
are the same as in Example 2.

f is a negative log transform of the well known relative Seriality NTCP model. Its convexity was analyzed
in [43].

f1 := 0
f2 := f

h := f + λ
2 ‖ . ‖2, λ > 0
θ = 1

In [4], a related objective function (weighted sum of NTCPs evaluated with Lyman NTCP model), and subjected
to physical constraints specifying the “admissible minimum and maximum dose to targets”, was proposed and
implemented.

Example 4. (Hybrid criteria)

f (w) =
T∑

j=1

a j
(
w j −D j

p

)q1
− ln(1−NTCPAN(w))

where the symbols have the same meaning as in Examples 1 and 2. The convexity of f follows easily from [43].
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f1 := 0
f2 := f

h := f + λ
2 ‖ . ‖2, λ > 0
θ = 1

Example 5. (Physical criteria)

f (w) =
T∑

j=1

a j
(
w j −D j

p

)q1
+

N∑
j=T+1

b j
(
w j −D j

max

)
+

where the symbols have the same meaning as in Example 1. f is clearly convex.

f1 :=
N∑

j=T+1
b j
(
w j −D j

max

)
+

f2 :=
T∑

j=1
a j
(
w j −D j

p

)q1

h := f2 + λ
2 ‖ . ‖2, λ > 0
θ = 1

4.4. Insights on Algorithm Implementation

The algorithm labeled (5) has been carefully designed. Its efficiency in terms of speed and
accuracy can easily be demonstrated by a simple numerical example. However, this may not be truly
valuable. In this instance, what may truly be of high value and practical usefulness is to demonstrate
those, when the algorithm is implemented for the reformulated IPOP, in a clinical setting.

Implementation in a clinical setting involves a series of steps beginning with the selection of
a clinical case (for example, a prostate cancer case), and obtaining the relevant clinical datasets.
These clinical datasets may include the original Digital Imaging and Communications in Medicine
(DICOM) CT scan image, the DICOM radiotherapy structure files containing the contours of targets
and organs at risk, and the dose prescriptions as well as treatment schedule. Furthermore, we require
optimization data such as size, resolution, and number of voxel grids in each geometrically contoured
structure, and beam information such as beam energy, couch, and gantry angles, number of beamlets,
and the geometric location of each beamlet, required for the computation of the dose influence matrix,
which is then coupled into the optimization algorithm (in this case, (5)) to generate the optimized
fluence map. These processes are far from trivial. Thus, we refrain from illustrating and analyzing this
implementation in this paper. Nevertheless, for the RTP objective functions presented in Section 4.3,
we give explicit forms of the operator g2 appearing in (5) (for Examples 1 and 4) and an approximate
form of g2 (for Example 2), to aid in executing (5) during clinical implementation.
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Forms of g2.

For Example 1, with κ = 1, q1 = 4 and q2 = 2,
S−1

2 (x) = u ∈ RN such that:
if j ≤ T :

u j = D j
p +

 x j−λa jD
j
p

8a j
+

√(
x j−λa jD

j
p

8a j

)2

+
(
λ

12a j

)3


1
3

+

 x j−λa jD
j
p

8a j
−

√(
x j−λa jD

j
p

8a j

)2

+
(
λ

12a j

)3


1
3

else if x j > λD j
max :

u j =
2b jD

j
max+x j

2b j+λ
else:
u j =

x j

λ
Hence, g2(x) = S−1

2 (λx)
For Example 4, with = 1, q1 = 4, a = 2, and ∇2λ > 1

S−1
2 (x) = u ∈ RN such that:

if j ≤ T :

u j = D j
p +

 x j−λa jD
j
p

8a j
+

√(
x j−λa jD

j
p

8a j

)2

+
(
λ

12a j

)3


1
3

+

 x j−λa jD
j
p

8a j
−

√(
x j−λa jD

j
p

8a j

)2

+
(
λ

12a j

)3


1
3

else

u j = φ j = −
αn f
2β +


n2

f

(
α2
∇

2x j+
α3
∇

2n f λ

2β

)
8β2v j

+

√√√√√√√
n2

f

(
α2∇2x j+

α3∇2n f λ

2β

)
8β2v j


2

+

(
n2

f (α
2∇2λ−α2v j)
12β2v j

)3


1
3

+


n2

f

(
α2
∇

2x j+
α3
∇

2n f λ

2β

)
8β2v j

−

√√√√√√√
n2

f

(
α2∇2x j+

α3∇2n f λ

2β

)
8β2v j


2

+

(
n2

f (α
2∇2λ−α2v j)
12β2v j

)3


1
3

Hence, g2(x) = S−1
2 (λx)

For Example 2, with κ = 1, a = 2, and α2n f > 2β
S−1

2 (x) ≈ u ∈ RN such that:
if j ≤ T :{

u j = ∅ j, if j ≤ T
u j = φ j, otherwise

where ∅ j satisfies a j∅3
j + b j∅2

j + c j∅ j + d j = 0 with d j = −
(
N0αv j + x j

)
a j =

−N0β
(
α2
−

2β
n f

)
v j

n f
, b j = N0α

(
3β
n f
−
α2

2

)
v j, c j = N0v j

(
α2
−

2β
n f

)
+ λ

Hence, g2(x) ≈ S−1
2 (λx)

For other methods of approximation see [51–53].

5. Conclusions

We have introduced and discussed a nonlinear optimization formulation called the split common
coincidence point problem (SCCPP). We showed that this formulation is applicable to inverse planning
optimization with increased flexibility in accommodating several biological and/or physical criteria
recommended for RTP optimization. Although the objective functions are required to be convex,
equivalent convex reformulations of commonly used non-convex objective criteria in RTP exist in the
literature. We developed and proved convergence of an iterative algorithm to a solution of the SCCPP,
which in this particular application corresponds to an extremum of some (bio)physically-based inverse
planning optimization problem. In addition, we provided useful insights toward the implementation
of the algorithm in a clinical setting.
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