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Abstract: Saving money and time are very important in any research project, so we must find a way
to decrease the time of the experiment. This method is called the accelerated life tests (ALT) under
censored samples, which is a very efficient method to reduce time, which leads to a decrease in the
cost of the experiment. This research project includes inference on Lindley distribution in a simple
step-stress ALT for the Type II progressive censored sample. The paper contains two major sections,
which are a simulation study and a real-data application on the experimental design of an industry
experiment on lamps. These sections are used to conduct results on the study of the distribution.
The simulation was done using Mathematica 11 program. To use real data in the censored sample, we
fitted them to be compatible with the Lindley distribution using the modified Kolmogorov–Smirnov
(KS) goodness of fit test for progressive Type II censored data. We used the tampered random variable
(TRV) acceleration model to generate early failures of items under stress. We also found the values
of the distribution parameter and the accelerating factor using the maximum likelihood estimation
of (MLEs) and Bayes estimates (BEs) using symmetric loss function for both simulated data and
real data. Next, we estimated the upper and lower bounds of the parameters using three methods,
namely approximate confidence intervals (CIs), Bootstrap CIs, and credible CIs, for both parameters
of the distribution, ψ and ζ. Finally, we found the value of the parameter for the real data set under
normal use conditions and stress conditions and graphed the reliability functions under normal and
accelerated use.

Keywords: type II of progressive censored sample; reliability function; simple step-stress accelerated
life test; bayesian estimation; kolmogorov–smirnov; symmetric loss function; symmetric distribution;
asymmetric distributions

1. Introduction

Due to the use of high technology in manufacturing products, the reliability of products has
become very high, thus it is very hard nowadays to find a sufficient number of failure times in classical
life testing experiments and reliability experiments; most products have exponential life time and
it may be thousands of hours. Our aim is find a suitable way to produce early failures, because,
under normal use conditions for products, producing failures in the lifetime experiments with a
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limited testing time may produce very few failures and it is not sufficient to study the data and make
a very good model for them. Thus, we use the best way for decreasing the lifetime of the products:
Accelerated life tests (ALT). In ALT, units or products are exposed to tough conditions and high stress
levels (humidity, temperature, pressure, voltage, etc.) according to the conditions of manufacturing.
There are many methods and models of ALT; products are exposed to stress according to the purpose of
the experiment and the type of products. Scientists apply different types and methods of acceleration,
e.g., constant ALT, step stress ALT, and progressive stress ALT. Nelson [1] discussed these different
types of ALT. The main purpose of using ALT is to drive items to failure quickly, because some items
may have a long lifetime under normal operating conditions. Therefore, in ALT, we put products under
higher stress than the usual stress conditions, e.g. by increasing operating temperatures, pressures, or
voltages, according to the physical use of the product, to generate failures more quickly.

There are several different forms of applying stress to products, e.g. step-stress (see, e.g., [1]).
Two other common types are constant stress, where the test is conducted under a constant degree of
stress for the entire experiment, and progressive stress, where all test units are subjected to stress as
a function of time, and the stress increases on the experimented items as the time of the experiment
increases (see El-Din et al. [2,3] for more details about acceleration and its models).

In step-stress ALT, we first apply a certain value of stress on the items under testing for certain
time τ. Then, after this time, the stress load is increased by a fixed value for a certain period and so on
until all the units have failed or the experiment ends. One of the most common methods of simple
step-stress ALT has two levels (see, e.g., El-Din et al. [2–4].) Two types of censoring approaches can
be applied to units: Type I censoring and Type II censoring. Recently, Type II censoring has been
shown to make perfect use of time because it presets the number of failures. This means that the
experiment does not end until the required number of failures has been achieved. Type II censoring
can be explained as follows. If, for example, we have several independent and identical products
and the sample number is n products under lifetime observation, the experiment then reaches its
end by achieving m number of failure, which is preset before the experiment begins. With a fixed
censoring scheme, let us denote them as R1, R2, . . . , Rm. For more extensive reading about this subject,
see the works done by alBalakrishnan [5], Fathi [6], and Abd El-Raheem [7] .

This paper aims to make a full study on the Lindley distribution under ALT using progressive
Type II censored samples and apply an experimental application to introduce the importance of this
distribution in fitting many real data applications in many fields of life. We refer to different recent
studies to explain the difference kinds of ALT; for more reading about constant, step, and progressive
ALT, see the works of El-din et al. [8–11].

This paper is organized as follows. In Section 2, a brief literature review about the Lindley
distribution and its applications in many fields of life, as well as the assumptions of the acceleration
model used in this study, is presented. In Section 3, the maximum likelihood estimation (MLEs) of the
parameters are obtained. We present another updated type of estimation, the Bayes estimation (BEs),
using a symmetric loss function for model parameters in Section 4. We introduce three different types
of intervals, namely asymptotic, bootstrap, and credible confidence intervals (CIs), for the parameters
of the model in Section 5. In Section 6, a real data example for reliability engineering data is fitted
and studied to apply the proposed methods (for more reading about reliability engineering modelling
and applications, see [12–14]). Section 6 also includes the graphs of the reliability function and some
elaboration about these graphs. Simulation study and some results and observations are presented in
Section 7. Finally, the major findings are concluded in Section 8.

2. Lindley Distribution and Its Importance

This section identifies the importance of the Lindley distribution in the fields of business,
pharmacy, biology, and so on. For example, Gomez et al. [15], applied the Lindley distribution
to the application of strength systems’ reliability. Ghitany et al. [16] created a new bounded domain
probability density feature in view of the generalized Lindley distribution.
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The novelty of this paper is that no one jas used the tampered random variable (TRV) ALT model
under progressive Type II censoring for the Lindley distribution and applied a real data experiment
on censored sample, not complete sample, using the modified Kolmogorov–Smirnov (KS) algorithm,
we compared it with the two-parameter Weibull distribution and we proved that it provides better
fitting to the real data experiment. This inspires us to work on implementing the SSALT model
and estimating the parameters involved under Lindley distribution for simulated data and real data
application. The first one introduced the Lindley distribution was Lindley [17], who combined
exponential distribution with parameter (ψ) and Gamma (2,ψ). In 2012, Bakouch et al. [18] introduced
an extended Lindley distribution that now has many applications in finance and economics.
Ghitany et al. [19] proved that the Lindley distribution is a weighted distribution of gamma
distribution and exponential distribution. Therefore, in many cases, the Lindley distribution is more
flexible than these two and distributions, as he studied its properties, and showed through a numerical
study that Lindley distribution is a better fit to lifetime data than exponential distribution. One of the
major advantage of the Lindley distribution over many distributions, as an example of exponential
distribution, is that it has an increased risk rate. Gomez et al. [15] introduced an improvement on
the Lindley distribution named the Log Lindley distribution, which was used as a replacement for
the beta regression model. Now, the probability density function (PDF) can be written of the Lindley
distribution as follows:

f (z) =
[

ψ2(1 + z)e−ψz

1 + ψ

]
, z > 0, ψ > 0, (1)

F(z) =
[

1−
(

1 +
ψz

1 + ψ

)
e−ψz

]
, z > 0, ψ > 0. (2)

Its cumulative distribution function (CDF) is as Equation (2). By graphing the Lindsey’s PDF
and CDF we can deduce that they have asymmetric shapes. As the Lindley distribution has a
failure-rate function, which is called the hazard rate function (HRF), and can be introduced by:

h(z) =
(1 + z)ψ

1 + (1 + z)ψ
, z > 0, ψ > 0. (3)

For more details about real data applications using the Lindley distribution, see [17].

Assumptions and the Test Procedure and the Steps Used

1. Let us assume that we have n identical and independent products that follows the Lindley
distribution and these were subject to a lifetime examination in a lifetime experiment;

2. The examination of the products ends as soon as the mth failure happens such that: (m ≤ n);
3. All units run in normal-use conditions and after a prefixed time η, the stress is increased by a

certain value;
4. From the physical experiments on products, engineers have stated that the following law controls

the connection between the stress on the products S and scale parameter σ. Thus, the law can
be stated as follows: The model of inverse power law (IPL) is given by: ln(σi) = a + b[ln(Si)],
where b > 0, and voltage is denoted by S, and a is the model parameter;

5. We will apply progressive Type II censoring, as discussed above, on the units of this experiment;
6. After running the test on the products, the number of units that failed before stress is n1.

In addition, n2 is the total number of failed items after applying the stress at time η;
7. We used the tampered random variable (TRV) model provided by [20]. This model states that

under step stress partially accelerated life test (SSPALT), the lifetime of a unit can be written as:

Z =

{
z i f z ≤ η,
η + z−η

ζ i f z > η,
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where z refers to the time of the product under the use conditions, η is the time that we change
the stress, and ζ is the factor that we use to accelerate the failure time (ζ > 1);

8. The PDF is divided as follows:

f (z) =


0, z < 0,

f1(z) =
[

ψ2(1 + z)e−ψz

1 + ψ

]
, 0 < z < η,

f2(z) =
ψ2ζ (1 + (ζ(z− η) + η))e−ψ(ζ(z−η)+η)

1 + ψ
, η < z < ∞.

(4)

3. Estimation Using the Maximum Likelihood Function

Maximum likelihood estimation (MLE) in statistics is a method of estimating the parameters
of a probability distribution by maximizing the probability function so that the observed data is
most likely under the assumed statistical model. The maximum likelihood estimate gives a point
estimation of the distribution parameter and this estimate makes the likelihood function maximum,
one of the advantages of this method being that it is versatile and provides a good estimates for the
distribution parameter.

This method works on finding the first derivatives for the log-likelihood function with respect
to the distribution parameters and solving the equations simultaneously and finding the estimates
that make the log-likelihood function at maximum value, this value is called the estimates of the
distribution.

In this section, we used this method for estimating the parameters of the distribution and the
accelerating factor. Thus, by using Equations (4) and substituting with it in Equation (5), we get the
likelihood function under the progressive Type II censored sample. In the next subsection, we will
introduce the procedures of this method.

Point Estimation

Let zi = z R
i:m:n be the times that the items the failing occurred times the products under SSPALT,

with censored scheme R = (R1, . . . , Rm), then the likelihood function is as expressed below, see [4]
for more reading:

L(ψ, ζ) = A
n1

∏
i=1

f1(zi) [1− F1(zi)]
Ri

m

∏
i=n1+1

f2(zi) [1− F2(zi)]
Ri , (5)

L = A
n1

∏
i=1

ψ2(1 + zi) exp[−ψzi]

1 + ψ

[(
1 +

ψzi
1 + ψ

)
exp[−ψzi]

]Ri

n2

∏
i=1

ψ2ζ(1 + ζ[zi − η] + η) exp[−ψζ(zi − η) + η]

1 + ψ[(
1 +

ψζ(zi − η) + η

1 + ψ

)
exp[−ψζ(zi − η) + η]

]Ri

. (6)

By taking the log for both sides for Equation (6), we then get the log-likelihood function,
as shown below:



Symmetry 2020, 12, 2080 5 of 18

`(ψ, ζ) = log A +
m

∑
i=1

log ψ2 +
n2

∑
i=1

log ζ −
m

∑
i=1

log(1 + ψ)+

n1

∑
i=1

log(1 + zi) +
n1

∑
i=1

Ri log(1 +
ψzi

1 + ψ
)−

n1

∑
i=1

ψzi(Ri + 1)+

n2

∑
i=1

log(1 + ζ(zi − η) + η) +
n2

∑
i=1

Ri log(1 +
ψ(ζ(zi − η) + η)

1 + ψ
)−

n2

∑
i=1

ψ(ζ(zi − η) + η)(Ri + 1),

(7)

`(ψ, ζ) = log A + 2m log ψ + n2 log ζ −m log(1 + ψ)+
n1

∑
i=1

log(1 + zi) +
n1

∑
i=1

Ri log(1 +
ψzi

1 + ψ
)−

n1

∑
i=1

ψzi(Ri + 1)+

n2

∑
i=1

log(1 + ζ(zi − η) + η) +
n2

∑
i=1

Ri log(1 +
ψ(ζ(zi − η) + η)

1 + ψ
)−

n2

∑
i=1

ψ(ζ(zi − η) + η)(Ri + 1).

(8)

By finding the first derivative for the distribution parameters ψ and ζ as follows:

∂`(ψ, ζ)

∂ζ
=

n2

ζ
+

n2

∑
i=1

zi − η

(1 + ζ(zi − η) + η)
+

n2

∑
i=1

Ri
ψ(zi − η)

((1 + ψ) + ψ(ζ(zi − η) + η))
−

n2

∑
i=1

ψ(zi − η)(Ri + 1),

(9)

∂`(ψ, ζ)

∂ψ
=

2m
ψ
− m

1 + ψ
+

n1

∑
i=1

(Ri

(
zi

((1 + ψ)2 + (1 + ψ)ψzi)

)
−

n1

∑
i=1

zi(Ri + 1) +
n2

∑
i=1

Ri

(
(ζ(zi − η) + η))

((1 + ψ)2 + (1 + ψ)ψ((ζ(y− η) + η))

)
− (ζ(zi − η) + η)) (Ri + 1).

(10)

These two Equations (9) and (10) are very hard to solve, so we will try to find a solution for the
two equations by solving them numerically, using Mathematica 11 software and thereby finding the
estimates for the two parameters ψ,ζ.

4. Bayes Estimation

Bayesian estimation is a modern efficient approximation for estimating the parameters compared
with the maximum likelihood estimates method. As it takes into account both previous information
and sample information and estimates the unspecified interest parameters. Bayesian estimation can be
performed using symmetric and asymmetric loss function, according to the necessity of the experiment,
and sometimes symmetric loss functions are better than asymmetric loss functions. There are different
types of asymmetric loss functions, two being the linear exponential loss function and the general
entropy loss function.

In this section, we proposed the Bayes estimators of the unknown parameters of the Lindley
distribution using the symmetric loss function. In Bayesian estimation we must assign a prior
distribution to the data, and in order to choose the prior density function that covers our belief
on the data, we must choose appropriate values hyper-parameters. In this part of the paper, based on
Type II progressive censored sample, we used the square error (SE) loss function to obtain the model
parameters estimations for ψ, and ζ, as we deduced that both ψ, and ζ are independent, we choose
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a gamma priors as a prior distribution for the two parameters because it is versatile for adjusting
different shapes of the distribution density. It also has another merit which is that it provides conjugacy
and mathematical ease and has closed expressions for moments type. The two independent priors are
as follows:

π1(ψ) ∝ ψµ1−1e
−ψ
λ1 , ψ > 0, µ1, λ1 > 0,

and
π2(ζ) ∝ ζµ2−1e

−ζ
λ2 , ζ > 0, µ2, λ2 > 0.

As the gamma prior is very common, many authors have used it because it encourages
researchers to feel confident in the data. For more information about BE, see Nassar and Eissa [21],
and Singh et al. [22]. If we do not have any belief about the data, we must use non-informative priors,
we do this by setting the following values so that µi tends to zero, i = 1, 2 and λi tends to infinity,
i = 1, 2. In this way, we can change informative priors into non-informative priors, see Singh et al. [22].
After this, we can find the form of the joint PDF prior of ψ, and ζ as below:

π(ψ, ζ) ∝ ψµ1−1ζµ2−1e−(
ψ

λ1
+ ζ

λ2
), ψ, ζ > 0. (11)

By multiplying Equation (11) with Equation (5), we get equation the posterior function in
Equation (12):

π∗(ψ, ζ) ∝ L(ψ, ζ)π(ψ, ζ) ∝ ψµ1−1ζµ2−1 exp
[
−( ψ

λ1
+

ζ

λ2
)

]
n1

∏
i=1

ψ2(1 + zi) exp[−ψzi]

1 + ψ

[(
1 +

ψzi
1 + ψ

)
exp[−ψzi]

]Ri

n2

∏
i=1

ψ2ζ(1 + ζ[zi − η] + η) exp[−ψζ(zi − η) + η]

1 + ψ[(
1 +

ψζ(zi − η) + η

1 + ψ

)
exp[−ψζ(zi − η) + η]

]Ri

(12)

By making some simplifications on Equation (12) we get Equation (13).

π∗(ψ, ζ) ∝ L(ψ, ζ)π(ψ, ζ) ∝ ψµ1−1+2mζµ2−1+n2 exp
[
−( ψ

λ1
+

ζ

λ2
)

]
n1

∏
i=1

(1 + zi) exp[−ψzi]

1 + ψ

[(
1 +

ψzi
1 + ψ

)
exp[−ψzi]

]Ri

n2

∏
i=1

(1 + ζ[zi − η] + η) exp[−ψζ(zi − η) + η]

1 + ψ[(
1 +

ψζ(zi − η) + η

1 + ψ

)
exp[−ψζ(zi − η) + η]

]Ri

(13)

The posterior density function in (14) for the two parameters ψ and ζ can be formed by the
multiplication of Equations (6) with (11) and making some simplification, and its final form is as below:
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π∗(ψ, ζ) ∝ L(ψ, ζ)π(ψ, ζ) ∝ ψµ1−1+2mζµ2−1+n2 exp
[
−( ψ

λ1
+

ζ

λ2
)

]
n1

∏
i=1

(1 + zi) exp[−ψzi]

1 + ψ

[(
1 +

ψzi
1 + ψ

)
exp[−ψzi]

]Ri

n2

∏
i=1

(1 + ζ[zi − η] + η) exp[−ψζ(zi − η) + η]

1 + ψ[(
1 +

ψζ(zi − η) + η

1 + ψ

)
exp[−ψζ(zi − η) + η]

]Ri

(14)

According to the SE loss function, the Bayes estimator for B = B(Θ), Θ = (ψ, ζ) (for more details
see Ahmadi et al. [23]):

atBSE =
∫
Θ

B π∗(Θ) dΘ, (15)

where π∗(Θ) is given by Equation (14).
In a fact we cannot find a result for integrals in Equation (15). Thus, we used the Markov chain

Monte Carlo (MCMC) technique to approximate these integrals, and used the the Metropolis—Hasting
algorithm as an example of the MCMC technique to find the estimates.

4.1. Using MCMC Method in Bayesian Estimation

In this section, we use the MCMC method because we do not have a well-known distribution
for the posterior density function, and we then calculate the BEs of ψ and ζ. From Equation (14),
the conditional posterior distribution functions for ψ and ζ are as shown below, respectively:

π∗(ψ|ζ) ∝ ψµ1−1e
−ψ
λ1

[
n1

∏
i=1

ψ2(1 + zi) (1 + ψ(1 + zi))
Ri (1 + ψ)−(1+Ri) exp {−(1 + Ri)ψzi}

]

×
m

∏
i=n1+1

{
ψ2ζ (1 + (ζ[zi − η] + η)) (ζ + ψ(ζ[1 + η] + zi − η))Ri

}
exp

[
−ψ

(
(zi − η)(ζ +

Ri
ζ
) + η(1 + Ri)

)]
,

(16)

π∗(ζ|ψ) ∝ ζµ2−1e
−ζ
λ2

[
n1

∏
i=1

ψ2(1 + zi) (1 + ψ(1 + zi))
Ri (1 + ψ)−(1+Ri) exp {−(1 + Ri)ψzi}

]

×
m

∏
i=n1+1

{
ψ2ζ (1 + (ζ[zi − η] + η)) (ζ + ψ(ζ[1 + η] + zi − η))Ri

}
exp

[
−ψ

(
(zi − η)(ζ +

Ri
ζ
) + η(1 + Ri)

)]
.

(17)

Therefore, we do not have a closed form for the conditional posterior distribution ψ and ζ in (16)
and (17) as it does not represent any known distribution. We therefore used the Metropolis–Hasting
algorithm (for more information about this, see Upadhyay and Gupta [24]). The algorithm below
explains the steps required to compute Bayes estimators for B = B(ψ, ζ) under the SE loss function.

4.2. The Metropolis—Hasting Algorithm

The Metropolis—Hastings algorithm and sometimes we call it the random walk algorithm,
this kind of algorithm can be considered as a Markov Chain Monte Carlo (MCMC) method for
generating data from any CDF as it used for normal distribution to generate data because it has
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the symmetric property that ensures that all other distribution are covered under the symmetric
normal graph. This generated samples can be used to approximate the distribution or to compute an
integral (e.g., an expected value), we use Algorithm 1 because sometimes obtaining samples is difficult,
that is because the posterior we have is from an unknown distribution. We can use this algorithm with
one dimension and two dimensions data. For more reading see [24–31].

Algorithm 1 MCMC algorithm

1. First of all set the starting values as follows ψ(0) = atψMLE, ζ(0) = atζMLE.
2. Start the iterations with i = 1.
3. Get the values of estimates for ψ(i) and ζ(i), i = 1, . . . , N, from Equations (16) and (17) respectively

using the MCMC algorithm (Metropolis—Hasting algorithm).
4. Repeat the iterations (3), with number of iterations N = 10,000 times and every time get the mean

value of the estimates.
5. To find the values of the parameters we evaluate the approximate means of B as follows:

E(B) =
1

N −M

N

∑
i=M+1

B(ψ(i), ζ(i)), (18)

where M = N/5 is the burn-in period.

5. Interval Estimation

In this part, we tried to estimate the upper and lower bounds of the following parameters ψ and
ζ using the following three methods: The first method is approximate CIs, the second method is the
Bootstrap CIs, and the third method is credible CIs.

5.1. Finding Confidence Intervals for the Parameters

In statistics, a confidence interval (CI) is a type of estimate computed from the statistics of the
observed data. This interval identifies the range of for the unknown parameters, it changes according
to the confidence level chosen by the investigator, confidence interval for an unknown parameter is
based on sampling the distribution of a corresponding estimator.

In this part of the paper, we will try to find the upper and lower bounds for Θ = (ζ, ψ). using the
MLEs of the two parameters. Where the asymptotic distributions for the MLEs are is given by [32]:

((atψ− ψ) , (atζ − ζ))→ N
(

0, I−1(ψ, ζ
)

,

where I−1 is the variance covariance matrix of the unknown parameters (ψ, ζ).

∂2` (Θ)

∂ψ2 =− 2m
ψ2 +

m

(1 + ψ)2 +
n1

∑
i=1

Ri

(
−zi(2 (1 + ψ) + zi (1 + 2ψ)

((1 + ψ)2 + (1 + ψ)ψzi)

)
+

n2

∑
i=1

Ri

(
− (ζ(zi − η) + η)) (2 (1 + ψ) + (1 + 2ψ) (ζ(zi − η) + η)

((1 + ψ)2 + (1 + ψ)ψ(ζ(zi − η) + η)2

)
.

(19)

∂2` (Θ)

∂ζ2 =− n2

ζ2 −
n2

∑
i=1

(zi − η)2

(1 + ζ(zi − η) + η)2−

n2

∑
i=1

Ri

(
ψ2(y− η)2

((1 + ψ) + ψ(ζ(zi − η) + η))2

)
.

(20)
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∂2` (Θ)

∂ψ ∂ζ
=

n2

∑
i=1

Ri
((1 + ψ) + ψ(ζ(zi − η) + η)(zi − η)− ψ(zi − η) (1 + ζ(zi − η) + η))

((1 + ψ) + ψ(ζ(zi − η) + η)2 −

n2

∑
i=1

(zi − η)(Ri + 1).

(21)

The approximate 95% s for ψ is given by:

(atψL, atψU) = atψ± 1.96
√

σ11 (22)

(atζL, atζU) = atζ ± 1.96
√

σ22 (23)

5.2. Bootstrap Confidence Intervals

Bootstrapping assigns measures of accuracy (bias, variance, confidence intervals, prediction
error, etc.) to sample estimates. This technique allows an estimation of the sampling distribution of
almost any statistic using random sampling methods. In this part of the paper, we find the values of
bootstrap CIs for ψ, ζ (see Efron and Tibshirani [33] for more information). Algorithm 2 below specifies
the steps for obtaining lower and upper bounds using bootstrap CIs.

Algorithm 2 Bootstrap algorithm

1. Use the MLEs for ψ and ζ which are atψML and atζML.
2. Use atψML and atζML to get random sample using the same censoring scheme let us name it f∗

3. Use f∗ to solve the equations numerically using the Mathematica 11 program and find the values
of the estimates corresponding to bootstrap sample let us name them as atψ∗ and atζ∗.

4. Again and again make the steps ((1)–(3)) several times as an example 1000 times and
put the estimates we have in a vector having the order from the smallest to the biggest
value order to obtain the bootstrap vector of estimates {atψ∗[1], atψ∗[2], . . . , atψ∗[1000]} and
{atζ∗[1], atζ∗[2], . . . , atζ∗[1000]}.

Thus, we can get 100 (1− α)% bootstrap CIs for θi, given by:

(atθi
∗
L, atθi

∗
U) =

(
atθi
∗[ζB/2], atθi

∗[(1−ζ/2)B]
)

, i = 1, 2, (24)

where atθ1
∗ ≡ atψ∗ and atθ2

∗ ≡ atζ∗.

5.3. Credible Confidence Intervals

In Bayesian statistics, a credible interval is an interval in which the distribution parameter value
falls between the lower and upper bounds of it with a certain confidence level. It is an interval in
the domain of a posterior probability distribution. Credible intervals are symmetric in meaning to
the approximate confidence interval, Bayesian intervals treat their bounds as fixed and the estimated
parameter as a random variable, whereas frequentest confidence intervals treat their bounds as random
variables and the parameter as a fixed value. In addition, Bayesian credible intervals use knowledge of
the situation-specific prior distribution, while the frequentest confidence intervals do not. Algorithm 3
below was used to get credible CIs of ψ and ζ.
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Algorithm 3 Credible interval

1. First of all set the starting values as follows ψ(0) = atψMLE, ζ(0) = atζMLE.
2. Start the iterations with i = 1.
3. Get the values of estimates for ψ(i) and ζ(i), i = 1, . . . , N, from Equations (16) and (17) respectively

using the MCMC algorithm.
4. Repeat the iterations (3), with iteration number, N = 10, 000 times and every time get the mean

value of the estimates as follows.
5. To find the values of the parameters we evaluate The approximate means of B as follows:

E(B) =
1

N −M

N

∑
i=M+1

B(ψ(i), ζ(i)), (25)

where M = N/5 is the burn-in period.
6. Get N estimates using the MCMC algorithm.
7. arrange the N estimate generated in each iteration of the MCMC algorithm in ascending order as

{atθi
[1]
SE, atθi

[2]
SE, . . . , atθi

[N]
SE }, i = 1, 2, where atθ1SE ≡ atψSE, and atθ2SE ≡ atζSE.

Thus, we can get 100 (1− α)% credible CIs for θi is given by:(
atθi

[αN/2]
SE , atθi

[(1−α/2)N]
SE

)
, i = 1, 2. (26)

6. Application on Real Data Set for Lindley Distribution

Here, we used real data to serve as a real-life example for the step stress model with a real data set,
and fitted this data set and then made a statistical inference on this data to assess the performance of
the Lindley distribution.

6.1. Example

The data set that we used in the application were collected from Chapter 5 of Zhu [26]. These data
represent an experiment on some light bulbs with working-use stress of 2 voltage. Here, a sample
of size n = 64 light bulbs were lit at 2.25 voltage for a period of 96 h before increasing the voltage
to 2.44 voltage. This means the time of stress change was at η = 96 h. This lifetime experiment
was performed on a sample of size n = 64 light bulbs under stress; in our experiment, we removed
11 bulbs when they were still working and functioning before they had reached their failure point.
Consequently, we observed only m = 53, failures, as only n1 = 34 had failed on the stress voltage
S1 = 2.25 V, and the scheme used in progressive censoring is Ri, i = 1, 2, . . . , 53:

Ri =

{
0, i 6= 35
11, i = 35.

From practical experiments, we deduced that the best model to represents the acceleration and
voltage relationship is the inverse power model. Thus, the acceleration model can be expressed as:

ln(σi) = a + b ln(Si), b > 0, i = 0, 1, 2. (27)

We use modified Kolmogorov–Smirnov goodness of fit test for progressive Type-II censored data to
determine the goodness of fit for the data in the experiment, this method was suggested by Pakyari
and Balakrishnan [34].
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6.2. Comparison with Competitive Distribution

The importance of the Lindley distribution in this paper is that it provides more fit than its
traditional competitor, the two-parameter Weibull distribution, as we checked for the p-value for both
distributions for fitting the real data application and found that the Lindley distribution has p-value
greater than 0.05 for both levels of stress in the experiment, while in case of the Weibull distribution
it makes a poor-fitting for the real data set because the p-value of the first level of acceleration is
less than 0.05, while it provides good fitting for the second level, so we can deduce that the Lindley
distribution makes better fitting than the Weibull distribution for both levels of experiment so we can
use it instead of the Weibull distribution by fitting the two levels of the Lindley distribution which
has a merit over the two parameters Weibull distribution in fitting this kind of experiment. For more
information about the reliability of engineering data, please see references [12–14].

The following table contains the value of test statistic and the p-values of each stress level for the
Lindley distribution and Weibull two parameters distribution.

6.3. Important Results Conducted from Real Data

The following points illustrate briefly the work we have done in this real data example.
According to the results in Tables 1–3.

1. In the experiment with real data, we used a modified K-S method to ensure that our data was a
good fit for our distribution;

2. According to the p-values in Table 1, we deduced that our distribution made a good fit for the
failure times of the experiment. After that, we first estimated the parameters using this real data,
and then we concluded the CIs;

3. By using the estimated parameters and the acceleration model estimates ata, atb, we deduced θ0,
where θ0 is the scale parameter under normal use. From Equation (27), we can evaluate the MLE
of the scale parameter under normal conditions atθ0 = eata+atb ln(S0) = 0.0000214702. Which is
the scale parameter under normal use;

4. By estimating the parameter under normal use we can use it to find the following:
5. The mean time to failure (MTTF) under normal conditions is

MTTF =
2 + θ0

θ0(1 + θ0)
= 93, 151.3 h.

6. The failure rates (hazard rate function ) under normal conditions is:

h(y) =
((1 + z)θ2

0)

θ0((1 + θ0 + zθ0)
, z > 0,

7. The reliability function under normal conditions is:

R(y) =
(

1 +
θ0z

1 + θ0

)
e−θ0z, z > 0,

8. By graphing the reliability function we deduced the following: Reliability function under normal
use, at time, equals zero the reliability function equal one, see Figure 1. Under stress conditions,
we concluded that the reliability function decreases, as time increases, see Figure 2. As the stress
increase once more it approaches zero see Figure 3.
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Table 1. The table below shows how our distribution makes a good fit for the real data set as we see
the value of test statistic and the corresponding p-values of each stress level for Lindley distribution.

Value of Voltage Stress 2.25 V 2.44 V

statistic 0.323529 0.945

p-value 0.0563701 0.789

Table 2. The table below shows value of test statistic and the corresponding p-values for each stress
level for the Weibull distribution, we can see that the Weibull distribution makes a poor fitting for the
real data set because the p-value of the first level of acceleration is less than 0.05, while it provides good
fitting for the second level, on the other hand the Lindley distribution makes better than Weibull for
both levels of experiment and we used one distribution to fit the whole experiment with both levels of
acceleration, so we can use the Lindley distribution instead of the Weibull distribution for modeling
the whole experiment according to the results in Table 2.

Value of Voltage Stress 2.25 V 2.44 V

statistic 0.794118 0.6646

p-value 5.70644 × 10−20 0.912

Table 3. The lengths of confidence intervals (CIs), maximum likelihood estimation (MLEs), and Bayes
estimates (BEs) using non-informative prior of the parameters ψ, ζ are introduced in the table below,
where atθi = eata+atb ln(Si), i = 1, 2. For this data set, Bayesian analysis is carried out in case of
non-informative priors.

MLEs BSE
CI

ACI Credible Interval Bootstrap CI

ataML atψML atψBS atψ atψ atψ
atbML atζML atζBS atζ atζ atζ

−51.8084 0.0230107 0.633091 0.0103733 0.73061 0.0276981
59.2364 2.80211 4.29412 2.79169 2.11759 0.7885519

0 2000 4000 6000 8000 10000

0.980

0.985

0.990

0.995

1.000

Time

R
e
lia
b
ili
ty
u
n
d
e
rn
o
rm
a
lc
o
n
d
it
io
n
s

Figure 1. The graph above is for the reliability function under normal conditions, we can see that from
the graph that the reliability function at time = 0, it approaches to one, and it approaches to zero by
increasing the time, and that is very rational under normal use for any item.
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Figure 2. The graph above is for the reliability function under stress level S = 2.25 volt conditions,
we can deduce from the graph that the reliability function decreases rapidly by increasing time, and that
result is very rational under stress use for any item as it was subjected to high voltage greater than the
use conditions, which leads to early failure.
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Figure 3. The graph above is for the reliability function under stress level S = 2.44 volt conditions,
we can deduce from the graph that the reliability function, decreases very rapidly by increasing the
time and stress, and that is very rational under stress use for any item as it if any item was subjected to
high voltage greater than the use conditions, which leads to early failure.

7. Simulation Studies

This part of the paper contains the simulation for the data in order to estimate the parameters
by using both the MLEs and BEs (under square error loss (SEL) function), according to the mean
square errors (MSEs) results in the tables below we can make a decision on the parameters, and in
this simulation we used different values of n, m, and Ri, i = 1, 2, . . . , m. Tables 4 and 5 gives us the
results deduced from the simulation. The censoring schemes (CS) vector used in the simulation is
defined below.



Symmetry 2020, 12, 2080 14 of 18

Scheme 1: Ri =

{
1, i = 1, 2, . . . , n−m,
0, otherwise.

To make a complete simulation, we used the following algorithm to clarify the steps used in the
whole simulation.

Table 4. The table below contains the values of MSEs for MLEs and BEs (under square error loss
function (SEL)) of (ψ and ζ ψ = 1.2 with true values ζ = 1.1 and values of the prior parameters
(µ1 = 14,400, λ1 = 0.000083, µ2 = 12,100, and λ2 = 0.000090), time of changing stress η = 2.8.

n m C.S Parameter ML SEL
CI

ACI Credible Bootstrap

20 10 1 ψ 0.0285412 4.2 ×10−6 1.03137 0.03463 0.31198
ζ 0.0188279 0.003221 3.48522 0.03546 0.41693

50 30 1 ψ 0.0410944 6.31019 ×10−6 0.548811 0.03802 0.900282
ζ 0.437962 0.00227621 2.4142 0.03567 1.17764

45 30 1 ψ 0.0199778 8.26362 ×10−6 0.602594 0.03751 0.352305
ζ 0.0172304 1.41265× 10−6 2.72445 0.03605 0.409257

65 45 1 ψ 0.0200046 8.26362 ×10−6 0.6025941 0.03751 0.352305
ζ 0.0146925 3.27477× 10−6 2.53374 0.03745 0.410015

100 60 1 ψ 0.0500046 4.26362 ×10−6 0.3025941 0.07001 0.302305
ζ 0.0126925 2.27477× 10−6 1.7924 0.03045 0.39105

120 65 1 ψ 0.0127985 0.0000159836 0.402973 0.03755 0.350897
ζ 0.0204538 4.19817× 10−6 2.44254 0.0377 0.415675

120 80 1 ψ 0.0204759 0.0000440016 0.368116 0.037755 0.297268
ζ 0.0150823 4.48929× 10−6 1.61679 0.0375 0.407272

165 120 1 ψ 0.0206759 0.0000550016 0.291216 0.03885 0.24556
ζ 0.03223343 6.39076× 10−6 1.2992 0.03603 0.40672

Table 5. The results in this table is the coverage probabilities of 95% approximate, credible, and
bootstrap CIs for ζ ψ.

n m C.S Parameter
Results Obtained for Each Interval

ACI Credible Intervale Bootstrap CI

20 10 1 ψ 0.60 0.87 0.65
ζ 0.88 0.871 0.88

50 30 1 ψ 0.65 0.98 0.7
ζ 1 0.94 0.78

45 30 1 ψ 0.75 0.92 0.88
ζ 0.9 0.91 0.92

65 45 1 ψ 0.85 0.94 0.96
ζ 0.93 0.93 0.95

120 65 1 ψ 0.86 0.95 0.96
ζ 0.94 0.95 0.96

120 80 1 ψ 0.90 0.97 0.98
ζ 0.95 0.97 0.98

120 80 1 ψ 0.90 0.97 0.98
ζ 0.95 0.97 0.98

165 120 1 ψ 0.92 0.98 0.99
ζ 0.96 0.97 0.98
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Important Results Conducted from Simulated Data

The following points illustrate briefly the observed results from simulation Algorithm 4.
According to the results in Tables 4 and 5:

1. As the sample size increased, the MSEs of BEs and MLEs estimation for the parameters ψ

and ζ decreased. Sometimes this situation did not occur because of small disturbances in
data generation;

2. The MSEs for BEs of ψ and ζ are smaller than the MSEs of MLEs, and this is rational because the
BE is the updated method, and more accurate than MLE;

3. When the sample size increases, the length of the approximate, Bootstrap, and credible
CIs reduced, except in some small iterations, and that is due to the randomization in the
generation of data using the Mathematica package;

4. The shortest interval is the credible CIs of ψ and ζ according to the length, and credible CIs had
the highest coverage probability;

5. The length of Bootstrap CIs is shorter than the approximate CIs in most cases.
6. We deduced that the credible CIs was the shortest one and had the highest coverage probability

among all intervals .

Algorithm 4 The complete algorithm for all simulation in the paper

1. Put fixed values for n, m, η, ψ, ζ.
2. For a random sample of size from m, we generated a random sample from uniform distribution

(0, 1) distribution, as (v1, v2, . . . , vm) by using mathematica 11.
3. Assign values for the censored items Ri, according to the CS above.

4. Put Ei = v
1/(i+∑m

d=m−i+1 Rd)

i , i = 1, 2, . . . , m.
5. Then, we put v∗i:m:n = 1−∏m

d=m−i+1 Ed, i = 1, 2, . . . , m so we can get a sample as following
(v∗1:m:n, v∗2:m:n, . . . , v∗m:m:n).

6. We first must find the number of units n1, by the following idea such that v∗n1 :m:n < F1(η) ≤
v∗n1+1:m:n.

7. Now, we can get the order observations c1:m:n, c2:m:n, . . . , cn1 :m:n, cn1+1:m:n, . . . , cm:m:n,, which are
computed from the inverse CDF of the Lindley distribution.

8. Use the generated data set to find the MLEs estimations by finding a solution to (9) and (10).
9. Now, we turn on to the step of finding the BEs of the model parameters under SE loss functions,

with a total number of iterations mcmc N = 10,000 in the mcmc, and M = 1000 is the removed
iterations from the calculations (nburn). By using Algorithm 1.

10. With 95% confidence we compute the upper and lower bounds for the approximate confidence
bounds of the following parameters ψ, ζ.

11. Find the values of the upper and lower limits of the 95% Bootstrap CI and use the estimates
generated for the MCMC algorithm to find the intervals of credible confidence, by using both of
Algorithms 2 and 3 respectively.

12. Do the steps from (2)–(11), 1000 number of iterations to make sure that the data is unaffected by
random generating of data.

13. Find the average value of MSEs for both ψ and ζ from the two estimation methods.
14. Try to repeat steps (1)–(13) by assigning various values for n, m, and Ri, i = 1, 2, . . . , m.

8. Conclusions on Real Data and Simulation Results

In this paper, we made a statistical inference on step stress accelerated life tests under progressive
Type II censoring when the lifetimes of the data follow the Lindley distribution. First, we used our
simulation studies to find the estimation of the model parameters by using the classical method,
which is MLEs and the other method is the Metropolis Hasting algorithm method to get the BEs. We
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conclude that the Bayesian method was better than the classical method because it had a smaller MSE
compared with the other method. CIs, including approximate CIs, Bootstrap CIs, and credible CIs,
were estimated for the parameters of the model, and we conclude that the credible interval was the
best one according to the shortness of the interval length, and it had the highest coverage probability.
All the calculations were worked out based on different sample sizes and using censoring Scheme 1.
In Section 6, we introduce a real data application on a Lindley distribution to see whether the data
made a good fit to it or not. This application consisted of two levels of acceleration, the first being
complete and the second being censored and exposed to higher stress than the first. We fitted the data
using the Lindley distribution and the two-parameter Weibull distribution. We deduced that the data
are a good fit for the Lindley distribution based on the p-values in both levels, but they were poorly
fit to the Weibull distribution in the first level and well fit in the second level, thus we could use the
Lindley distribution as a good candidate to model this application while the Weibull distribution could
not be used. We then made statistical inference using this application and estimate the parameters of
the distribution by using the above two methods, but we used non-informative priors in the BEs and
also estimated the three CIs for the model parameters.
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Abbreviations

The following abbreviations are used in this manuscript:

PDF Probability density function
CDF Cumulative distribution function
SSPALT Step Stress Partially Accelerated Life Test
CIs Credible confidence intervals
BEs Bayes estimates
MLEs Maximum Likelihood
TRV Tampered Random Variable
KS Kolmogorov–Smirnov
ALT Accelerated Life Test
IPL inverse power law
SE Square error
MCMC Markov chain Monte Carlo
MTTF The mean time to failure
SEL Square error loss
CS The censoring schemes

References

1. Nelson, W. Accelerated Testing: Statistical Models, Test Plans and Data Analysis; Wiley: New York, NY, USA, 1990.
2. El-Din, M.M.M.; Amein, M.M.; El-Attar, H.E.; Hafez, E.H. Symmetric and Asymmetric Bayesian Estimation

For Lindley Distribution Based on Progressive First Failure Censored Data. Math. Sci. Lett. 2017, 6, 255–261.
[CrossRef]

3. El-Din, M.M.M.; Amein, M.M.; Abd El-Raheem, A.M.; Hafez, E.H.; Riad, F.H. Bayesian inference on
progressive-stress accelerated life testing for the exponentiated Weibull distribution under progressive Type
II censoring. J. Stat. Appl. Probab. Lett. 2020, 7, 109–126.

http://dx.doi.org/10.18576/msl/060306


Symmetry 2020, 12, 2080 17 of 18

4. El-Din, M.M.M.; Abu-Youssef, S.E.; Ali, N.S.A.; Abd El-Raheem, A.M. Estimation in step-stress accelerated
life tests for Weibull distribution with progressive first-failure censoring. J. Stat. Appl. Probab. 2015,
3, 403–411.

5. Balakrishnan, N.; Cramer, E. The Art of Progressive Censoring: Applications to Reliability and Quality; Birkhäuser:
New York, NY, USA, 2014.

6. Fathy, H.; Riad, E.; Hafez, H. Point and Interval Estimation for Frechet Distribution Based on Progressive
First Failure Censored Data. J. Stat. Appl. Probab. 2020, 9, 181–191.

7. Abd El-Raheem, A.M.; Abu-Moussa, M.H.; Hafez, M.M. Accelerated life tests under Pareto-IV lifetime
distribution: Real data application and simulation study. Mathematics 2020, 8, 1786. [CrossRef]

8. El-Din, M.M.M.; Abu-Youssef, S.E.; Ali, N.S.A.; Abd El-Raheem, A.M. Optimal plans of constant-stress
accelerated life tests for the Lindley distribution. J. Test. Eval. 2017, 45, 1463–1475.

9. El-Din, M.M.M.; Amein, M.M.; El-Raheem, A.M.A.; El-Attar, H.E.; Hafez, E.H. Estimation of the Coefficient
of Variation for Lindley Distribution based on Progressive First Failure Censored Data. J. Stat. Appl. Probab.
2019, 8, 83–90.

10. El-Din, M.M.M.; Amein, M.M.; El-Attar, H.E.; Hafez, E.H. Estimation in Step-Stress Accelerated Life Testing
for Lindley Distribution with Progressive First-Failure Censoring. J. Stat. Appl. Probab. 2016, 5, 393–398.
[CrossRef]

11. El-Din, M.M.M.; Abu-Youssef, S.E.; Ali, N.S.A.; El-Raheem, A.M.A. Estimation in constant-stress accelerated
life tests for extension of the exponential distribution under progressive censoring. Metron 2016, 74, 253–273.
[CrossRef]

12. Ling, M.H., Hu, X.W. Optimal design of simple step-stress accelerated life tests for one-shot devices under
Weibull distributions. Reliab. Eng. Syst. Saf. 2020, 193, 1–20. [CrossRef]

13. Cheng, Y., Elsayed, E.A. Reliability modeling of mixtures of one-shot units under thermal cyclic stresses.
Reliab. Eng. Syst. Saf. 2017, 167, 58–66. [CrossRef]

14. Wang, J. Data Analysis of Step-Stress Accelerated Life Test with Random Group Effects under Weibull
Distribution. Math. Probl. Eng. 2020, 2020, 4898123. [CrossRef]

15. Gmez-Déniz, E.; Sordo, M.A.; Calderín-Ojeda, E. The log–Lindley distribution as an alternative to the beta
regression model with applications in insurance. Insur. Math. Econ. 2014, 54, 49–57. [CrossRef]

16. Ghitany, M.E.; Al-Mutairi, D.K.; Aboukhamseen, S.M. Estimation of the Reliability of a Stress-Strength
System from Power Lindley Distributions. Commun. Stat. Simul. Comput. 2015, 44, 118–136. [CrossRef]

17. Lindley, D.V. Fudicial distributions and Bayes’ theorem. J. R. Stat. Soc. 1958, 20, 102–107.
18. Bakouch, H.S.; Al-Zahrani, B.M.; Al-Shomrani, A.A.; Marchi, V.A.; Louzada, F. An extended Lindley

distribution. J. Korean Stat. Soc. 2012, 41, 75–85. [CrossRef]
19. Ghitany, M.E.; Atieh, B.; Nadarajah, S. Lindley distribution and its application. Math. Comput. Simul. 2008,

78, 493–506. [CrossRef]
20. DeGroot, M.H.; Goel, P.K. Bayesian and optimal design in partially accelerated life testing. Nav. Res. Logist.

1979, 16, 223–235. [CrossRef]
21. Nassar, M.M.; Eissa, F.H. Bayesian estimation for the generalized Weibull model. Commun. Stat. Theor. 2004,

33, 2343–2362. [CrossRef]
22. Singh, S.K.; Singh, U.; Sharma, V.K. Bayesian estimation and prediction for the generalized Lindley

distribution under asymmetric loss function, Hacet. J. Math. Stat. 2014, 43, 661–678.
23. Ahmadi, J.; Jozani, M.J.; Marchand, E.; Parsian, A. Bayes estimation based on k-record data from a general

class of distributions under balanced type loss functions. J. Stat. Plan. Inference 2009, 139, 1180–1189.
[CrossRef]

24. Upadhyay, S.K.; Gupta, A. A Bayes analysis of modified Weibull distribution via Markov chain Monte Carlo
simulation. J. Stat. Comput. Simul. 2010, 80, 241–254. [CrossRef]

25. Balakrishnan, N.; Sandhu, R.A. A simple simulation algorithm for generating progressively type-II censored
samples. Am. Stat. 1995, 49, 229–230.

26. Zhu, Y. Optimal Design and Equivalency of Accelerated Life Testing Plans. Ph.D. Thesis, The State University
of New Jersey, New Brunswick, NJ, USA, 2010 .

27. El-Din, M.M.M.; Abu-Youssef, S.E.; Ali, N.S.A.; El-Raheem, A.M.A. Parametric inference on step-stress
accelerated life testing for the extension of exponential distribution under progressive Type II censoring.
Commun. Stat. Appl. Methods 2016, 23, 269–285. [CrossRef]

http://dx.doi.org/10.3390/math8101786
http://dx.doi.org/10.18576/jsap/050303
http://dx.doi.org/10.1007/s40300-016-0089-4
http://dx.doi.org/10.1016/j.ress.2019.106630
http://dx.doi.org/10.1016/j.ress.2017.05.018
http://dx.doi.org/10.1155/2020/4898123
http://dx.doi.org/10.1016/j.insmatheco.2013.10.017
http://dx.doi.org/10.1080/03610918.2013.767910
http://dx.doi.org/10.1016/j.jkss.2011.06.002
http://dx.doi.org/10.1016/j.matcom.2007.06.007
http://dx.doi.org/10.1002/nav.3800260204
http://dx.doi.org/10.1081/STA-200031447
http://dx.doi.org/10.1016/j.jspi.2008.07.008
http://dx.doi.org/10.1080/00949650802600730
http://dx.doi.org/10.5351/CSAM.2016.23.4.269


Symmetry 2020, 12, 2080 18 of 18

28. El-Din, M.M.M.; Abu-Youssef, S.E.; Ali, N.S.A.; El-Raheem, A.M.A. Classical and Bayesian inference on
progressive-stress accelerated life testing for the extension of the exponential distribution under progressive
Type II censoring. Qual. Reliab. Eng. Int. 2017, 33, 2483–2496.

29. El-Din, M.M.M.; Abd El-Raheem, A.M.; Abd El-Azeem, S.O. On Step-Stress Accelerated Life Testing for
Power Generalized Weibull Distribution Under Progressive Type-II Censoring. Ann. Data Sci. 2020.
[CrossRef]

30. Gepreel, K.A.; Mahdy, A.M.S.; Mohamed, M.S.; Al-Amiri, A. Reduced differential transform method for
solving nonlinear biomathematics models. Comput. Mater. Contin. 2019, 61, 979–994. [CrossRef]

31. Mahdy, A.M.S.; Mohamed, M.S.; Gepreel, K.A.; AL-Amiri, A.; Higazy, M. Dynamical characteristics
and signal flow graph of nonlinear fractional smoking mathematical model. Chaos Solitons Fractals 2020,
141, 110308. [CrossRef]

32. Miller, R. Survival Analysis; Wiley: New York, NY, USA, 1981.
33. Efron, B.; Tibshirani, R.J. An Introduction to the Bootstrap; Chapman & Hall: London, UK, 1993.
34. Pakyari, R.; Balakrishnan, N. A general purpose approximate goodness-of-fit test for progressively Type II

censored data. IEEE Trans. Reliab. 2012, 61, 238–243. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s40745-020-00270-4
http://dx.doi.org/10.32604/cmc.2019.07701
http://dx.doi.org/10.1016/j.chaos.2020.110308
http://dx.doi.org/10.1109/TR.2012.2182811
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Lindley Distribution and Its Importance 
	 Estimation Using the Maximum Likelihood Function
	Bayes Estimation
	 Using MCMC Method in Bayesian Estimation
	The Metropolis—Hasting Algorithm

	Interval Estimation
	Finding Confidence Intervals for the Parameters 
	Bootstrap Confidence Intervals
	Credible Confidence Intervals

	Application on Real Data Set for Lindley Distribution 
	Example 
	Comparison with Competitive Distribution
	Important Results Conducted from Real Data

	Simulation Studies
	Conclusions on Real Data and Simulation Results
	References

