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Abstract: We consider a family of new Higgs–Chern–Simons (HCS) gravity models in 2n + 1
dimensions (n = 1, 2, 3). This provides a generalization of the (usual) gravitational Chern–Simons
(CS) gravities resulting from non-Abelian CS densities in all odd dimensions, which feature
vector and scalar fields, in addition to the metric. The derivation of the new HCS gravitational
(HCSG) actions follows the same method as in the usual-CSG case resulting from the usual CS
densities. The HCSG result from the HCS densities, which result through a one-step descent of
the Higgs–Chern–Pontryagin (HCP), with the latter being descended from Chern-Pontryagin (CP)
densities in some even dimension. A preliminary study of the solutions of these models is considered,
with exact solutions being reported for spacetime dimensions d = 3, 5.

Keywords: gravity models; Chern–Simons gravity; exact solutions

1. Introduction

The study of the Chern–Simons gravities (CSG) derived from non-Abelian Chern–Simons
(CS) densities has started with Witten’s work in Ref. [1], dealing with the 2 + 1 dimensional case.
Subsequently, Witten’s results were extended to all odd dimensions by Chamseddine in Refs. [2,3].
Generic CSG models consist of superpositions of gravitational models of all possible higher order
gravities in the given dimensions (leading to second order equations of motion), each appearing with
a precise real numerical coefficient. These gravitational models are usually referred to as Lovelock
models, which, here, we refer to as p-Einstein gravities. The integer p ≥ 0 is the power of the Riemann
curvature in the Lagrangian; the p = 0 term is the cosmological constant, for p = 1 the Ricci scalar etc.

The recent work [4,5] has proposed a new formulation of the CSG systems, which, different from
the standard case in [1–3], allows for their construction in all, both odd and even dimensions. Following
Ref. [6], let us briefly review this construction. As discussed there, the expression of the new-CS
densities is found following exactly the same method as the usual-CS densities in odd dimensions.
The usual CS density results from the one-step descent of the corresponding Chern–Pontryagin (CP)
density. We recall that the CP density is a total-divergence

ΩCP = ∂iΩi , i = µ, D ; µ = 1, 2, . . . , d ; d = D− 1 ;

then the CS density is defined as the D-th component of Ωi, namely ΩCS
def.
= ΩD.

In the proposal put forward in [4,5], the role of the usual-CP density, which is defined in even
dimensions only, is played by what we refer to as the Higgs–Chern–Pontryagin (HCP) density
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(see the Refs. [7,8] and in Appendix A of Ref. [9] for a discussion of HCP models). These are
dimensional descendents of the nth CP density in N = 2n dimensions, down to residual D dimensions
(D < N = 2n). However, as a new feature, D can be either odd or even. Additionally, the relics of
the gauge connection on the co-dimension(s) are Higgs scalars. The remarkable property of the HCP
density ΩHCP[A, Φ], which is now given in terms of both the residual gauge field A and Higgs scalar
Φ, is that, like the CP density, it is also a total divergence

ΩHCP = ∂iΩi , i = µ, D ; µ = 1, 2, . . . , d ; d = D− 1 .

The corresponding new Chern–Simons density is defined by considering the one-step descent

of the density Ωi, as the D-th component of Ωi, namely ΩHCS
def.
= ΩD. In what follows, the quantity

ΩHCS is referred to as the Higgs–Chern–Simons (HCS) density. As mentioned above, such densities
exist in both odd and even dimensions. Moreover, in any given dimension, there is an infinite family of
HCS densities, following from the descent of a CP density in any dimension N = 2n > D. A detailed
discussion of these aspects is given in Refs. [7–9]. Note that a similar definition for the HCS density
was proposed in Ref. [10], but only in odd dimensions and with the Higgs scalar being a complex
column, not suited to the application here.

With this definition of the HCS densities, the construction of the corresponding gravitational
theories is done in the same spirit as in [1–3]. In any given dimension, there is an infinite family of such
theories, each that result from the infinite family of HCS densities. Working in d = D− 1 dimensions,
the gauge group is chosen to be SO(d), while the Higgs multiplet is chosen to be a D-component
isovector of SO(D) (These choices coincide with the representations that yield monopoles on IRd,
as described in [7]). The central point in the construction of both CS and HCS gravity models is the
identification of the non-Abelian (nA) SO(D) connection in d = D− 1 dimensions (Note that no choice
for the signature of the space is make at this stage), with the spin-connection ωab

µ and the Vielbein ea
µ,

(µ = 1, 2, 3; a=1,2,3). Following the prescription presented in [1–3], we define

Aµ = −1
2

ωab
µ γab + κ ea

µ γaD ⇒ Fµν = −1
2

(
Rab

µν − κ2 ea
[µ eb

ν]

)
γab , (1)

(γab, γaD) being the Dirac gamma matrices that are used in the representation of the algebra of SO(D).
Note that the presence of the constant κ in the above expression (with dimensions L−1), compensating
the difference of the dimensions of the spin-connection and the Dreibein. In (1),

Rab
µν = ∂[µωab

ν] + (ω[µων])
ab

is the Riemann curvature.
In the HCS case, in addition to (1), we supplement (1) with the prescription for the Higgs scalar Φ,

2−1Φ = (φa γa,D+1 + ψ γD,D+1) ⇒ 2−1DµΦ = (Dµφa − κ ea
µ ψ)γa,D+1 + (∂µψ + κ ea

µ φa)γD,D+1 (2)

which clearly displays the iso-D-vector (φa, φD), which is split into the D component frame-vector
field φa and the scalar field ψ ≡ φD. Additionally, we define the covariant derivative DµΦ of the
Higgs scalar

Dµφa = ∂µφa + ωab
µ φb . (3)

Additionally, note that φa is a vector field (with φµ = ea
µφa in a coordinate frame), which, however,

has rather unusual dynamics, as will be seen below. As such, φa is not a gauge (masless or massive)
field; it has rather a geometric content.

In fact, one remarks that the fields (φa, ψ) are not usual matter fields, like gauge fields or Higgs
scalar in the Standard Model of particle physics. In the latter cases, the covariant derivatives are not
defined by the (gravitational) spin-connection, while, here, they are, as seen in (2). Thus, in this sense,
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(φa, ψ) are like spinor fields (although their action look different). As such, theories like the one that is
proposed here can support solutions with torsion, a possibility, which, however, is not explored in this
work. However, the analogy with spinors is incomplete, since the fields (φa, ψ) are rather ’gravitational
coordinates’, as they originate from the Higgs field Φ of the nA gauge theory. Thus, as seen from (2),
(φa, ψ) are on the same footing as the usual ‘gravitational coordinates’ (ωab

µ , ea
µ). In fact, this provides

the main physical motivation for their study, since such models can be seen as extensions of the usual
CSG’s (reducing to them in the limit of vanishing (φa, ψ)). Therefore, it is interesting to see what are
the new features introduced by extending the CSG’s to allow for nonzero (φa, ψ). Moreover, finding
how the BTZ-like CSG’s black hole solutions in Ref. [11–13] are deformed by the (φa, ψ)-fields is an
interesting mathematical problem in itself.

The gravitational models resulting from the Higgs–CS (HCS) densities via (1) and (2) are referred
to as HCS gravities [4] (HCSG). In this report, we restrict our study to the simplest HCSG models in
2n + 1 dimensions, namely to the HCSG models that result from the HCS density descended from the
HCP densities in 6, 8, and 10 dimensions. These models are extensions of the usual Chern–Simons
gravities [1–3], possessing an additional sector in terms of (φa, ψ).

This paper is organized, as follows. In the next Section, we present the explicit form of the
resulting HCSG Langrangians for d = 3, 5, 7, with the connection with the usual CSG also being
reviewed. A preliminary investigation of the simplest solutions in d = 3, 5 dimensions is considered in
Section 3, extending the study (for the n = 1 case) in Ref. [6]. Section 4 presents the concluding remarks.

2. HCSG Models in 2n + 1 Dimensions, n = 1, 2, 3

2.1. General Expressions

The Higgs–Chern–Simons densities (HCS) considered here are the “simplest” examples in
2 + 1, 4 + 1, 6 + 1 dimensions. Simply, we mean that the Higgs–Chern–Simons (HCS) density
that is employed to construct the HCS gravity (HCSG) is the one resulting from the “simplest”
Higgs–Chern–Pontryagin (HCP) density, which is defined in one dimension higher, namely in f our,
six, and eight dimensions, respectively. Now, in any dimension, HCP densities can be constructed as
dimensional descendants of a CP density in 2n > 4 dimensions; hence, it is reasonable to describe
the “simplest” cases here to be the HCP densities in 4, 6, 8 dimensions, which descend from the CP
densities in 2n = 6, 8, 10 dimensions, respectively, i.e., those descended by the minimal (nontrivial)
number of dimensions, namely by two dimensions.

Because, like the CP density, the HCP density is a total divergence, then the corresponding HCS
density results from the usual one-step descent, which, in the cases at hand, are those from 4, 6, 8 to
3, 5, 7 dimensions, with the corresponding expressions

Ω(3,6)
HCS = η2Ω(3)

CS + εµνλTr γ5DλΦ(ΦFµν + FµνΦ) , (4)

Ω(5,8)
HCS = η2Ω(5)

CS + εµνρσλ Tr γ7DλΦ
(
ΦFµνFρσ + FµνΦFρσ + FµνFρσΦ

)
, (5)

Ω(7,10)
HCS = η2Ω(7)

CS + εµνρστλκ Tr γ9DκΦ(ΦFµνFρσFτλ + FµνΦFρσFτλ

+FµνFρσΦFτλ + FµνFρσFτλΦ) . (6)

Let us remark that the HCS densities (4)–(6) are the “simplest” examples in these dimensions,
which arise from the descents of the Chern–Pontryagin densities in 6, 8, and 10 dimensions, respectively.
It may also be interesting to display HCS densities that arise from CP densities in higher dimensions.
To this end, we consider the HCS density in 3 dimensions that result from the descent from the CP
in 8 dimensions

Ω(3,8)
HCS = 2η4Ω(3)

CS + (2η2 − |φa|2 − φ2) εµνλ Tr γ5 DλΦ(ΦFµν + FµνΦ) (7)
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The leading term Ω(3)
CS in (4) and (7), and the leading terms Ω(5)

CS and Ω(7)
CS in (5) and (6) are the

usual CS densities for the SO(D), D = 4, 6, 8 gauge connection,

Ω(3)
CS = ελµνTr γ5 Aλ

[
Fµν −

2
3

Aµ Aν

]
, (8)

Ω(5)
CS = ελµνρσTr γ7 Aλ

[
FµνFρσ − Fµν Aρ Aσ +

2
5

Aµ Aν Aρ Aσ

]
, (9)

Ω(7)
CS = ελµνρστκTr γ9 Aλ

[
FµνFρσFτκ −

4
5

FµνFρσ Aτ Aκ −
2
5

Fµν Aρ AσFτκ

+
4
5

Fµν Aρ Aσ Aτ Aκ −
8
35

Aµ Aν Aρ Aσ Aτ Aκ

]
. (10)

In (4)–(6), the Higgs scalar Φ, the gauge connection, and the constant η have the dimensions
of L−1.

Applying the prescriptions (1) and (2) to (4)–(7) yields the required HCS gravitational (HCSG)
models. In order to express these compactly, we adopt the abbreviated notation

R̄ab
µν = Rab

µν − κ2 ea
[µeb

ν], (11)

together with

φa
µ = Dµφa − κ ea

µψ, (12)

ψµ = ∂µψ + κ ea
µφa , (13)

where Rab
µν is the Riemann curvature and Dµφa is the covariant derivative (3), of the frame-vector

field φa.
In terms of which the HCSG Lagrangians in d = 3, 5, and 7 dimensions, which result from the

HCS densities (4)–(6), are

L(3)HCSG = η2κ L(3)CSG + εµνλεabcR̄ab
µν(ψ φc

λ − φcψλ), (14)

L(5)HCSG = η2κ L(5)CSG −
3
4

εµνρσλεabcdeR̄ab
µνR̄cd

ρσ(ψ φc
λ − φcψλ), (15)

L(7)HCSG = η2κ L(7)CSG + 2εµνρστλκεabcde f gR̄ab
µνR̄cd

ρσR̄e f
τλ(ψ φc

λ − φcψλ), (16)

while, the gravitational model that arises from (7) is

L(3,8)
HCSG = 2η4κ L(3)CSG + εµνλεabc(2η2 − |φd|2 − ψ2) R̄ab

µν(ψ φc
λ − φcψλ) . (17)

In (14)–(16), L(3)CSG, L(5)CSG and L(7)CSG are the usual Chern–Simons gravities (CSG)

L(3)CSG = −εµνλεabc

(
Rab

µν −
2
3

κ2ea
µeb

ν

)
ec

λ, (18)

L(5)CSG = εµνρσλεabcde

(
3
4

Rab
µν Rcd

ρσ − κ2 Rab
µν ec

ρed
σ +

3
5

κ4ea
µeb

νec
ρed

σ

)
ee

λ, (19)

L(7)CSG = −εµνρστκλεabcde f g

(
1
8

Rab
µν Rcd

ρσ Re f
τκ −

1
4

κ2 Rab
µν Rcd

ρσ ee
τe f

κ (20)

+
3

10
κ4 Rab

µν ec
ρed

σee
τe f

κ −
1
7

κ6ea
µeb

νec
ρed

σee
τe f

κ

)
eg

λ .

It is easy to express the HCSG Lagranian for all n by the extrapolation of (14)–(16).
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Given the models (14)–(16) , the corresponding equations of motion are found by taking the
variation of the action w.r.t., the vielbein ea

λ, together with (φa, ψ). However, these equations have a
simple enough expression for d = 3 only, see Ref. [6].

2.2. The General CSG Lagrangians and the Connection with the Einstein–Lovelock Hierarchy

Following the previous study [6], we consider a spacetime with Minkowskian signature,
and replace

κ → iκ , h→ −ih . (21)

in the Lagrangians (14)–(16). With this choice, setting φ = φa = 0 results in (pure gravity) CS
Lagrangian in d = 2n + 1 dimensions, with a negative cosmological constant Λ. Additionally, note that
one can η = 1 without any loss of generality, a choice that we employ for the rest of this work.

The CS Lagrangian in d = 2n + 1 dimensions can be viewed as a particular case of a generic
model that consists in a superposition of all allowed Einstein–Lovelock terms in that dimension, with

L(2n+1)
CSG =

n

∑
p=0

α(p)L(p), (22)

with the following definition for the p−th term in the Lovelock hierarchy.

L(p) =
p!
2p δ

µ1
[ρ1
· · · δµp

ρp ]
R ρ1σ1

µ1ν1 · · · R ρpσp
µpνp . (23)

The normalization of each term in (23) has been chosen in order to make contact with the usual
conventions in the literature on Lovelock gravities solutions. As such, L(p) = Rp + . . . , the first terms
(up to d = 7) being

L(0) = 1, L(1) = R, L(2) = R2 − 4RµνRµν + RµνρσRµνρσ, (24)

L(3) = R3 − 12RRµνRµν + 16RµνRµ
ρRνρ + 24RµνRρσRµρνσ + 3RRµνρσRµνρσ

− 24RµνRµ
ρσκ Rνρσκ + 4RµνρσRµνηζ Rρσ

ηζ − 8RµρνσRµ ν
η ζ Rρησζ . (25)

Additionally, to make contact with the usual GR conventions, we take

α(0) = −2Λ, α(1) = 1. (26)

In general, the coefficients α(p) are arbitrary. However, they are fixed in a CGS model, with the
general expression

α(p) = (−1)p+1 1
Λp−1

(d− 2)p

2p−1 p!(d− 2p)
(d− 2p)!!
(d− 2)!!

, (27)

where Λ = −2(d− 2)κ2.

3. The Solutions

Given the above models (14)–(16), it is interesting to inquire which are the simplest solutions
with nonvanishing fields (φa, ψ). In what follows, we study this question for the first two dimensions
d = 3, 5, and then contrast the results.

3.1. The d = 3 Case

We consider a static line element with

ds2 =
dr2

N(r)
+ r2dϕ2 − N(r)e−2δ(r)dt2 (28)
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where r, t are the radial and time coordinates, respectively, while ϕ is the azimuthal coordinate.
Working in a coordinate basis, a consistent Ansaz for the fields (φa, ψ) reads

φ = f (r)dr + g(r)dt, ψ ≡ h(r). (29)

Subsequently, a straightforward computation leads to the following exact solution of the full set
of equations of motion:

N(r) = κ2r2 − n0, δ(r) = 0, (30)

f (r) =
c0

κ
+

c1

N
, g(r) =

√
c2

1 + c2N(r), ψ ≡ h(r) = c0r, (31)

with n0, c0, c1, c2 arbitrary constants. This provides a generalization of the solution that was reported
in [6], which is recovered (note that the solution presented in [6] is expressed in a dreibein basis with
er = 1/

√
N, eϕ = rdϕ, et =

√
Ndt), for c1 = c2 = 0.

One can see that the choice n0 = −1 corresponds to a globally AdS3 geometry, while, for n0 > 0,
the BTZ black hole (BH) geometry [14] is recovered. In both cases, the fields (φa, ψ) do not backreact on
the spacetime (thus, their contribution to the r.h.s. of the Einstein equations with negative cosmological
constant vanishes (the analogy of these solutions with self-dual Yang–Mills instantons in a curved space
geometry [15–17], was noticed in Ref. [6]. There, we dubbed these closed form solutions as effectively
vacuum confiurations. Another interesting analogy is provided by the ’stealth’ BH solutions in various
alternative models of gravity (see e.g., [18,19] and references therein). Such configurations feature a
nontrivial scalar field, while the geometry is still that of the (vacuum) general relativity solutions)).
However, (φa, ψ) possess a nonstandard behaviour (e.g., both ψ and |~φ|2 diverge as r → ∞). Moreover,
Ref. [6] has given arguments that (at least in the c1 = c2 limit), solutions (30) and (31) appear to be
unique. Because the discussion here in d = 3 is similar to that in the d = 5 case, we restrict to the
discussion of the latter, as below.

Finally, we mention the existence of a generalization of the solution in Ref. [6] for a spinning BTZ
background. The line element in this case reads

ds2 =
dr2

N(r)
+ r2(dϕ−W(r)dt)2 − N(r)dt2, where N(r) = κ2r2 − n0 +

J2

r2 , W(r) =
J

r2 , (32)

with J representing the angular momentum. While the expression of the scalar field remains the same,
the function is more complicated,

h(r) = c0r, f (r) =
c0

κ

(
1 +

J
r
√

N

)
. (33)

One can easily see that all of the unusual features noticed in the static case for functions f h are
present also in this case.

3.2. The d = 5 Case

3.2.1. An Exact Solution

The metric Ansatz here is more complicated, with the S1 direction in the d = 3 line-element (28)
being replaced with a surface of constant curvature. As such, we consider a general line-element

ds2 =
dr2

N(r)
+ r2dΣ2

k,3 − N(r)e−2δ(r)N(r)dt2 (34)
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with k = 0,±1, while the three-dimensional metric dΣ2
k,3 is

dΣ2
k,3 =


dΩ2

3 for k = +1
∑3

i=1 dx2
i for k = 0

dΞ2
3 for k = −1 .

(35)

In the above relation, dΩ2
3 is the unit metric on S3 (k = 1); for k = 0, we have a flat three-surface;

while, for k = −1, one considers a three-dimensional hyperbolic space, whose unit metric dΞ2
3 can be

obtained by analytic continuation of that on S3.
The ansatz for the fields (φa, ψ) is still given by (29). Within this framework, the following

closed-form solution of the field equations has been found

N(r) = κ2r2 + k, δ(r) = 0, (36)

together with

h(r) =
c0

r
, f (r) =

c0

κr2

(
−1 + (k2 + k− 1)

√
1 +

3κ2r2

N(r)

)
, g(r) = 0 , (37)

with c0 being an arbitrary constant. The corresponding line elements, as implied by (36), are well
known, which correspond to three different parametrization of AdS5 spacetime. Although they possess
the same (maximal) number of Killing symmetries, they present different global properties, the case
k = 0 corresponding to a Poincaré patch and the globally AdS5 spacetime being found for k = 1
(see e.g., the discussion in Ref. [20]).

As with the d = 3 case presented above, the fields (φa, ψ) do not backreact on the spacetime
geometry, i.e., their effective energy-momentum tensor vanishes again. However, while, this time,
both ψ and |~φ|2 are finite as r → ∞, they diverge at the minimal value of r (which is r = 0 for k = 0, 1
and r = 1/κ for k = −1).

Finally, let us remark that the expressions (37) for (φa, ψ) are also compatible with a different
background, as described by the line-element (where k = 0,±1)

ds2 =
dr2

N(r)
+ r2dΣ2

k,2 + r2dz2 − N(r)dt2, with N(r) = κ2r2 +
k
3

. (38)

where −∞ < z < ∞, while dΣ2
k,2 the metric on a two-dimensional surface of constant 2k-curvature.

For k = 0 the Poincaré patch of AdS5 spacetime is recovered; the case k = 1 corresponds to a
vortex-type geometry, while a black string is recovered for k = −1. As with the line-element (34), this is
also a solution of the equations of motion for f = g = h = 0, whose existence is noted in Ref. [21].

3.2.2. No Backreacting Solutions on a Fixed Black Hole Background

For φa = ψ = 0, the CSG equations of motion (with the line-element (34)) possess the
exact solution

N(r) = κ2r2 − n0, δ(r) = 0, (39)

with n0 being an arbitrary constant. The AdS5 line-element that is discussed above is a particular case
here, corresponding to the choice n0 = −k. However, n0 > 0 leads to a BTZ-like BH geometry [11–13],
with an horizon being located at

√
n0/κ. Moreover, one can show that the same expression of the

metric functions N(r), δ(r) solves the CS gravity equation in all d = 2n + 1 dimensions (for a choice of
the line element that is similar to (34), dΣ2

k,3 being replaced with its higher dimensional generalization);
see the discussion in the recent work [22] and the references there.
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A major difference between the d = 3 and d = 5 cases appear to be that, for d = 5, we could
not extend (36) to include the case of a BH solution, n0 6= k. However, this result follows directly
from the structure of the field equations, which is different for d = 3 and d = 5. Let us assume
that the geometry (34) with (N, δ), as given by (39)), is a solution of the d = 5 model. Subsequently,
the equations for the functions f , g, h take the simple form (note that the relations below are for k = 1,
only; however, a similar result is also found for k = 0,−1):

h′ − κ f − κ

2
(1− 1

N2 )g = 0,

h′ − 1
2

κ(1− N2) f − n0 + κ2r2N2

2rN
h− κg = 0, (40)

g′ − N2 f ′ +
κ2r2N2 − 2N − 3n0

2rN
g− 2n0 + 3N

r
f + 3κNh = 0.

It directly follows that both f and g can be expressed in terms of h, with

f =
1
2
(−1 +

1
N2 )g +

h′

κ
, (41)

and

g =
2N2

κ(1 + N2)
h′ − 2N(n0 + κ2r2N2)

κr(1 + N2)2 h = 0 . (42)

The scalar h is a solution of an equation of the form

(1 + n0)hU(r) = 0, with U(r) =
5

∑
k=0

ck(κ, n0)r2k, (43)

with the explicit form of ck being irrelevant. As such, for h 6= 0, the only choice is n0 = −1,
i.e., a globally AdS5 spacetime. Subsequently, the matter fields equations are satisfied, the functions f
and g being fixed by h. The expression of the scalar h is found by imposing the gravity equations that
are to be satisfied for the above choice of the geometry, which result in the solution (37).

A similar computation for d = 3 leads again to a set of three equations for (φa, ψ), which, again,
reduce to a single equation for h(r). However, this time, this equation is multiplied with a factor
N′ − 2κ2r. Therefore, the choice N = κ2r2 − n0, with n0 arbitrary, is now allowed. The solution (31) is
recovered when imposing the Einstein equation also to be satisfied.

Returning to the d = 5 case, one may ask whether a more general solution exists, with the
functions (φa, ψ) backreacting on the spacetime metric and being finite everywhere. The answer
seems to be negative, although we do not have a definite proof. An indication comes from our
attempt to construct a numerical solution. Here, one starts by noticing that, starting with the general
framework (29) and (34), the function f can be eliminated (as found from the field equations), with

f (r) =
h′(r)

κ
, (44)

where we assume that globally AdS spacetime is not a solution. Additionally, one can prove that g = 0
is a consistent truncation of the model. As such, we are left with three ordinary differential equations
for the functions h, N, and δ. Restricting to the most interesting k = 1 case (i.e., a globally AdS5

background), we have attempted to construct deformations of the line element (36), with a regular
origin and usual AdS5 asymptotics, which would represent particle-like solitonic configurations. In our
approach, we assume that the small-r solution possesses a power series expansion, with

N(r) = ∑
k≥0

n(k)r
k, δ(r) = ∑

k≥0
δ(k)r

k and h(r) = ∑
k≥0

h(k)r
k, (45)
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where n(k), δ(k), and h(k) are real numbers (and n0 = 1) subject to a tower of algebraic conditions,
as implied by the field equations. Starting with the above small-r expansion, we have integrated the
HCS equations of motion, searching for solutions with N(r) → κ2r2 + const., δ → 0 and h(r) → h0

(with h0 a constant), as r → ∞. However, we have failed to find any numerical indication for the
existence of such configurations, the solutions that possess a pathological behavious for any considered
set of initial conditions at r = 0, typically with the occurence of a divergence at some finite r.

A similar result also holds for BH configurations, in which case we assume the existence of an
horizon at some r = rH > 0, with N(rH) = 0, while δ(rH) and h(rH) are nonzero and finite.

Finally, let us remark that, although a definite proof is missing, the above (numerical) results
follow the spirit of the ’no hair’ theorems [23–25], as expressed in the conjecture that there are no BH
solutions with matter fields that do not possess (asymptotically) measured quantities that are subject
to a Gauss Law.

4. Conclusions

Chern–Simons gravity (CSG) models in d = 2n + 1 dimensions were extensively studied in
the literature, starting with Witten’s work for d = 3 [1], where the gravitational model is described
by the Einstein–Hilbert Lagrangian with a cosmological constant. In the d > 3 case, such systems
consist of specific superpositions of gravitational Lagrangians featuring all possible powers of the
Riemann curvature of the given dimension, each appearing with a precise numerical coefficient.
The main purpose of this paper was to propose a generalization of the CSG model, with a Lagrangian,
which, in addition to the (standard) CSG Lagrangian, features new terms that are described by
a frame-vector field φa and a scalar field ψ. Like the CSG, which result from the non-Abelian
(nA) Chern–Simons (CS) densities, these new Lagrangians result from a new class of CS densities,
which, in addition to the nA gauge field, feature an algebra-valued Higgs scalar. Like the usual nA
CS densities, which result from the usual Chern–Pontryagin (CP) densities, these new CS densities
are constructed in the same way, but now from the dimensional descendents of the CP densities that
feature the Higgs scalar. The latter are referred to as Higgs–Chern–Pontryagin (HCS) [7–9] densities,
and they are the building blocks for the generalised CSG’s, namely the HCSG’s [4,5] studied here.

It should be noted at this stage that the construction of HCSG’s is not only confined to odd
dimensions, since the HCS from which they are constructed are defined is both odd and even
dimensions. The main reason that we have restricted our attention to odd dimensions in these
preliminary investigations is that only in odd dimensions there exist CSG’s, which can provide a
background for the new gravitational field configurations. In even dimensional spacetimes, the HCSG
models, as typified by the 3 + 1 dimensional examples in Refs. [4,5], also consist of frame-vector and
scalar fields (φa, ψ) that interact with the gravitational Vielbein ea

µ (or the metric). These Lagrangians
are invariant under gravitational gauge transformations; however, different from the odd dimensional
case in this work, they do not feature (gauge-variant, pure gravity) CSG terms, with their action mixing
the contribution of (φa, ψ), ea

µ fields.
The new fields (φa, ψ) display non-standard dynamics, in that they feature linear ‘velocity

coordinates’, rather than the standard ‘velocity squared’ kinetic terms. It may be relevant to stress that
(φa, ψ) can be seen as ‘gravitational coordinates’, rather than usual matter fields, since, on the level
of the HCS densities from which the HCSG result, the Higgs scalar is on the same footing as the non
Abelian gauge connection.

The present work, which is a continuation of that done in Ref. [6] for the the lowest dimension
d = 3, provides the explicit expression of the HCS Lagrangians up to d = 7, together with an
investigation of the simplest solutions for d = 3, 5. These solutions have the property that they do
not backreact on the spacetime geometry in common, i.e., their effective energy-momentum tensor
vanishes. However, while, for d = 3, this includes the case of BTZ BH, for d = 5 only a maximally
symmetric AdS background is allowed. We attribute this feature to the fact that the BTZ BH possesses
the same amount of symmetries as pure AdS3, being a global identification of it [14,26]. On the other
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hand, the case of d > 3 BHs in CSG are different; although their line-element is still BTZ-like [22],
they are less symmetric than the AdSd background.

Finally, for d = 3, the Ref. [6] has provided (numerical) evidence for the existence of BTZ-like BH
also with standard asymptotics for the fields (φa, ψ), provided that the action is supplemented with
a Maxwell field. We conjecture that a similar property holds in the higher dimensional case. In this
respect, it may be interesting to consider the HCSG systems in the presence of non-Abelian matter
(in d > 3), or Skyrme scalars, in order to search for regular solutions.
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