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Abstract: We introduced and studied a new generalization of the Burr type X distribution. Some of
its properties were derived and numerically analyzed. The new density can be “right-skewed”
and symmetric with “unimodal” and many “bimodal” shapes. The new failure rate can be
“increasing,” “bathtub,” “J-shape,” “decreasing,” “increasing-constant-increasing,” “reversed J-shape,”
and “upside-down (reversed U-shape).” The usefulness and flexibility of the new distribution were
illustrated by means of four asymmetric bimodal right- and left-heavy tail real lifetime data.
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1. Introduction

Burr [1] introduced twelve different forms of cumulative distribution functions (CDFs) for
modeling real data sets. Among those twelve CDFs, Burr type X (BX) and Burr type XII (BXII) have
received special attention. A random variable (RV) W is said to have the BX distribution if its probability
density function (PDF), and hence the CDF, are given by:

πc1,c2(w) = 2c1c2
2we−(c2w)2

[
1− e−(c2w)2

]c1−1
, (1)

and
Πc1,c2(w) =

[
1− e−(c2w)2

]c1
, (2)

Respectively, for W > 0 and c1, c2 > 0. For c1 = 1, we have the standard Rayleigh model.
For c2 = 1, we have the one-parameter BX model (for more details see [2–7]). For c1 = 1, we have
the Rayleigh (R) model. Recently, [8] observed that the BX model can be used in modeling strength
and general lifetime data. Several aspects of the one-parameter (c2 = 1) BX distribution were studied
by [9], who studied the Bayesian prediction bounds under the BX model, [10] presented the Bayesian
approach for prediction with outliers from the BX model, and [11] and [7] investigated the inference for
P(Y < X) in the BX model. Many authors have studied the BX distribution and applied it in different
areas, e.g., [12] presented an overview about the BX model, [13] proposed a new version of the BX
model called the beta Burr type X (BBX) distribution and discussed its relevant mathematical properties
along with some real data applications, and [14] presented an estimation of reliability under the
one-parameter BX model. [15] Proposed a new generator of distributions based on the BX model. [16]
Compounded the Poisson model and the BX model and introduced a new compound generator
called the Poisson BX family. Recently, [17] used the Weibull and the BX model to generate a new
flexible model and presented a new modified Bagdonavičius–Nikulin goodness-of-fit test for censored
validation; [18] presented the quasi Poisson BX-BX distribution along with copula, mathematical
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properties, and applications; [19] generalized the odd log-logistic BX distribution with an application
to the times of failure and running times for a sample of devices from a field-tracking study of a
larger system.

By examining the statistical literature, it is noted that all the proposed versions of the BX model
have a unimodal density. In this work, we present a new bimodal version of the BX model called the
odd Burr BX (OBBX) model based on the family from [20], who merged the generalized odd G (OG)
family and the proportional reversed hazard rate family (PRHR) to propose a new wider family called
the odd Burr G (OBG) family. The CDF of the OBG family is given by:

Fν,θ,ζ(w) = 1−

¯
Πζ(w)νθ[

¯
Πζ(w)ν + Πζ(w)ν

]θ , (3)

where
¯

Πζ(w) = 1−Πζ(w), ν and θ > 0 are two shape parameters, and ζ refers to the parameter vector
of any baseline model and the reliability function (RF) of the baseline model. The PDF corresponding
to (3) is given by:

fν,θ,ζ(w) =
νθπζ(w)Πζ(w)ν−1 ¯

Πζ(w)νθ−1[
¯

Πζ(w)ν + Πζ(w)ν
]1+θ

. (4)

For θ = 1, the OBG family reduces to the OG family. For ν = 1, the OBG family reduces to the
PRHR. Using (3) and (4), the OBBX RF is given by:

SΘ
¯
(w) =

[
1− (1−Ow,c2)

c1
]νθ

{
(1−Ow,c2)

c1ν +
[
1− (1−Ow,c2)

c1
]ν}θ , (5)

where Θ
¯
= ν,θ, c1, c2; Ow,c2 = e−(c2w)2

; SΘ
¯
(w) = 1− FΘ

¯
(w). For θ = 1, the OBBX reduces to the O-BX.

For ν = 1, the OBBX reduces to the PRHR-BX. The PDF corresponding to (5) is given by:

fΘ
¯
(w) = 2νθc1c2

2w Ow,c2

(1−Ow,c2)
c1ν−1

[
1− (1−Ow,c2)

c1
]νθ−1

{
(1−Ow,c2)

c1ν +
[
1− (1−Ow,c2)

c1
]ν}1+θ

. (6)

The hazard rate function (HRF) for the new model can be obtained from fΘ
¯
(w)/SΘ

¯
(w).

Many useful distributions are introduced based on the BX model, such as the BX Weibull (BXW)
distribution [17], the Burr X Fréchet (BXFr) distribution [21], the Burr X exponentiated Weibull (BXEW)
distribution [22], and the Burr X Nadarajah Haghighi (BXNH) distribution [23]. We were motivated to
introduce and study the OBBX for the following reasons:

1. The new density in (6) can be “unimodal and right-skewed,” “symmetric and unimodal,” and
“bimodal density” with many useful shapes (see Figure 1).

2. The HRF of the new model can be “monotonically increasing,” “bathtub (U-HRF),” “J-shaped
(J-HRF),” “monotonically decreasing,” “increasing-constant-increasing,” “reversed J-HRF,”
and “upside-down (reversed U-HRF)” (see Figure 2).

3. In reliability analysis, the OBBX model could be chosen as the best model, especially in modeling
asymmetric bimodal failure times data and the asymmetric bimodal right-skewed and heavy-tail
survival times data as illustrated in Sections 5.1 and 5.3, respectively.

4. In medical fields, the OBBX model could be chosen as the best model, especially in modeling the
bimodal right-skewed and heavy-tail cancer data, as illustrated in Section 5.2.
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5. In engineering, the OBBX model could be chosen as the best model, especially in modeling the
asymmetric bimodal left-skewed and heavy-tail glass fibers data, as shown in Section 5.4.

Symmetry 2020, 12, x FOR PEER REVIEW 4 of 28 

 

 

Figure 1. Different plots of the odd Burr BX (OBBX) probability density function (PDF) for selected 

parameter values. 

Figure 1. Different plots of the odd Burr BX (OBBX) probability density function (PDF) for selected
parameter values.



Symmetry 2020, 12, 2058 4 of 27
Symmetry 2020, 12, x FOR PEER REVIEW 5 of 28 

 

 

Figure 2. (a) Increasing HRF, (b) Bathtub HRF (U-HRF), (c) J-Shaped HRF (J-HRF), (d) Decreasing 

HRF, (e) Increasing–Constant–Increasing, (f) Reversed J-HRF, (g) Upside-down (Reversed U-HRF). 

 

Figure 2. (a) Increasing HRF, (b) Bathtub HRF (U-HRF), (c) J-Shaped HRF (J-HRF), (d) Decreasing HRF,
(e) Increasing–Constant–Increasing, (f) Reversed J-HRF, (g) Upside-down (Reversed U-HRF).



Symmetry 2020, 12, 2058 5 of 27

The asymptotic behavior of the CDF, PDF, and HRF as W → 0 are respectively given by:

FΘ
¯
(w)|(w→0) ∼ θ(1−Ow,c2)

c1ν,

fΘ
¯
(w)|(w→0) ∼ 2νθc1c2

2w Ow,c2(1−Ow,c2)
c1ν−1,

and
hΘ

¯
(w)|(w→0) ∼ 2νθc1c2

2w Ow,c2(1−Ow,c2)
c1ν−1.

The asymptotic behavior of the CDF, PDF, and HRF as W →∞ are respectively given by:

1− FΘ
¯
(w)|(w→∞) ∼ ν

θ
[
1− (1−Ow,c2)

c1
]θ

,

fΘ
¯
(w)|(w→∞) ∼

2νθθc1c2
2w Ow,c2(1−Ow,c2)

c1−1[
1− (1−Ow,c2)

c1
]1−θ

,

and

hΘ
¯
(w)|(w→∞) ∼

2θc1c2
2w Ow,c2(1−Ow,c2)

c1−1

1− (1−Ow,c2)
c1

.

Figure 1 gives some plots of the OBBX PDF for selected parameter values. Figure 2 gives some
plots of the OBBX HRF for selected parameter values. Based on Figure 1, the new density can be
“right-skewed” and symmetric with “unimodal” and many “bimodal” shapes. Based on Figure 2,
the new HRF can take the following forms:

I. “increasing” (Figure 2a)
II. “bathtub (U-HRF)” (Figure 2b)
III. “J-HRF” (Figure 2c)
IV. “decreasing” (Figure 2d)
V. “increasing-constant-increasing” (Figure 2e)
VI. “reversed J-HRF” (Figure 2f)
VII. “upside-down (reversed U-HRF)” (Figure 2g).

For the simulations of this new model, we obtained the quantile function (QF) of W (by inverting
the CDF), say wu = F−1(u), as:

wu =
1
c2

− ln

1−


[
1− (1− u)

1
θ

] 1
ν

(1− u)
1
νθ +

[
1− (1− u)

1
θ

] 1
ν


1
c1





1
2

, (7)

where (7) was used as the random number generator from the OBBX model.

2. Mathematical Properties

2.1. Useful Representations

Based on [20], the PDF in (6) can be expressed as:

f (w) =
∞∑

k4=0

Yk4 πc∗1,c2(w)|(c∗1=c1(1+k4)), (8)
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where:

Yk4 =
νθ

1 + k4

∑
∞

k1,k2=0

∑
∞

k3=k4
(−1)k2+k+k4

(
−(1 + θ)

k1

)(
−[ν(1 + k1) + 1]
k2

)(
ν(1 + k1) + k2 + 1
k3

)
,
(

k3

k4

)
,

and πc∗1,c2(w) is the PDF of the BX model. By integrating (8), the CDF of W becomes:

F(w) =
∞∑

k4=0

Yk4 Πc∗1,c2(w), (9)

where Πc∗1,c2(w) refers to the CDF of the BX distribution.

2.2. Moments and Incomplete Moments

The rth ordinary moment of W is given by:

µ′r = E(Wr) =

∫
∞

−∞

wr f (w)dw .

Then, we obtain:

µ′r|(r>−2) = cr
2Γ

(
1 +

r
2

) ∞∑
k4,h=0

Y
(r,c∗1)
k4,h , (10)

where:

Y
(r,c∗1)
k4,h = Yk4

c∗1(−1)h

(h + 1)(r+2)/2

(
c∗1 − 1
h

)
,

and

Γ(1 + φ)|(φ∈R+) = φ! =
φ−1∏
r=0

(φ− r),

The variance (V(W)), skewness (S(W)), and kurtosis (K(W)) can be derived easily using the
well-known relationships. The rth incomplete moment, say Ir(τ), of W can be expressed, from (9), as:

Ir(τ) =

∫ τ

−∞

wr f (w)dw =
∞∑

k4=0

Yk4

∫ τ

−∞

wr πc∗1,c2(w)dw.

Then:

Ir(τ)|(r>−2) = cr
2γ

(
1 +

r
2

, (c2t)2
) ∞∑

k4,h=0

Y
(r,c∗1)
k4,h , (11)

where γ(φ,ψ) refers to the incomplete gamma function:

γ(φ,ψ) =
∫ ψ

0
wφ−1e−wdw =

∞∑
k=0

(−1)k4

k4!(φ+ k)
ψφ+k.

The first incomplete moment is given by (11) with r = 1 as:

I1(τ) = c2γ
(3

2
, (c2t)2

) ∞∑
k4,h=0

Y
(1,c∗1)
k4,h .

The dispersion index (DisIx), also known as the variance-to-mean ratio, is a measure used to
quantify whether a set of observed occurrences are clustered or dispersed compared to a standard
statistical model. Therefore, it indicates whether a certain statistical model is suitable for over-
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(or under-) dispersed data sets and is used widely in ecology as a standard measure for measuring
clustering (overdispersion) or repulsion (underdispersion). Thus, the measure can be used to assess
whether observed data can be modeled using a Poisson process. For any real data set, when the
DisIx is less than 1, the data set is said to be “under-dispersed”; this important condition can relate
to occurrence patterns that are more regular than the randomness associated with a Poisson process.
Numerical analysis for the DisIx(W) of the new OBBX is presented in Table 1 with useful comments.

Table 1. Numerical results for the mean, variance, skewness, kurtosis, and dispersion index for selected
parameter values.

ν θ c1 c2 E(W) V(W) S(W) K(W) DisIx(W)

1 2 1.5 0.5 1.3958 1.0652 1.0068 3.6312 0.7631
1 1.5769 0.4230 0.4614 3.1031 0.2682
5 1.8855 0.0271 −0.3677 3.7912 0.0144

30 1.9753 0.0008 −0.5491 4.2589 0.0004
50 1.9828 0.0003 −0.5608 4.2901 0.0001

2 0.5 0.5 1.5 0.5220 0.0704 0.9528 4.2278 0.1348
1 0.3768 0.0305 0.7423 3.9547 0.0809
5 0.1930 0.0070 0.3053 2.8543 0.0365

50 0.0731 0.0012 0.3940 2.5613 0.0164
100 0.0535 0.0007 0.4433 2.8959 0.0126
200 0.0389 0.0004 0.4866 4.0305 0.0095
500 0.0252 0.0002 0.2288 1.8690 0.0064

1000 0.0181 8.4 × 10−5 1.8057 1.5059 0.0047

5 5 0.5 1.8 0.2391 0.0016 −0.4656 3.4042 0.0069
1 0.4079 0.0018 −0.6485 3.8647 0.0044
5 0.7632 0.0012 −0.7280 4.1308 0.0015

50 1.1437 0.0006 −0.8281 13.3165 0.0005
100 1.2381 0.0005 −0.6902 4.0299 0.0004
500 1.4343 0.0004 −0.6746 3.9872 0.0003

1000 1.5111 0.0004 −0.6696 3.9739 0.0002
2000 1.5843 0.0003 −0.6657 3.9787 0.0002

15 10 10 0.3 1.2 × 10−5 41.2151 1.0002 1.0005 3,376,320
0.5 3.2097 0.0013 −0.9760 4.8669 0.0004
1 1.6049 0.0003 −0.9812 5.3298 0.0002
2 0.8024 8.2 × 10−5 −0.9760 4.8665 0.0001
3 0.5350 3.6 × 10−5 −0.9760 4.8591 6.82 × 10−5

5 1.9 × 10−6 6.5 × 10−7 414.9644 172,196.5 0.3333

2.3. Moment Generating Function (MGF)

The MGF MW(τ) = E(exp(τW)) of W can be derived from (8) as:

MW(τ) =
∞∑

k4=0

vk4 Mc∗1,c2(τ),

where Mc∗1
(τ) is the MGF of the BX model. Then:

MW(τ)|(r>−2) =
∞∑

r=0

∞∑
k4,h=0

τr

r!
cr

2Γ
(
1 +

r
2

)
Y
(r,c∗1)
k4,h .
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2.4. Residual Life and Reversed Residual Life Functions

The rth moment of the residual life Ar(τ) = E
[
(W − τ)r

|w>τ,r=1,2,...
]
. Then, the rth moment of the

residual life of W is given by Ar(τ) = 1
1−F(τ)

∫
∞

τ
(W − τ)rdF(w) Therefore:

Ar(τ) =
1

1− F(τ)

∞∑
k4,h=0

a
(r,c∗1)
k4,h cr

2Γ
(
1 +

r
2

, (c2t)2
)
|(r>−2) ,

where a
(r,c∗1)
k4,h = Yk4

r∑
m=0

(
r
m

)
(−τ)r−m, Γ(φ, r)|r>0 =

∫
∞

r wφ−1e−wdw, and Γ(φ, r) = Γ(φ) − γ(φ, r).

The rth moment of the reversed residual life, say:

Wr(τ) = E
[
(τ−W)r

|w≤τ,τ>0andr=1,2,...

]
,

uniquely determines F(w). Then, we obtain:

Wr(τ) =
1

F(τ)

∫ τ

0
(τ−W)rdF(w).

Then, the rth moment of the reversed residual life of W becomes:

Wr(τ) =
1

F(τ)

∞∑
k4,h=0

b
(r,c∗1)
k4,h cr

2γ
(
1 +

r
2

, (c2t)2
)
|(r>−2) ,

where b
(r,c∗1)
k4,h = Yk4

r∑
m=0

(−1)m
(

r
m

)
τm−r.

2.5. Numerical Analysis for the Mean, V(W), S(W), K(W), and DisIx(W).

Table 1 gives numerical calculations for the mean, V(W), S(W), K(W), and dispersion index
(DisIx(W)) for selected parameter values. Based on Table 1, we note that (1) the skewness of the
OBBX model can be both positive and negative; (2) the spread for the OBBX kurtosis is much
larger, ranging from 1.0005 to 172,196.5; (3) DisIx(W) can be “between 0 and 1” or “more than 1.”
For more visualization, Figure 3 gives some three-dimensional skewness plots and Figure 4 gives
three-dimensional kurtosis plots.
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3. Maximum Likelihood Estimation

The maximum likelihood estimations (MLEs) display desirable properties and can be used for
establishing confidence intervals and test statistics. The normal approximation for MLEs in large sample
theory is easily handled either numerically or analytically. In this section, we determine the MLEs of
the parameters of the OBBX distribution from complete samples only. However, censored samples
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could be considered in separate works. Let w1, w2, . . . , wn be an observed random sample from the
OBBX model with parameters ν, θ, c1, and c2. Then, the log-likelihood function for Θ

¯
, sayL(ν,θ, c1, c2),

is given by:
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𝒄𝟏]
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𝒏

𝒊=𝟎

𝒄𝟏𝓺𝒊
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𝑛
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Setting the nonlinear system of equations to U(𝜈) = U(𝜃) = U(𝑐1) = U(𝑐2) = 0 and solving them 

simultaneously yields the MLEs. These equations cannot be solved analytically, but Newton–

Raphson-type algorithms can be used to solve them numerically (see the Appendix A). For the 

interval estimation of the OBBX model parameters, we require the observed information matrix J(𝚯), 

which comes as the output using the above maximization procedures. Likelihood ratio tests can be 

performed for the proposed model in the usual way. Further works could be addressed using 

different estimation methods to estimate the parameters of the OBBX model, such as bootstrap, least 

squares, Cramér–von Mises, weighted least squares, Jackknife, Anderson–Darling, Bayesian analysis, 

and compare the estimators based on these methods. 
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Setting the nonlinear system of equations to U(𝜈) = U(𝜃) = U(𝑐1) = U(𝑐2) = 0 and solving them 

simultaneously yields the MLEs. These equations cannot be solved analytically, but Newton–

Raphson-type algorithms can be used to solve them numerically (see the Appendix A). For the 

interval estimation of the OBBX model parameters, we require the observed information matrix J(𝚯), 

which comes as the output using the above maximization procedures. Likelihood ratio tests can be 

performed for the proposed model in the usual way. Further works could be addressed using 

different estimation methods to estimate the parameters of the OBBX model, such as bootstrap, least 

squares, Cramér–von Mises, weighted least squares, Jackknife, Anderson–Darling, Bayesian analysis, 

and compare the estimators based on these methods. 
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Setting the nonlinear system of equations to U(ν) = U(θ) = U(c1) = U(c2) = 0 and
solving them simultaneously yields the MLEs. These equations cannot be solved analytically,
but Newton–Raphson-type algorithms can be used to solve them numerically (see the Appendix A).
For the interval estimation of the OBBX model parameters, we require the observed information matrix
J(Θ

¯
), which comes as the output using the above maximization procedures. Likelihood ratio tests

can be performed for the proposed model in the usual way. Further works could be addressed using
different estimation methods to estimate the parameters of the OBBX model, such as bootstrap, least
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squares, Cramér–von Mises, weighted least squares, Jackknife, Anderson–Darling, Bayesian analysis,
and compare the estimators based on these methods.

4. Graphical Assessment

Graphically and using the biases and mean squared errors (MSEs), we can perform the simulation
experiments to assess the finite sample behavior of the MLEs given in Section 4. The assessment was
based on the following algorithm (see the Appendix A):

1. N = 1000 samples of size n|(n = 50, 100, ..., 2000) were generated from the OBBX distribution using (7);

2. The MLEs for N = 2000 samples, say
[
ν̂}, θ̂}, ˆ(c1)}, ˆ(c2)}

]
|(}=1,2,...,2000) were computed.

3. The SEs of the MLEs for the 2000 samples, say
[
Sν̂} , Sθ̂} , S ˆ(c1)}

, S ˆ(c2)}

]
|(}=1,2,...,2000) were computed

by inverting the observed information matrix.
4. The biases and mean squared errors given for Θ

¯
= ν,θ, c1, c2. We repeated these steps for

n|(n=50,100,...,2000) with ν = 1, 2, . . . , 100; θ = 1, 2, . . . , 100; c1 = 1, 2, . . . , 100; c2 = 1, 2, . . . , 100

to compute the biases
(
BiasΘ

¯
(n)

)
and mean squared errors (MSEs) (MSEh(n)) for Θ

¯
= ν,θ, c1, c2

and n|(n=50,100,...,2000) where BiasΘ
¯
(n)|(Θ

¯
=ν,θ,c1,c2) =

1
1000

1000∑
}=1

(
Θ̂
¯ }
−Θ

¯

)
and MSEΘ

¯
(n)|(Θ

¯
=ν,θ,c1,c2) =

1
1000

1000∑
}=1

(
Θ̂
¯ }
−Θ

¯

)2
.

Figures 5, 6, 7 and 8a give the biases for the four parameters, where they illustrate how the biases
vary with respect to n. Figures 5, 6, 7 and 8b give the MSEs for the four parameters, where they
illustrate how the four MSEs vary with respect to n. The broken red line in Figure 8 corresponds to
the biases being 0. From Figures 5–8, the biases for each parameter were generally “negative” and
decrease to 0 as m→∞ , while the MSEs for each parameter decrease to zero as n→∞ .
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5. Applications

In this section, we provide four applications of the OBBX distribution to empirically show its
potentiality. In order to compare the fits of the OBBX distribution with other competing distributions,
we consider the Cramér–von Mises (CVM), the Anderson–Darling (AD), and the Kolmogorov–Smirnov
(KS) (and its corresponding p-value) estimation methods. These four methods are widely used to
determine how closely a specific CDF fits the empirical distribution of a given data set. The smaller
the resulting statistics are, the better the fit. The required computations were carried out using the R
software. For data set I: the MLEs and the corresponding standard errors ((SEs) in parentheses) for
all the competitive parameters are given in Table 2, the numerical values of the statistics from CVM,
AD, and KS (corresponding p-value) are listed in Table 3. For data set II: the MLEs and SEs in for
all the competitive parameters are given in Table 4, the numerical values of the statistics from CVM,
AD, and KS (corresponding p-value) are listed in Table 5. For data set III: the MLEs and SEs in for
all the competitive parameters are given in Table 6, the numerical values of the statistics from CVM,
AD, and KS (corresponding p-value) are listed in Table 7. For data set IV: the MLEs and SEs in for all
the competitive parameters are given in Table 8, the numerical values of the statistics from CVM, AD,
and KS (corresponding p-value) are listed in Table 9.

Table 2. The MLEs (SEs) for data set I.

Distribution Estimates (SEs)

BX(c1;c2) 1.181876 0.377525
(0.17060) (0.02532)

OLEW(θ;c1;c2) 0.15935 0.7322 0.765
(0.3712) (1.778) (0.041)

OLBX(θ;c1;c2) 1.45406 0.7543 0.2379
(0.9018) (0.2530) (0.0317)

BXEW(θ;c1;c2) 0.63684 4.2622 0.5364
(0.356) (1.757) (0.0997)

PTLW(θ;c1;c2) −5.78175 4.22865 0.65801
(1.395) (1.167) (0.039)

MOEW(θ;c1;c2) 488.899 0.2832 1261.97
(189.358) (0.013) (351.07)

GamW(θ;c1;c2) 2.37697 0.84809 3.5344
(0.378) (0.00053) (0.665)

OBBX(ν;θ;c1;c2) 1.29102 3.1331 0.8448 0.1906
(0.544) (2.3251) (0.4961) (0.084)

KumW(ν;θ;c1;c2) 14.4331 0.2041 34.6599 81.8459
(27.095) (0.042) (17.527) (52.014)

Beta-W(ν;θ;c1;c2) 1.36 0.2981 34.1802 11.4956
(1.002) (0.06) (14.838) (6.73)

TrMW(ν;θ;c1;c2) 0.2722 1 4.6 × 10−6 0.4685
(0:014) (5.2 × 10−5) (1.9 × 10−4) (0.165)

MBW(ν;θ;λ;c1;c2) 10.1502 0.1632 57.4167 19.3859 2.0043
(18.697) (0.019) (14.063) (10.019) (0.662)

MacW(ν;θ;λ;c1;c2) 1.9401 0.306 17.686 33.6388 16.7211
(1.011) (0.045) (6.222) (19.994) (9.722)

TrEGW(ν;θ;λ;c1;c2) 4.2567 0.1532 0.0978 5.2313 1173.33
(33.401) (0.017) (0.609) (9.792) (6.999)
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Table 3. The Cramér–von Mises (CVM), Anderson–Darling (AD), and Kolmogorov–Smirnov (KS)
(p-value) results for data set I.

Distribution CVM AD KS (p-Value)

OBBX 0.0580 0.5777 0.05602 (0.9547)
OLEW 0.0723 0.6086 0.87572 (<0.001)
OLBX 0.0792 0.5910 0.37584 (<0.001)

BX 0.0690 0.6916 0.07981 (0.6584)
BXEW 0.0744 0.6420 0.06935 (0.8139)
PTLW 0.1397 1.1939 0.11542 (0.8004)

MOEW 0.3995 4.4477 0.06170 (0.9064)
GamW 0.2553 1.9489 0.58482 (0.33119)
KumW 0.1852 1.5059 0.23917 (0.43651)
Beta-W 0.4652 3.2197 0.66032 (<0.001)
TrMW 0.8065 11.2047 0.68989 (<0.001)
MBW 0.4717 3.2656 0.33902 (<0.001)
MacW 0.1986 1.5906 0.09243 (0.81193)
TrEGW 1.0079 6.2332 0.22402 (<0.001)

Table 4. MLEs (SEs) for data set II.

Distribution Estimates
(SEs)

BX(c1;c2) 0.36413 0.04763
(0.0373) (0.0039)

W(c1;c2) 9.5593 1.0477
(0.853) (0.068)

OBBX(ν;θ;c1;c2) 5.6822 1.61069 0.0688 0.00067
(1.0574) (0.7171) (0.0066) (<0.001)

TrMW(ν;θ;c1;c2) 0.1208 0.8955 0.0002 0.2513
(0.024) (0.626) (0.011) (0.407)

MBW(ν;θ;λ;c1;c2) 0.1502 0.1632 57.4167 19.3859 2.0043
(22.437) (0.044) (37.317) (13.49) (0.789)

TrAW(ν;θ;λ;c1;c2) 0.1139 0.9722 3.09 × 10−5 1.0065 −0.163
(0.032) (0.125) (6.12 × 10−3) (0.035) (0.28)

Table 5. The CVM, AD, and KS (p-value) for data set II.

Distribution CVM AD KS (p-Value)

OBBX 0.0345 0.2038 0.04242 (0.9754)
W 0.1055 0.6628 0.2665 (0.00662)
BX 0.4747 2.7861 0.35516 (0.0042)

TrMW 0.1251 0.7603 0.15875 (0.3969)
MBW 0.1068 0.7207 0.25762 (0.3198)
TrAW 0.1129 0.7033 0.16872 (0.3376)

Table 6. MLEs (SEs) for data set III.

Distribution Estimates (SEs)

BX(c1;c2) 0.93658 0.00478
(0.1461) (0.0004)

TrBX(θ;c1;c2) 0.6328 1.03917 0.00417
(0.2453) (0.1445) (0.0005)

OLEW(ν;θ;c1;c2) 0.0018 0.0716 0.2813
(0.0004) (0.025) (0.009)

OWW(θ;c1;c2) 11.1576 0.0881 0.457
(4.5449) (0.036) (0.08)

GaEE(θ;c1;c2) 2.1138 2.6006 0.0083
(1.3288) (0.5597) (0.005)

OBBX(ν;θ;c1;c2) 3.24855 0.40541 0.2905 0.0029
(0.8191) (0.1563) (0.039) (0.0003)
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Table 7. The CVM, AD, and KS (p-value) for data set III.

Distribution CVM AD KS (p-Value)

OBBX 0.0549 0.34601 0.06916 (0.8812)
BX 0.1849 1.08578 0.096596 (0.5125)

TrBX 0.1352 0.79259 0.085663 (0.6662)
OLEW 0.2517 1.47502 0.999870 (<0.001)
OWW 0.4494 2.47640 0.658701 (<0.001)
GaEE 0.3150 1.72080 0.508710 (<0.001)

Table 8. MLEs (SEs) for data set IV.

Distribution Estimates (SEs)

BX(c1;c2) 5.48597 0.9868
(1.1853) (0.0540)

TrBX(θ;c1;c2) −0.65524 4.78605 1.04504
(0.19529) (1.2831) (0.0549)

OLBX(θ;c1;c2) 0.65831 2.1019 0.8429
(0.5112) (1.246) (0.058)

OLEW(θ;c1;c2) 0.50878 2.534 1.7122
(0.397) (1.8298) (0.0959)

EW(θ;c1;c2) 0.67132 7.285 1.71811
(0.249) (1.707) (0.086)

TrW(θ;c1;c2) −0.5010 5.1498 0.6458
(0.2741) (0.6657) (0.0235)

OLLW(θ;c1;c2) 0.9439 6.0256 0.6159
(0.2689) (1.3478) (0.0164)

OBBX(ν;θ;c1;c2) 5.8221 6.9739 0.3384 0.1739
(6.1527) (8.4085) (0.449) (0.2701)

Table 9. The CVM, AD, and KS (p-value) for data set IV.

Distribution CVM AD KS (p-Value)

OBBX 0.2041 1.1216 0.14084 (0.1642)
OLBX 0.2557 1.4154 0.62469 (<0.001)
TrBX 0.4764 2.6163 0.19385 (0.01757)

OLEW 0.2711 1.4965 0.66225 (<0.001)
BX 0.5594 3.0722 0.21497 (0.00592
EW 0.6361 3.4842 0.15895 (<0.001)
TrW 1.0358 0.1691 0.33359 (0.07651)

OLLW 1.2364 0.2194 0.59001 (0.01543)

The total time in test (TTT) plot, box plot, quantile–quantile (Q-Q) plot, and the nonparametric
Kernel density estimation (NKDE) plot for data set I are displayed in Figure 9. The estimated PDF
(EPDF), estimated CDF (ECDF), probability–probability (P-P), and estimated HRF (EHRF) plots for
data set I are displayed in Figure 10. The TTT, box plot, Q-Q and the NKDE plots for data set II are
displayed in Figure 11. The EPDF, ECDF, P-P and EHRF plots for data set II are displayed in Figure 12.
The TTT, box plot, Q-Q and the NKDE plots for data set II are displayed in Figure 13. The EPDF, ECDF,
P-P and EHRF plots for data set III are displayed in Figure 14. The TTT, box plot, Q-Q and the NKDE
plots for data set II are displayed in Figure 15. The EPDF, ECDF, P-P and EHRF plots for data set IV
are displayed in Figure 16. The dashed line in all the Q-Q plots refers to the safe boundaries for the
standard errors. The TTT plots show that the HRFs were “increasing” (data set I), “upside-down”
(data set II), “increasing” (data set III), and “increasing” (data set IV). The box plots show that data sets
II, III, and IV had some extreme values. The Q-Q plots ensure the results of the box plots. The NKDE
plots show that the kernel density estimation was “asymmetric bimodal” (data set I), “asymmetric
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bimodal with a right-heavy tail” (data sets II and III), and “asymmetric bimodal with a left-heavy tail”
(data sets IV). The R codes are given in see Appendix A.
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5.1. Modeling Failure Times

The data consisted of 84 observations. Here, we shall compare the fits of the OBBX distribution
with those of other competitive models, namely, the BX [1], odd Lindley exponentiated W (OLEW) [24],
Burr X EW (BXEW) [22], Poisson Topp Leone W (PTLW) [25], Marshall Olkin extended-W (MOEW) [26],
gamma-W (GamW) [27], Kumaraswamy-W (KumW) [28], beta-W [29], transmuted modified-W
(TrMW) [30], modified beta-W (MBW) [31], Mcdonald-W (MacW) [32], and transmuted exponentiated
generalized W (TrEGW) [33] distributions. Some other extensions of the W distribution can also be
used in this comparison, but are not limited to [34–43]. Figure 9 presents the TTT, box, Q-Q, and NKDE
plots for data set I. Figure 10 shows the EPDF, ECDF, P-P, and EHRF plots for data set I. Table 2 provides
the MLEs (SEs) for data set I. Table 3 gives the CVM, AD, and KS (p-value) for data set I. Based on
the values in Table 3 and Figure 10, we concluded that the new lifetime model provided adequate
fits compared to other W models with small values for CVM and AD. The proposed OBBX lifetime
model was much better than the BXEW, PTLW, MOEW, GamW, KumW, Beta-W, TrMW, KumTrW,
MBW, MacW, and TrEGW models, and is a good alternative to these models.

5.2. Modeling Cancer Data

This data set represents the remission times (in months) of a random sample of 128 bladder cancer
patients as reported in [44]. We compared the fits of the OBBX distribution with other competitive
models, namely, the BX, Weibull (W) [45], TrMW, MBW, and transmuted additive W distribution
(TrAW) ([34]) distributions with corresponding densities (for W > 0). Figure 11 presents the TTT, box,
Q-Q, and NKDE plots for data set II. Figure 12 shows the EPDF, ECDF, P-P, and EHRF plots for data
set II. Table 4 provides the MLEs (SEs) for data set II. Table 5 gives the CVM, AD, and KS (p-value) for
data set II. Based on Table 5 and Figure 12, we concluded that the proposed OBBX lifetime model was
much better than the W, TrMW, MBW, TrAW, and ETrGR models with small values for Cr[1] and Cr[2]
in modeling cancer patient data.

5.3. Modeling Survival Times

The second real data set corresponds to the survival times (in days) of 72 guinea pigs infected
with virulent tubercle bacilli reported by [46]. We compared the fits of the OBBX distribution with
those of other competitive models, namely, the BX, transmuted (TrBX), OLEW, Odd W–W (OWW) [47],
gamma exponentiated-exponential (GaEE) [48] distributions with PDFs (for W > 0). Figure 13 presents
the TTT, box, Q-Q, and NKDE plots for data set III. Figure 15 shows the EPDF, ECDF, P-P, and EHRF
plots for data set III. Table 6 provides the MLEs (SEs) for data set III. Table 7 gives the CVM, AD,
and KS (p-value) for data set III. Based on Table 7 and Figure 15, we concluded that the proposed OBBX
model was much better than all these models and was a good alternative to these models for modeling
the survival times of guinea pigs.

5.4. Glass Fibers Data

This data consists of 63 observations of the strengths of 1.5 cm glass fibers, originally obtained
by workers at the U.K. National Physical Laboratory. These data are given in [49]. For this data set,
we compared the fits of the new distribution with some competitive models, such as the BX, TrBX,
OLBX, OLEW, EW, TrW, and the odd log–logistic Weibull (OLLW) models. Figure 15 presents the TTT,
box, Q-Q, and NKDE plots for data set IV. Figure 16 shows the EPDF, ECDF, P-P, and EHRF plots for
data set IV. Table 8 provides the MLEs (SEs) for data set IV. Table 9 gives the CVM, AD, and KS (p-value)
for data set IV. Based on Table 9 and Figure 16, we concluded that the proposed OBBX model was
much better than all the competitor models and was a good alternative to these models in modeling
glass fibers data.
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6. Concluding Remarks

We introduced and studied a new generalization of the Burr type X distribution called the
odd Burr–Burr type X (OBBX) distribution. Some of its properties were derived and numerically
analyzed. The new PDF of the OBBX model was re-expressed in terms of the standard BX model.
Graphically, we assessed the performance of the estimation method by means of biases and mean
squared errors. The usefulness and flexibility of the new distribution was illustrated by means of
four real data sets. The superiority of the new model against many other competitor models was
proved using the Cramér–von Mises, the Anderson–Darling, and the Kolmogorov–Smirnov (and its
corresponding p-value) statistics. The following concluding remarks can be made:

I. The new density can be “unimodal and right-skewed,” “symmetric and unimodal,” and
“bimodal density” with many useful shapes.

II. The HRF of the new model can be “monotonically increasing,” “bathtub (U-HRF),”
“J-HRF,” “monotonically decreasing,” “increasing-constant-increasing,” “reversed J-HRF,”
and “upside-down (reversed U-HRF).”

III. In the reliability analysis, the OBBX model could be chosen as the best model, especially for
modeling the asymmetric bimodal failure times data and the asymmetric bimodal right-skewed
and heavy-tail survival times data.

IV. In medical fields, the OBBX model could be chosen as the best model, especially for modeling
the bimodal right-skewed and heavy-tail cancer data.

V. In engineering, the OBBX model could be chosen as the best model, especially for modeling
the asymmetric bimodal left-skewed and heavy-tail glass fibers data.

VI. In modeling the failure times data, the OBBX model showed its superiority against the Burr
type X, odd Lindley exponentiated Weibull, Burr X exponentiated Weibull, Poisson Topp
Leone Weibull, Marshall Olkin extended Weibull, Gamma Weibull Kumaraswamy Weibull,
beta Weibull, transmuted modified Weibull, modified beta Weibull, Mcdonald Weibull, and the
transmuted exponentiated generalized Weibull distributions.

VII. In modeling the cancer data, the OBBX model showed its superiority against the Burr type
X, Weibull, transmuted modified Weibull, modified beta Weibull, and transmuted additive
Weibull distributions.

VIII. In modeling the survival data, the OBBX model showed its superiority against the Burr
type X, transmuted Burr type X, odd Lindley exponentiated Weibull, odd Weibull–Weibull,
and gamma-exponentiated exponential distributions.

IX. In modeling the glass fibers data, the OBBX model showed its superiority against the Burr
type X, transmuted Burr type X, odd Lindley Burr type X, odd Lindley exponentiated Weibull,
exponentiated Weibull, transmuted Weibull, and odd log–logistic Weibull distributions.

Future works could be allocated for defining and studying many other Burr type X model versions
using some well-known G families, such as the type I general exponential class of distributions [50],
new extended G family of continuous distributions [51], and the type II general exponential class of
distributions [52]. Based on [53], useful details about the computation of the probability associated
with the Anderson–Darling statistic are given. Future works could use the approach of [53] as an
alternative GOF statistics test.
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Abbreviations

The following abbreviations are used in this manuscript:

PDF Probability density function
CDF Cumulative distribution function
RF Reliability function
MGF Moment generating function
HRF Hazard rate function
MLE Maximum likelihood estimation
MSE Mean square error
P-P Probability–probability
TTT Total time in test
RV Random variable
BX Burr type X
BXII Burr type XII
O-G Odd G family
OBG Odd Burr-G family
OBBX Odd Burr–Burr type X model
PRHR Proportional reversed hazard rate family
O-BX Odd Burr type X
PRHR-BX Proportional reversed hazard rate Burr type X model
QF Quantile function
DisIx Dispersion index
V(W) Variance
S(W) Skewness
K(W) Kurtosis
EPDF Estimated probability density function
ECDF Estimated cumulative distribution function
EHRF Estimated hazard rate function
Q-Q Quantile–quantile plot
NKDE Nonparametric kernel density estimation plot

Appendix A

R Codes for Applications:
x = c(0.040, 1.866, 2.385, 3.443, 0.301, 1.876, 2.481, 3.467, 0.309, 1.899, 2.610, 3.478, 0.557, 1.911, 2.625, 4.570,

1.652, 2.300, 3.344, 4.602, 1.757, 3.578, 0.943, 1.912, 2.632, 3.595, 1.070, 1.914, 2.646, 3.699, 1.124, 1.981, 2.661, 3.779,
1.248, 2.010, 2.224, 3.117, 4.485, 1.652, 2.229, 3.166, 2.688, 3.924, 1.281, 2.038, 2.823, 4.035, 1.281, 2.085, 2.890, 4.121,
1.303, 2.089, 2.902, 4.167, 1.432, 4.376, 1.615, 2.223, 3.114, 4.449, 1.619, 2.097, 2.934, 4.240, 1.480, 2.135, 2.962, 4.255,
1.505, 2.154, 2.964, 4.278, 1.506, 2.190, 3.000, 4.305, 1.568, 2.194, 3.103, 2.324, 3.376, 4.663)

x = c(0.08, 2.09, 3.48, 4.87, 6.94,8.66, 13.11, 23.63, 0.20, 2.23, 3.52, 4.98, 6.97, 9.02, 13.29, 0.40, 2.26, 3.57, 5.06,
7.09, 9.22, 13.80,25.74, 0.50, 2.46, 3.64, 5.09, 7.26, 9.47, 14.24, 25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 14.76, 26.31,0.81,
2.62, 3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 7.39,10.34, 14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66,
15.96, 36.66, 1.05, 2.69, 4.23, 5.41, 7.62, 10.75, 16.62, 43.01, 1.19, 2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33, 5.49,
7.66, 11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36, 1.40, 3.02, 4.34, 5.71, 7.93, 11.79, 18.10, 1.46, 4.40, 5.85, 8.26,
11.98, 19.13, 1.76, 3.25, 4.50, 6.25, 8.37, 12.02, 2.02, 3.31, 4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 3.36, 6.76, 12.07, 21.73, 2.07,
3.36, 6.93, 8.65, 12.63, 22.69)

x = c(10, 33, 44, 56, 59, 72,74, 77, 92, 93, 96, 100, 100, 102, 105, 107, 107,108, 108, 108, 109, 112, 113, 115, 116, 120,
121, 122, 122, 124, 130, 134, 136,139, 144, 146, 153, 159, 160, 163, 163, 168, 171, 172, 176, 183, 195, 196, 197,202, 213,
215, 216, 222, 230,231, 240, 245, 251, 253, 254, 255, 278, 293, 327, 342, 347, 361, 402, 432, 458, 555)

x = c(0.55, 0.74, 0.77, 0.81, 0.84, 0.93, 1.04, 1.11, 1.13, 1.24, 1.25, 1.27, 1.28, 1.29, 1.30, 1.36, 1.39, 1.42, 1.48, 1.48,
1.49, 1.49, 1.50, 1.50, 1.51, 1.52, 1.53, 1.54, 1.55, 1.55, 1.58, 1.59, 1.60, 1.61, 1.61, 1.61, 1.61, 1.62, 1.62, 1.63, 1.64, 1.66,
1.66, 1.66, 1.67, 1.68, 1.68, 1.69, 1.70, 1.70, 1.73, 1.76, 1.76, 1.77, 1.78, 1.81, 1.82, 1.84, 1.84, 1.89, 2.00, 2.01, 2.24)

hist(x)
#=======================================
cdf_OBBX<- function(par,x){
v = par[1]
theta = par[2]
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c1 = par[3]
c2 = par[4]
g.BX=(v*theta*((c2ˆ2)*c1*2*x*exp(−(x*c2)ˆ2)*((1 − exp(−(x*c2)ˆ2))ˆ(c1−1)))*(((1 −

exp((x*c2)ˆ2))ˆ(c1))ˆ(v−1))*((1 − ((1 − exp(−(x*c2)ˆ2))ˆ(c1)))ˆ((v*theta)−1)))/(((((1 −
exp((x*c2)ˆ2))ˆ(c1))ˆv)+((1 − ((1 − exp(−(x*c2)ˆ2))ˆ(c1)))ˆv))ˆ(theta+1))

G.BX=1 − (((1 − ((1 − exp(−(x*c2)ˆ2))ˆ(c1)))ˆ(v*theta))/(((((1 − exp(−(x*c2)ˆ2))ˆ(c1))ˆv)+((1 − ((1 −
exp((x*c2)ˆ2))ˆ

1. (c1)))ˆv))ˆtheta))

return(cdf)
}
pdf_OBBX <- function(par,x){
v = par[1]
theta = par[2]
c1 = par[3]
c2 = par[4]
g.BX=(v*theta*((c2ˆ2)*c1*2*xˆ(2−1)*exp(−(x*c2)ˆ2)*((1 − exp(−(x*c2)ˆ2))ˆ(c1−1)))*(((1 −

exp((x*c2)ˆ2))ˆ(c1))ˆ(v−1))*((1 − ((1-
exp(−(x*c2)ˆ2))ˆ(c1)))ˆ((v*theta)−1)))/(((((1 − exp(−

(x*c2)ˆ2))ˆ(c1))ˆv)+((1 − ((1 − exp(−(x*c2)ˆ2))ˆ(c1)))ˆv))ˆ(theta+1))
G.BX=1 − (((1 − ((1 − exp(−(x*c2)ˆ2))ˆ(c1)))ˆ(v*theta))/(((((1 − exp(−(x*c2)ˆ2))ˆ(c1))ˆv)+((1 − ((1 − exp(−

(x*c2)ˆ2))ˆ(c1)))ˆv))ˆtheta))
return(pdf)
}
Goodness-fit(pdf = pdf_OBBX, cdf = cdf_OBBX, starts = c()„method = “select a numerical method”, domain

= c(0,Inf), MLE = NULL)

2. #=======================================

R Codes for Simulations:
cdf_OBBX<- function(par,x){
v = par[1]
theta = par[2]
c1 = par[3]
c2 = par[4]
g.BX=(v*theta*((c2ˆ2)*c1*2*xˆ(2−1)*exp(−(x*c2)ˆ2)*((1 − exp(−(x*c2)ˆ2))ˆ(c1−1)))*(((1 −

exp((x*c2)ˆ2))ˆ(c1))ˆ(v−1))*((1 − ((1 − exp(−(x*c2)ˆ2))ˆ(c1)))ˆ((v*theta)−1)))/(((((1 −
exp((x*c2)ˆ2))ˆ(c1))ˆv)+((1 − ((1 − exp(−(x*c2)ˆ2))ˆ(c1)))ˆv))ˆ(theta+1))

G.BX=1− (((1− ((1− exp(−(x*c2)ˆ2))ˆ(c1)))ˆ(v*theta))/(((((1− exp(−(x*c2)ˆ2))ˆ(c1))ˆv)+((1− ((1− exp((x*c2)ˆ2))ˆ

3. (c1)))ˆv))ˆtheta))

return(cdf)
}
pdf_OBBX <- function(par,x){
v = par[1]
theta = par[2]
c1 = par[3]
c2 = par[4]
g.BX=(v*theta*((c2ˆ2)*c1*2*xˆ(2 − 1)*exp(−(x*c2)ˆ2)*((1 − exp(−(x*c2)ˆ2))ˆ(c1−1)))*(((1 −

exp((x*c2)ˆ2))ˆ(c1))ˆ(v−1))*((1 − ((1 − exp(−(x*c2)ˆ2))ˆ(c1)))ˆ((v*theta)−1)))/(((((1 − exp(−
(x*c2)ˆ2))ˆ(c1))ˆv)+((1 − ((1 − exp(−(x*c2)ˆ2))ˆ(c1)))ˆv))ˆ(theta+1))

G.BX=1 − (((1 − ((1 − exp(−(x*c2)ˆ2))ˆ(c1)))ˆ(v*theta))/(((((1 − exp(−(x*c2)ˆ2))ˆ(c1))ˆv)+((1 − ((1 − exp
(−(x*c2)ˆ2))ˆ(c1)))ˆv))ˆtheta))

return(pdf)
}
Goodness-fit(pdf = pdf_OBBX, cdf = cdf_OBBX, starts = c(),method = “select a numerical method”, domain

= c(0,Inf), MLE = NULL)
fit$MLE
#———————————————————-
# v = 1; theta = 1; c2 = 1; c1 = 1
v = 1; theta = 1; c2 = 1; c1 = 1
para = c(v, theta, c2, c1),
M = 2000,
pa = matrix(para,nr = M,nc = 4,byrow = T)
#NN = seq(100,2000,by = 100)
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bias = MSE = matrix(NA,nr = length(NN),nc = 4)
row.names(bias) = row.names(MSE) = NN
for(i in 1:length(NN)){
N = NN[i]
cat(“i = “,i,” n = “,N,’n’)
MLE = matrix(NA, nr = M, nc = 4, byrow = T)
j = 1
while(j < = M){
cc = ((1 − (runif(N)))/(1 − (1 − v)*(runif(N))))
x = (1/c1)*((−(1/theta)*log(cc))ˆ(1/c2))
fit = goodness.fit(pdf = pdf_OBBX, cdf = cdf_OBBX, starts = c(), data = x, method = “ select a numerical

method “, domain = c(0,Inf), MLE = NULL) if(fit$Convergence = = 0) {
ml[j,] = fit$MLE
j = j + 1
}
bias[i,] = apply((MLE-pa), 2, FUN = mean, na.rm = TRUE)
MSE[i,] = apply((MLE-pa)ˆ2, 2, FUN = mean, na.rm = TRUE)
}
bias; MSE
write.table(data.frame(bias),”E://bias.txt”)
write.table(data.frame(MSE),”E://MSE.txt”)
MSE = read.table(“E://MSE.txt”)
bias = read.table(“E://bias.txt”)
#Bias plots======================================================================
par(mfrow = c())
plot(NN,bias.v,type = ‘l’,lwd = 4,col = 3, ylab = “Bias”,xlab = “n”,main = expression(paste(“Bias of the

parameter “, v))) abline(h = 0,lwd = 4,col = 2)
plot(NN,MSE.v,type = ‘l’,lwd = 4,col = 3,ylab = “MSE “,xlab = “n”,main = expression(paste(“MSE of the

parameter “, v)))
plot(NN,bias.theta,type = ‘l’,lwd = 4,col = 3,ylab = “Bias”,xlab = “n”,main = expression(paste(“Bias of the

parameter “, theta)))abline(h = 0,lwd = 4,col = 2)
plot(NN,MSE.theta,type = ‘l’,lwd = 4,col = 3,ylab = “MSE “,xlab = “n”,main = expression(paste(“MSE of the

parameter “, theta)))
plot(NN,bias.c2,type = ‘l’,lwd = 4,col = 3,ylab = “Bias”,xlab = “n”,main = expression(paste(“Bias of the

parameter “, c2))) abline(h = 0,lwd = 4,col = 2)
plot(NN,MSE.c2,type = ‘l’,lwd = 4,col = 3,ylab = “MSE “,xlab = “n”,main = expression(paste(“MSE of the

parameter “, c2)))
plot(NN,bias.c1,type = ‘l’,lwd = 4,col = 3,ylab = “Bias”,xlab = “n”,main = expression(paste(“Bias of the

parameter “, c1))) abline(h = 0,lwd = 4,col = 2)
plot(NN,MSE.c1,type = ‘l’,lwd = 4,col = 3,ylab = “MSE “,xlab = “n”,main = expression(paste(“MSE of the

parameter “, c1)))
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