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Abstract: The peptides/proteins of all living beings on our planet are mostly made up of 19 L-amino
acids and glycine, an achiral amino acid. Arising from endogenous and exogenous sources, the seas
of the prebiotic Earth could have contained a huge diversity of biomolecules (including amino acids),
and precursors of biomolecules. Thus, how were these amino acids selected from the huge number of
available amino acids and other molecules? What were the peptides of prebiotic Earth made up of?
How were these peptides synthesized? Minerals have been considered for this task, since they can
preconcentrate amino acids from dilute solutions, catalyze their polymerization, and even make the
chiral selection of them. However, until now, this problem has only been studied in compartmentalized
experiments. There are separate experiments showing that minerals preconcentrate amino acids by
adsorption or catalyze their polymerization, or separate L-amino acids from D-amino acids. Based on
the [GADV]-protein world hypothesis, as well as the relative abundance of amino acids on prebiotic
Earth obtained by Zaia, several experiments are suggested. The main goal of these experiments is to
show that using minerals it is possible, at least, to obtain peptides whose composition includes a high
quantity of L-amino acids and protein amino acids (PAAs). These experiments should be performed
using hydrothermal environments and wet/dry cycles. In addition, for hydrothermal environment
experiments, it is very important to use one of the suggested artificial seawaters, and for wet/dry
environments, it is important to perform the experiments in distilled water and diluted salt solutions.
Finally, from these experiments, we suggest that, without an RNA world or even a pre genetic world,
a small peptide set could emerge that better resembles modern proteins.
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1. General Comments

We should ask ourselves, is it possible to think of a way for the origin of life to have occurred
without minerals? Minerals have always existed on our planet; thus, it could be common sense that
they played a role in the origin of life on our planet. Naturally, this is considering that life arose
on Earth, but if not? Even if life arose elsewhere, we could wonder whether minerals played a role,
be it a minor or major role. After the seminal work of Bernal, minerals were considered important for
the preconcentration of molecules, catalysis of molecules and polymer syntheses, protection against
degradation by UV radiation or hydrolysis, and even for a primitive genetic code [1]. For the first three
suggestions, at least, there is wide experimental evidence that could support Bernal’s hypothesis [2–6].
Bernal did not suggest in his book that minerals played any role in the origin of chirality [1].
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Before we get onto the subject of this article, let us talk about one group of molecules that are
important for today’s living beings and are chiral, the amino acids. Naturally, there are several molecule
groups that are chiral and important for living beings; therefore, amino acids are the most studied
compounds in prebiotic chemistry. On the primitive Earth there were two sources of amino acids:
(a) endogenous, meaning they were synthesized on Earth; and (b) exogenous, meaning they were
delivered to Earth by meteorites, comets, and interplanetary dust particles [7–17]. Zaia et al. [11]
carried out a survey of amino acids produced in experiments simulating prebiotic Earth environments
and the interstellar medium, as well as amino acids found in meteorites. Therefore, we can certainly say
that there were amino acids on the prebiotic Earth, as well as that minerals and amino acids probably
interacted with each other on the prebiotic Earth.

2. Amino Acids

In 1850, the German chemist Adolph Strecker synthesized an alanine racemic mixture from
an aqueous solution with ammonia and hydrogen cyanide. Firstly, 2-amino propane nitrile was
obtained, which, after acid hydrolysis, produced the racemic mixture of alanine (reaction 1). Nowadays,
this reaction is known as the Strecker reaction. The Strecker reaction or even modified versions of it are
widely used in industry to obtain amino acids as well as other compounds for applications in medicine
and agriculture [18].

H3CC(H)O + HCN + NH3 = H3CC(H)(CN)NH2 + H3O+ = H3CC(H)(COOH)NH2 (1)

In addition, there are several different reaction conditions to synthesize amino acids using the
Strecker type reaction [18]. However, many of them could not be carried out under conditions that
existed on prebiotic Earth or in the interstellar medium [19]. In experiments simulating the interstellar
medium, the amino acid synthesis did not rely on a unique mechanism [20]. Thus, the formation of
amino acids in the interstellar medium is a very robust reaction, meaning it did not depend on the initial
mixture of gases [20]. In addition, there are a large number of ways to synthesize amino acids under
conditions that existed on prebiotic Earth, such as hydrothermal vents; aqueous solution; mixture
of gases, as in the Miller experiment; and the high impacts of bodies on Earth [10,11,14,19,21–26].

All amino acids, except glycine, have at least one carbon chiral, thus, they are optically active.
The most commonly used system to classify amino acids is as L-amino acids or D-amino acids. L-amino
acids deflect polarized light to the left so they are named as levogyre and D-amino acids deflect polarized
light to the right, so they are classified as dextrogyre. However, the Cahn-Ingold-Prelog system is
more complete, since some amino acids have more than one chiral carbon. In the Cahn-Ingold-Prelog
system all L-protein-amino acids are classified as (S)-amino acids, with one exception L-cysteine is
classified as (R)-amino acid. L-isoleucine and L-threonine, in the Cahn-Ingold-Prelog system are
classified as (2S: 3S)-isoleucine and (2S: 3R)-threonine, respectively [27]. Although the L/D-system is an
over simplification, we will use it throughout the text, because it is the best known and its simplification
will not be a problem in the present work.

In all experiments simulating environments of the prebiotic Earth, a racemic mixture of amino
acids was obtained [9–11,13,14,19,28,29]. However, analysis of meteorites showed that an enantiomeric
excess occurred for some amino acids [12,15–17]. Among the meteorites analyzed, carbonaceous
chondrites contain a large variety of organic molecules, making them the most interesting from the
point the view of the origin of life [15–17]. The carbonaceous chondrites are subdivided into eight
groups (CI type 1, CM type 1–2, CR type 1–3, CB, CH type 3, CO type 3, CV type 3, CK type 3–6),
and their abundance and diversity of amino acids depend on the history of the parent body [15–17].
Several amino acids in the meteorites showed L-enantiomeric excess such as: alanine, serine,
aspartic acid, threonine, α-amino-n-butyric acid, β-amino-n-butyric acid, valine, glutamic acid, proline,
norvaline, isovaline, leucine, isoleucine, α-methynorvaline, α-methyvaline, α-methyl-isoleucine,
α-methyl-alloisoleucine, and 2-amino-2-methylhexanoic acid [15–17]. Furthermore, several amino
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acids in the meteorites showed D-enantiomeric excess, such as alanine, allo-isothreonine,
β-aminoisobutyric acid, and allo-isoleucine [17]. Even if an L-enantiomeric excess occurred in
meteorites, this does not explain why the proteins of today’s living organisms are mostly made up of
L-amino acids.

Minerals and amino acids have existed since the prebiotic Earth, and interactions between them
have naturally occurred. From these interactions, two problems could be solved: (a) selection of the
so-called “20-protein-amino acids” from a huge number of amino acids from endogenous/exogenous
sources on the Earth; and (b) selection of the L-amino acids from the racemic mixture. We could wonder
if the selection process of protein amino acids (PAAs) by minerals contributed to their chiral selection,
or if it occurred the other way around, or even if both interacted with each other in a feedback process.
Regarding these two problems, we must always remember the following: (a) non-PAAs play important
roles in living organisms [30–33]; (b) D-amino acids also play several important roles in today‘s living
beings [34–38]; and (c) among amino acids, glycine, an achiral amino acid, is synthesized in high
amounts in experiments simulating exogenous and endogenous environments of Earth, and is also
found in high amounts in meteorites [11].

Since Miller’s classic experiment, non-PAAs and PAAs have been synthesized in
experiments simulating terrestrial and non-terrestrial environments, and have been found in
meteorites [10,11,21,26,39]. Thus, PAAs and non-PAAs existed on prebiotic Earth. We could draw
several hypotheses as to why the PAAs were selected instead of non-PAAs: higher protein amino
acid concentration compared to non-PAA concentration on the prebiotic Earth [11], PAAs condense
more extensively than non-PAAs [40], some sequences of PAAs formed small peptides with catalytic
activity [41], and more stable proteins are formed from PAAs [42]. In addition, we should point out
the work of Ikehara and coworkers on the [GADV]-protein world hypothesis that primitive proteins
were composed of four amino acids glycine/alanine/aspartic acid/valine-GADV [43–45]. Furthermore,
the interaction between small peptides, with PAAs or without PAAs, with other biomolecules
(amphiphilic molecules, amino acids, sugars) or biopolymers (small polynucleotide and polysaccharide)
could provide important information about the increasing complexity of the systems [46]. There are
several other hypotheses on why PAAs were chosen instead of non- PAAs [47–50]. Thus, in general,
the data show that a few PAAs give the peptides/proteins some characteristics that make them
advantageous over non-PAAs. However, how were these few PAAs selected over non-PAAs? and,
were the minerals the right choice to do it?

Nowadays, it is well established that D-amino acids play important roles in living beings. However,
were these amino acids incorporated/produced into the living beings during several stages of their
evolution or are they “dinosaur amino acids” from the prebiotic world? We could assume, since the
overwhelming majority of the amino acids of living beings are L-amino acids, that it is probable
D-amino acids were incorporated into living beings in different stages of their evolution. In addition,
as suggested by Higgs, the origin of homochirality could have partially occurred before the origin of
life and have been completed at the same time as the origin of life [51]. Thus, the D-amino acids in
living beings are a necessity for the physiological process. However, can we rule out the possibility
that a small portion of D-amino acids came from the prebiotic time? Skolnick et al. [52] showed that,
in proteins containing L and D-amino acids, the number of hydrogen bonds is much smaller, which has
an effect on the stability of the proteins. Could this lack in stability be a driving force for homochirality?
However, the authors also showed that even proteins containing L/D-amino acids maintained some
biochemical functions. It should be noted that D-amino acids were found in several peptides and
proteins [36].

Among the PAAs, glycine is the only achiral, and it is obtained in high concentrations in
experiments simulating endogenous or exogenous environments of the prebiotic Earth, as well as
meteorite analyses [11]. However, can we assume that just because an amino acid had a high
concentration on the prebiotic Earth that this would imply finding it in high amounts in primitive
peptides/proteins?
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In summary, PAAs gave some advantages over non-PAAs in peptides/proteins. D-amino acid
decreases the stability of the protein, but does not have an effect on some biochemical functions.
Glycine, an achiral amino acid, was probably found in higher concentrations on prebiotic Earth.
How are all these connected with minerals? In the following paragraphs, we will try to give some
insights into how we can connect these data with minerals.

3. Biomolecules/Biomolecule Precursors and Adsorption on Minerals

As pointed out above, according to Bernal’s suggestions, minerals probably played several
important roles in the origin of life on Earth [1]. Biomolecule or biomolecule precursor concentrations
on the prebiotic Earth were very low [11,53–56]. Thus, from all these suggestions, the most important is
the adsorption of biomolecules or precursors of biomolecules. This is because, if the preconcentration of
biomolecules or precursors of biomolecules did not occur, none of the other processes mentioned above
would occur; there would not have been the formation of biomolecules from precursors, or polymers
from monomers, meaning that the molecular evolution would not occur. Naturally, there are
other ways to preconcentrate biomolecules or precursors of biomolecules such as: wet/dry cycles,
freezing/sublimation, and sorption/precipitation with minerals, however, the environments needed for
wet/dry cycles and freezing/sublimation to occur, were not as widespread as minerals on the prebiotic
Earth [57].

As mentioned above, minerals could have participated in chiral amino acid selection, as well
as in the selection of the PAAs. In general, these two problems are treated separately. However,
on prebiotic Earth, there were endogenous and exogenous sources of amino acids. Amino acids
synthesized on Earth or brought from outside the Earth fell into the sea that covered almost the
entire planet [57]. Thus, the prebiotic seas contained L- and D-amino acids, and non-PAAs and PAAs,
and minerals could adsorb all these molecules. In addition, besides amino acids, other molecules
could be found in the primitive seas that competed for mineral adsorption sites. Here, we have a
huge problem that could be a double-edged sword for prebiotic chemistry. On the one hand, this may
lead to more complex prebiotic chemistry, due to the large variety of species, which could mean more
possibilities for the formation of different and more complex molecules. On the other hand, this complex
mixture of molecules may not lead to the formation of any important molecule or biopolymer in high
concentration to be used for the molecular evolution. Schwartz [58], in his article “Intractable mixtures
and the origin of life”, has already addressed this problem, denominating this mixture the “gunk”.

The early Earth’s atmosphere could have been made up of CO2, H2O, SO2, and N2 [59]. Thus,
the main source of carbon on the prebiotic Earth was CO2 in the atmosphere. In experiments similar to
Miller’s using a mixture of CO2/N2 the quantity of amino acids was too low. However, when Fe2+

was added, as anti-oxidant, and CaCO3 as buffering solution to aqueous solution, the following
amino acids were obtained in high amounts: glycine, alanine, glutamic acid, and aspartic acid [29].
In experiments simulating hydrothermal vents, CO2 with Fe2+ produced acetate, pyruvate, malate,
fumarate, succinate, α-ketoglutarate, isocitrate, and aconitate [60]. When the experiments were
performed with CO2 plus Fe◦ plus hydroxylamine, glycine, alanine, aspartic acid, and glutamic
acid were produced [60]. The CO2/N2 of the atmosphere could be converted to HCN, a more
reactive molecule, by UV radiation [56]. Meteorites could be another source of cyanide on the
prebiotic Earth [61,62]. After acidification, Murchison meteorite extracts presented approximately
400 nmolg−1 of HCN [61]. The analysis of carbonaceous chondrite meteorites (Allan Hills 83100,
Graves Nunataks 06100, Lewis Cliff 85311 and 90500, Lonewolf Nunatks, Murchison, Massif 04133)
and one Martian meteorite (Allan Hills 84001) showed cyanide in the extracts in the range from
2472 nmolg−1 (Lewis Cliff 85311) to 50 nmolg−1 (Allan Hills 83100), with the exception of three
meteorites (Massif 04133, Graves Nunataks 06100, Allan Hills 84001) where cyanide concentrations
were below <0.1 nmolg−1 [62]. These meteorites also presented iron cyanocarbonyl complexes
{[Fe2+(CN)5(CO)]3−, [Fe2+(CN)4(CO)2]2−} [62]. There are several small molecules that probably played
important roles in the origin of life, such as cyanide, thiocyanate, ammonia, formaldehyde, and so on,
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of which cyanide is likely one the most important precursors of biomolecules [22,23]. However,
for the formation of biomolecules the concentration of cyanide should be in the range from 10−3 to
1.0 mol L−1 [24,63]. It is probable that in the seas of the prebiotic Earth the cyanide concentration
was much lower, from 10−8 to 10−6 mol L−1 [54,56]. Therefore, cyanide needed to be preconcentrated
to be used for the formation of biomolecules. Could minerals adsorb cyanide? At very acidic
pH (2.0), montmorillonite adsorbs cyanide [64] and this range of pH can be found in hydrothermal
vents [65]. However, when the pH increases, the cyanide adsorption decreases [64]. In addition,
Samulewski et al. [66] studied the cyanide adsorption onto several minerals (bentonite, ferrihydrite,
goethite, hematite, kaolinite, montmorillonite, olivine), using a wide pH range (4.0–10.0), and the
authors observed that less than 2% of cyanide adsorbed onto montmorillonite and bentonite, and the
other minerals did not adsorb it. Thus, could this important molecule for prebiotic chemistry be
preconcentrated by minerals at the pH of prebiotic seawater? Yes, cyanide can be preconcentrated
by bentonite in a wide pH range when it reacts with Fe2+ forming ferrocyanide [66]. In this case
ferrocyanide enters the interlayer of bentonite, forming Prussian blue [66]. Thus, cyanide could
be preconcentrated as ferrocyanide in the pH of prebiotic seawater or itself in hydrothermal vents.
It should be noted that montmorillonite is one the most widely studied minerals in the prebiotic
chemistry area [67].

Amino acids were delivered to prebiotic seas by endogenous and exogenous sources. Thus,
in the prebiotic seas, non- PAAs, PAAs, L-amino acids, and D-amino acids could probably be found.
As highlighted above, if an amino acid is delivered in high amounts to prebiotic seas, by endogenous
or exogenous sources, should it be found in high amounts in the peptides/proteins? In several of the
hypotheses discussed above, this is thought to be true [41–45,48,49]. It is inferred that if an amino acid
is produced in large quantities, it must consequently be in large quantities in the peptides/proteins.
However, these amino acids were in low concentrations in the prebiotic seas, thus, before the formation
of peptides the amino acids need to be preconcentrated [11,28,55,68]. Several reviews show that
minerals, especially montmorillonite, adsorb amino acids [2,4,5]. The adsorption of amino acids onto
minerals depends on the properties of both and the medium used for the adsorption. Therefore,
for adsorption studies, we cannot separate the properties of minerals from the properties of amino
acids and the adsorption medium, meaning all three are connected. The following characteristics
of minerals have an effect on the adsorption of amino acids: surface area, pore size, net superficial
charge (pHpzc), transition metals, and cation exchange capacity. However, because minerals have a
net charge, they adsorb more amino acids with charged-R-groups than amino acids with uncharged
R-groups [4]. In addition, amino acids with uncharged R-groups are produced by endogenous and
exogenous sources in higher amounts than amino acids with charged R-groups [11]. A few questions
should be asked. Could minerals adsorb more PAAs than non-PAAs? Were the first peptides/proteins
composed of more amino acids with charged R-groups than uncharged R-groups? Could minerals
make chiral selection of amino acids?

In conclusion, on the prebiotic Earth, minerals preconcentrated biomolecules and precursors of
biomolecules. However, the question here is with respect to selectivity. If minerals had no selectivity,
the problem raised by Schwartz [58], in his article “Intractable mixtures and the origin of life” probably
makes sense. In addition, if minerals were very selective, they would have no use for prebiotic
chemistry; very selective minerals are useful for technology, but not for prebiotic chemistry. However,
minerals have some selectivity that depends on their properties and the molecules that they will adsorb.
In the next section we will discuss the selectivity of minerals together with the properties of amino acids.

4. Minerals

Nowadays, more than 4300 species of minerals are known on our planet and approximately
50 new species of minerals are identified every year [69]. However, before life arose on our planet,
there were approximately 350–500 species of minerals. The mineral evolution as suggested by Hazen
could be divided into 10 stages: stage-1 (>4.56 Gy) occurred before the formation of the planets and
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took place in stellar nebula, at this stage about 60 refractory minerals existed; stage-2 (>4.56 to 4.44 Gy)
due to gravitational attraction, small bodies are formed, refractory minerals plus water and heat formed
about 250 minerals; stage-3 (4.55 to 4.0 Gy) planetary differentiation occurred and due to seawater and
atmosphere clay minerals are formed, there were about 350 to 500 minerals on Earth; stage-4 (4.0 to
3.5 Gy) first formation of granite due to partial melting of wet basalt and there were about 1000 minerals
on the Earth; stage-5 (>>3.0 Gy) due to the global scale process of plate tectonics, the number of
minerals probably increased to about 1500 on the Earth; stage-6 (3.9 to 2.5 Gy) anoxic biological process
started to have an effect on surface minerals, formation of deposits of carbonates, sulfates, evaporites,
and banded iron. There were about 1500 minerals on the Earth; stage-7 (2.5 to 1.9 Gy) “great oxidation
event” due to rise in oxygen >1% than modern atmosphere; probably 70% of minerals are due to the
changes in atmosphere and oceans. As a result of the new oxidation state of metals, hundreds of
new minerals were formed. There were >4000 minerals on the Earth; stage-8 (1.9 to 1.0 Gy) because
of changes in the oceans the production of banded iron formation ends, there were >4000 minerals
on the Earth; stage-9 (1.0 to 0.542 Gy) during this stage, the diversity of minerals did not change,
dramatic changes in the climate and several snowball events occurred; stage-10 (0.542 to present)
due to living beings, shells, teeth, and bones, as well as organic minerals, are produced. There are
>4300 minerals on the Earth [69,70]. Table 1 presents a few examples of minerals used in experiments for
adsorption, polymerization, and chiral selection of amino acids. Among the minerals shown in Table 1,
montmorillonite is the most commonly used in prebiotic experiments [2,4,5,67]. Montmorillonite
belongs to the dioctahedral smectite group of phyllosilicates [71]. There are several reasons to use this
mineral for prebiotic chemistry, such as being widespread on Earth, their high surface area and cationic
exchange capacity-CEC, and their interlayer with cations and transition metals as contaminants (Fe2+,
Fe3+, Cu2+, Ni2+, Co2+, and so on). These characteristics give montmorillonite the necessary properties
to be used as a preconcentrator of molecules and catalyst of polymer formation.

Table 1. Minerals used for the adsorption, polymerization, and chiral selection of amino acids.

Adsorption

Mineral Experiment Reference

akaganéite Amino acids dissolved in water pH between 3.0
and 7.6 (Gly, Ala, Ser, His Phe) Holm et al. [72]

apatite Amino acids dissolved in water or aqueous
solution of Ca2+ or PO4

3− (Ala, Asp, Lys) Tanaka et al. [73]

bentonite/kaolinite
Amino acids dissolved in artificial seawater
were tumbled for 24 h, at pH 3.0, 6.0 and 8.0.

(Ala, Met, Gln, Cys, Lys, His)
Benetoli et al. [74]

ferrihydrite

Aqueous solution of amino acids, at room
temperature, pH 5–6, samples turned (35 rpm)

for 24 h or 1 week (Gly, Ala, β-Ala, Aib,
-aminobutyric acid, isovaline)

Matrajt and Blanot, [75]

goethite Amino acids dissolved in salt solutions (Gly,
Ala, β-Ala) Farias et al. [76]

goethite Amino acids dissolved in 0.01 and 0.1 mol L-1
of NaCl (sarcosine, H2MIDDA, H2EDDA) Norén et al. [77]

hematite Amino acid dissolved in water (Ala) Pandey et al. [78]

Kaolinite/hectorite Aqueous solutions (Ala) Silva et al. [79]

magnetite
Aqueous solution of amino acids, at room

temperature, pH 6, shaking for 24 h (Gly, Ala,
Cys, Glu, His, Lys, Ser)

Schwaminger et al. [80]

montmorillonite
Amino acids dissolved in artificial seawater
were tumbled for 24 h, at pH 3.0, 6.0 and 8.0.

(Gly, Ala, β-Ala)
Farias et al. [81]

montomorillonite Amino acid dissolved in water at pH from 2.0
to 11.0 (Gly) Ramos and Huertas, [82]
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Table 1. Cont.

Adsorption

Mineral Experiment Reference

montmorillonite Amino acid dissolved in distille water, pH
ranges 3.5–5.5 and 6.8–9.2 (Gly, Ala) Kalra et al. [83]

montmorillonite/beidellite Clays were modified with Na, Ca and Cu and
amino acid was adsorbed and desorbed (Gly) Benincasa et al. [84]

montmorillonite/kaolinite

Amino acids dissolved in water were mixed for
2, 4, 24 and 48 h, at pH 6.0, 6.9 and 8.4 (Gly, Ala,
Asp, Glu, Thr, Ser, Val, Met, Ile, Leu, Tyr, Phe,

His, Lys, Arg).

Hedges and Hare, [85]

montmorillonite/illite Aqueous solutions of amino acids (Gly, Ala,
β-Ala, Leu, Ser, Asp, Glu, Phe, Arg, His, Lys) Greenland et al. [86,87]

pyrite
Adsorption study using atomic force

microscope (Gly, di-Gly, tri-Gly, penta-Gly, Lys,
poly-Lys, Glu, poly-Glu)

Afrin et al. [88]

pyrite Amino acids were dissolved in 5.0 mmol L-1 of
NaCl with and without Fe2+ (Gly, Ala, Ser, Cys) Bebié and Schoonen, [89]

sand (sea) Aqueous solutions of amino acid tumbled for
24 h at room temperature (Ala, Glu, Tyr, Lys) Zaia et al. [90]

silica/alumina Adsorption study using RMN (Gly) Lopes et al. [91]

zeolite Aqueous or saline solutions of amino acids
(Phe, Arg) Krohn and Tsapatis, [92]

Polymerization

Mineral Experiment Reference

apatite Aqueous solution in the presence of CDI (Glu,
cGlu) Hill Jr. and Orgel, [93]

Bentonite/pyrite/
aragonite/sphalerite/

calcite/zeolite

Aqueous solutions heated at 170 ◦C, for 30, 90
and 240 min, at pH 7.0 (Ala) Kuwamura et al. [94]

ferrihydrite Aqueous solution or dry mixture heated at 95
◦C for 24 h or 1 week (Gly, Ala) Matrajt and Blanot, [75]

Goethite/akaganéite/hematite/zinc
oxide/titanium dioxide

Dry mixture of minerals and amino acids
heated at 50, 90 or 120 ◦C, from 1 to 35 days

(Gly, Ala).
Shanker et al. [95]

Kaolinite/hectorite Heating of dry mixtures of amino acid and
mineral at 160 ◦C, 270 ◦C, 280 ◦C. (Ala) Silva et al. [79]

Kaolinite/zeolites Aqueous solution heated (100–150 ◦C) for 9 to
85 h (Gly) Zamaraev et al. [96]

kaolinite Wet/dry microwave cycles (Gly, Val, Leu, Ser,
Met, Phe, tri-Gly, hexa-Gly) Yanagawa et al. [97]

Kaolinite/silica/aluminum
hydroxide

Heating of dry mixtures of amino acid and
mineral at 145 ◦C (Gly) White et al. [98]

maghemite/hematite/akaganéite Amino acid was pre adsorbed on iron oxides,
the material was dried and after heated (Gly) Georgelin et al. [99]

montmorillonite Heating of dry mixtures (Gly, Arg) Bu et al. [100]

montmorillonite Wet/dry cycles (Arg, Glu) Jaber et al. [101]

montmorillonite
Wet/dry cycles (Gly) Bujdák et al. [102]

Wet/dry cycles (Gly, Ala) Bujdák et al. [103]

Montmorillonite/hectorite/
silica/alumina

Wet/dry cycles (Ala, Ala + Gly, Ala + Gly2, Ala
+ cyc-Gly2) Bujdák and Rode, [104]

Montmorillonite/kaolinite Dry samples with Zn2+, Mg2+, ATP plus amino
acid (Gly)

Rishpon et al. [105]

Olivine plus orthpyroxene Amino acids heated at 30–100 ◦C for 147 days
at 200 bar (Gly, Ala, Glu, Val, Ser, Asp) Takahagi et al. [106]

sand (sea)
Dry samples of amino acids heated at 175 ◦C,

for 1.5 h (several mixtures of amino acids
mainly Gly)

Rohlfing and McAhaney, [107]
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Table 1. Cont.

Polymerization

Mineral Experiment Reference

silica Adsorption of amino acids onto silica and
heating the solid at 160 ◦C, 30 min. (Leu, Glu) Bedoin et al. [108]

Silica
Amino acid was pre adsorbed on silica, the

material was dried and after heated (Glu, Leu,
Asp, Val)

Sakhano et al. [109]

silica Amino acid was pre adsorbed on silica, the
material was dried and after heated (Gly) Meng et al. [110]

Chiral Selection

Mineral Experiment Reference

allophane Selective adsorption (Ala, Ala-Ala) Hashizume et al. [111]

apatite Polymerization of NCA-amino acids (Glu) and
adsorption of the polymers Hitz and Luisi, [112]

bentonite Selective adsorption (Leu, Asp) Bondy and Harrington, [113]

calcite Molecular simulation of adsorption (Ala) Asthagiri and Hazen, [114]

calcite Selective adsorption (Asp) Hazen et al. [115]

kaolinite High rate of polymerization of L-amino acids
(Asp, Ser) Jackson, [116]

montmorillonite Selective adsorption and deamination (Asp,
Glu) Siffert and Naidja, [117]

quartz Molecular simulation of adsorption (Ala) Pauzat et al. [118]

quartz Polymerization of NCA-amino acids (Trp, Leu,
Ile) and adsorption of the polymers Hitz and Luisi, [112,119]

quartz Adsorption of amino acids on L- and D-quartz
(L-, D-Ala) Bonner et al. [120]

vermiculite (modified) Selective adsorption (Ala, Lys, His) Fraser et al. [121,122]

CDI-1-1′-carbonyldiimidazole, cGlu-L-γ-carboxyglutamic acid, NCA-N-carboxyanhydride, Aib-aminoisobutyric acid.

The data shown in Table 1 leave no doubt that minerals can preconcentrate and polymerize
amino acids, and can even make a chiral separation of some of them. However, a few remarks about
the data shown in Table 1 are necessary. In general, all adsorption experiments were performed in
distilled water or saline solution, thus, the effect of salts of seawater remains unknown. Since most
amino acid adsorption experiments were performed separately, the interactions among amino
acids and the effects of amino acid competition for mineral adsorption sites are also unknown.
The polymerization experiments were mostly performed by heating solid mixtures or wet/dry cycles
or with polymerizing agents. The effect of salts on the polymerization has not been studied. Thus,
we do not know the effect of salts on the activity of the water and, consequently, on the polymerization
of amino acids.

However, as pointed out before, the problem that we need to solve is: are minerals capable of
forming peptides with all or at least with most amino acids being proteic and L-chiral? In addition,
if these peptides have enzymatic activity, we will be halfway to fitting more pieces into the origin
of life’s jigsaw. Unfortunately, as pointed out above, this problem has always been thought of as a
compartmentalized one, and we have no data on whether minerals can solve it. In the next section,
we will discuss several suggestions for experiments that could better help us to understand the role
played by minerals in the origin of peptides.

5. A Few Suggestions for Experiments

In this section, we are going to make a few suggestions as a guide for experiments that could
shed some light on how minerals participated in the formation of peptides with high amounts of
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L-amino acids and PAAs. Nowadays, we are used to seeing living beings as perfect “machines” where
all “gears” fit and work perfectly. However, the first peptides did not only need to contain L-amino
acids and PAAs, they also needed to show some advantages over randomly synthesized peptides. It is
probable minerals are the right choice to do this job, because, as pointed out before, minerals are not
very selective, but have some selectivity.

5.1. Environments for Adsorption and Polymerization of Amino Acids

First, let us choose the locations where the amino acids could be preconcentrated and the polymers
synthesized. Hydrothermal vents are widespread on today’s Earth, and were probably more common
4.0 billion years ago. Hydrothermal vents or places near them seem to have several advantages
over other environments: temperature and pH gradients, transition metals to catalyze reactions,
protection against UV radiation, synthesis of several molecules including amino acids, and various
minerals [14,53,60,65,72,123]. In addition, the sedimentary material between the oceanic crust and
seawater could have played an important role in the preconcentration of biomolecules, synthesis of
biomolecules, and increase in the complexity of the biomolecules (polymers) [124]. Thus, minerals in
hydrothermal vents have all the conditions to preconcentrate and polymerize amino acids.

The pH of seawater on the prebiotic Earth was around 7.00 [125,126], and in hydrothermal vents
the pH could reach 2.0–3.0 (black smokers) or 9.0–11.0 as in the Lost City hydrothermal field [65].
However, near hydrothermal vents, when the temperature is below 150 ◦C, the pH is close to 6.0 [127].

Table 2 shows the major cation and anion composition of several types of seawater used in prebiotic
experiments. Based on the work of Halevy and Bachan, [125], Samulewski et al. [66], suggested
seawater with high concentrations of Ca2+ and Cl−. This seawater probably better resembles the
composition of major cations and anions of seawater of Earth 4.0 billion years ago. Another seawater
that could be used is that suggested by Zaia [67], based on the work of Izawa et al. [128]. This seawater
has a high concentration of Mg2+ and SO4

2−
, although several doubts can be raised, mainly regarding

the high concentrations of SO4
2− on prebiotic Earth [129–131]. However, Mars has high concentrations

of Mg2+, Ca2+
, and SO4

2− in its soils [132]. Thus, these results could help us to understand the
formation of polymers in ancient lakes of Mars. Why is it so important to add salts for experiments of
adsorption and polymerization of amino acids? Water promotes the hydrolysis of organic molecules,
and due to its high activity, the polymerization of amino acids is thermodynamically unfavorable [5].
However, salts of seawater change the water activity, lowering it. In the pores of minerals, water binds
to salts and minerals, changing its activity [133]. Thus, salts change everything. Naturally, someone
could suggest a different composition for seawater, or use a different concentration of salts to those
shown in Table 2.

Another environment that we could choose is wet/dry cycles. Although most of prebiotic Earth
was covered by water [57], this environment should not be ruled out because of the potential it
demonstrated for amino acid polymerization, as shown in several works from the Rode group and
others [97,101–104,134]. Campbell et al. [134] suggested performing wet/dry cycles using the deliquesce
of the salts. According to these authors, using this property of salts, it would not depend on rains or
flooding to supply the water to reactional system. Furthermore, one of the salts that show the highest
deliquesce (CaCl2) appears in high concentrations in the seawater suggested by Samulewski et al. [66]
(Table 2). In hydrothermal hot springs, wet/dry cycles occur, besides the polymerization of biomolecules,
Damer and Deamer [135,136] pointed out the high potential of these environments for the formation of
protocells from amphiphilic molecules. Thus, experiments involving amphiphilic molecules could
be considered.

Hydrothermal vents and wet/dry cycles are very different from each other and could provide
important insights into how L-amino acids and PAAs were selected from a wide variety of amino acids
that could exist on prebiotic Earth.



Symmetry 2020, 12, 2046 10 of 23

Table 2. Suggested compositions for artificial seawaters.

Name Composition of Seawater (g L−1)

� hydrothermal seawater * NaCl (37.05 g), KBr (0.310 g), ** KI (0.010 g), ** NH4Cl (0.610 g), ** SrCl2 6H2O
(0.040 g), CaCl2 2H2O (6.26 g), KOH (1.07 g), NaOH (0.200 g),

� seawater * CaCl2 2H2O (34.12 g), MgCl2. 6H2O (10.35 g), KBr (0.268 g), NaCl (19.90 g), **
KI (0.006 g), ** NH4Cl (0.273 g), ** SrCl2 6H2O (1.205 g), Na2SO4 (0.333 g)

�� prebiotic seawater * Na2SO4 (0.271 g), MgCl2.6H2O (0.500 g), CaCl2 2H2O (2.50 g), KBr (0.050 g),
K2SO4 (0.400 g), MgSO4 (15.00 g)

��� seawater NaCl (27.18 g), MgCl2. 6H2O (50.81 g), MgSO4 (14.45g), K2SO4 (1.01 g),
Na2CO3 (0.127 g),

r ancient calcite seawater NaCl (32.73 g), MgCl2. 6H2O (9.15 g), CaCl2 2H2O (8.08 g), Si (2.2 mmol L−1)
r ancient aragonite

seawater NaCl (32.73 g), MgCl2. 6H2O (2.03 g), CaCl2 2H2O (3.53 g), Si (2.2 mmol L−1)

rr seawater NaCl (29.23 g), MgCl2. 6H2O (10.16 g)
rrr seawater CaCl2 2H2O (29.40 g), MgCl2. 6H2O (0.95 g), KCl (1.49 g), NaCl (1.17 g)

� Hydrothermal seawater/seawater and �� prebiotic seawater were suggested by Zaia [67] and these recipes are based
on the work of de Ronde et al. [137] and Izawa et al. [128], respectively. * Each salt should be added in the order as
they are shown. ��� Seawater suggested by Winter and Zubay [138]. r Seawater suggested by Jones et al. [139].
rr Seawater suggested by Pedreira-Segade et al. [140]. rrr Seawater suggested by Samulewski et al. [66], based on
the work of Halevy and Bachan [125]. ** These substances should be added after experiments without them were
carried out.

5.2. Suggested Minerals for the Adsorption and Polymerization of Amino Acids

Second, let us choose the minerals—naturally, we have to choose minerals that existed before
life arose on Earth. For reasons explained before, montmorillonite is a good choice [2,4,5,67].
The comparison of the results obtained in these experiments with montmorillonite with the existing
results could provide several clues about how the amino acids were selected and polymerized.

Iron plays important roles in today’s living beings and was also found on prebiotic Earth [69,141].
However, iron stands out not only for its importance for living beings, but mainly for being the fourth
most abundant element in the crust of the Earth [69]. Before the “great oxidation event” meaning the
increase in the oxygen level in the atmosphere, most of the iron on the Earth was as Fe◦ or Fe2+ [69].
The most common minerals containing Fe◦/Fe2+ were olivine, pyroxine, Fe-Ni-metal, and pyrite [69].
In the seas of the prebiotic Earth, three main sinks of Fe2+: carbonate (CO3

2−), dissolved silica (SiO2)
and sulfide (S2−) existed, that produced siderite (FeCO3), greenalite (Fe3Si2O5(OH)4), and pyrite (FeS),
respectively [142].

As pointed out above, iron is an abundant element in the crust of the Earth, therefore, we can
wonder whether minerals containing iron may have had an important role in the origin of life.
Among the minerals containing iron, magnetite, an iron oxide that is synthesized in hydrothermal
vents by serpentinization reaction [65], is a good candidate to be used in these experiments. There are
several reasons to choose this mineral: widespread, high pH of point zero of charge-pHpzc, catalyst for
chemical reactions, and iron forms complexes with amino acids [143].

There are other iron hydroxide-oxides that should be considered in these experiments, although
most researchers do not consider them as prebiotic minerals. However, the Bassez group has shown
that Fe2+ could be oxidized to Fe3+ without UV radiation or oxygen. According to Bassez, Fe3+ could
be formed under conditions using pressures ranging from 10 to 25 MPa, temperatures ranging from
300 to 350 ◦C, and pH values ranging from 9.5 to 14 (see references in Bassez [144]. Hydrothermal
vents present these conditions [65,123]. Among the iron hydroxide-oxides, ferrihydrite, a precursor for
several iron oxides, has the highest surface area. Thus, this property makes ferrihydrite an interesting
mineral to test these hypotheses.
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Zeolites are minerals that could probably have played important roles in the origin of life. Zeolites
have a very interesting property; the hydrophilic/hydrophobic character of zeolites depends on Si/Al
ratios [145]. This property could be used for the adsorption of amino acids with uncharged R-groups.

There are other minerals that could be used in these experiments, such as: quartz, silica, olivine,
and pyrite.

Table 3 shows the surface area and pH at the point of zero charge (pHpzc) of the suggested minerals.
These two parameters are very important for the following discussion.

Table 3. Surface area and pH at the point of zero charge (pHpzc) of minerals.

Name pHPZC
Surface Area

(m2 g−1)
References

ferrihydrite 6.4–8.5 200–400 Zaia et al. [146]; Cornell and Schwertmann [147]

magnetite 6.2–7.8 4–100 Samulewski et al. [66]; Schwaminger et al. [80];
Kosmulski [148]; Cornell and Schwertmann [147]

montmorillonite 1.8–3.0 38–500 Theng [71]; Macht et al. [149]; Wang and Lee [150];
Hedges and Hare [85]; Greenland et al. [86]

zeolite negative 360–700 Carneiro et al. [151]; Lambert [5]; Krohn and Tsapatis [92]

5.3. Suggested Amino Acids for the Adsorption and Polymerization

Third, let us choose the amino acids. Among hundreds of amino acids, which criteria will we
use to choose just a few of them? We are going to use a very simple criterion, to be chosen, the amino
acid must have been synthesized in an experiment simulating a terrestrial or interstellar environment
(ISM) or have been found in meteorites. Using the data collected by Zaia et al. [11], we can assemble a
small set of amino acids to be used in the experiments (Table 4). The data presented in Table 4 will help
to predict which amino acids will be more able to adsorb on a given mineral and provide us with a
parameter to choose the proportion that each amino acid should have in the mixture.

It should be noted that experiments simulating Earth’s environments presented more PAAs than
non-PAAs (Table 4). In addition, in experiments simulating ISM environments or meteorite analyses,
many more non-PAAs than PAAs were presented (Table 4). Could this mean that endogenous amino
acids were more important than exogenous amino acids for the origin of life? In addition, could this
mean that life originated on Earth?



Symmetry 2020, 12, 2046 12 of 23

Table 4. Amino acid dissociation constants, amino acids produced in experiments simulating Earth’s
environments and interstellar environment (ISM) or found in meteorite analyses and relative abundance
of them.

Amino Acids Produced in Environments Simulating Those of Earth

* Amino Acid pKa of -COOH Group pKb -NH3 Group pKx R-Group pI

Glycine
[1.00] 2.31 9.24 - 5.77

Alanine
[0.300–2.00] 2.47 9.48 - 5.98

β-Alanine
[0.050–0.300] 4.08 10.31 6.95

Isoleucine
[0.050–0.300] 2.79 9.59 - 6.19

Valine
[0.050–0.300] 2.72 9.60 - 6.16

Serine
[0.020–0.150] 2.03 8.93 15.17 5.70

Glutamic acid
[0.020–0.150] 1.88 9.54 4.27 2.70

Proline
[0.020–0.150] 1.94 11.33 - 7.12

Aspartic acid
[0.020–0.150] 1.70 9.61 5.11 3.41

α-Amino-n-butyric acid
[0.020–0.150] 2.62 9.53 - 6.08

Leucine
[0.010–0.050] 2.79 9.52 - 6.15

Phenylalanine
[0.010–0.050] 2.47 9.45 - 5.96

Threonine
[0.010–0.050] 2.21 9.00 - 5.60

Cysteine
[0.010–0.050] 2.35 9.05 10.17 5.68

Methionine
[0.010–0.050] 2.53 9.50 - 6.02

Arginine
[0.010–0.050] 2.41 9.12 12.41 10.77

Lysine
[0.010–0.050] 2.74 9.44 10.29 9.82

Histidine
[0.010–0.050] 1.85 9.44 6.61 8.02

γ-Amino-n-butyric acid
[0.010–0.050] 4.53 10.22 – 7.09
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Table 4. Cont.

Amino Acids Produced in Environments Simulating ISM or Found in Meteorites

** Amino Acid pKa of -COOH Group pKb -NH3 Group pKx R-Group pI

Glycine
[1.00] 2.31 9.24 - 5.77

Aminoisobutyric acid
[0.500–3.00] 2.58 9.72 - 6.15

β-Alanine
[0.500–1.500] 4.08 10.31 6.95

γ-Amino-n-butyric acid
[0.500–1.500] 4.53 10.22 - 7.09

Alanine
[0.500–1.500] 2.47 9.48 - 5.98

Glutamic acid
[0.500–1.000] 1.88 9.54 4.27 2.70

Serine
[0.500–1.000] 2.03 8.93 15.17 5.70

Isovaline
[0.500–1.000] 2.68 9.78 - 6.23

Aspartic acid
[0.200–0.800] 1.70 9.61 5.11 3.41

β-Amino-n-butyric acid
[0.200–0.800] 4.22 10.53 - 7.22

α-Amino-n-butyric acid
[0.100–0.300] 2.62 9.53 - 6.08

Valine
[0.100–0.300] 2.72 9.60 – 6.16

Non- protein amino acids (PAAs) are in red, PAAs in black. The pKa, pKb, pKx and pI values of amino acids
were obtained from Chemicalize site, [152]. * Amino acids were placed in the same decreasing order of relative
abundance obtained from experiments simulating atmospheres, hydrothermal and other environments as described
by Zaia et al. [11], at Table 8. ** Amino acids were placed in the same decreasing order of relative abundance
obtained from experiments simulating ISM and meteorite analyses as described by Zaia et al. [11], at Table 8.
The values between [ ] are the relative abundances taking glycine as 1.00 (Zaia et al. [11]).

5.4. Experiment

5.4.1. General Comments

These experiments are suggested to test Ikehara’s GADV-hypothesis [43–45]. Ikehara’s
GADV-hypothesis is an elegant and simple hypothesis that the first peptides were composed of
four amino acids. This hypothesis takes for granted that the peptides on prebiotic Earth were composed
of a high concentration of the following amino acids: glycine, alanine, aspartic acid, and valine.
However, as pointed out several times before, the prebiotic seas could have contained a huge variety of
molecules that could be adsorbed by minerals and a large variety of peptides that could be synthesized.
We should never forget the problem raised by Schwartz [58], in his article “Intractable mixtures and the
origin of life”.

A set of experiments was designed to verify if Ikehara’s GADV-hypothesis stands with a mixture
of amino acids (Table 5). There are four experiment sets, two named GADV and two named GADV
plus amino acids. All experiments should be first performed with L-amino acids and, subsequently,
with L-/D-amino acids. The main goal of GADV experiments is to test if the set of Ikehara’s amino
acids produces peptides and the size of these peptides. For aspartic acid, the relative abundance of
amino acids from endogenous sources is five times less than from exogenous sources. The GADV plus
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amino acids mixture, as well as the amino acids suggested by Ikehara, contains protein and non-PAAs
(Table 5). For all experiments, the relative abundances of amino acids were the same as suggested by
Zaia et al. [11].For the experiments with GADV plus amino acids set (Table 5), several amino acids
that appear in Table 4 did not appear in the endogenous/exogenous amino acid mixtures (Table 5).
For the endogenous mixture, from lysine, arginine, and histidine, lysine was chosen because of its high
solubility when compared to the others [152]. In addition, other amino acids that appear in Table 4,
did not appear in the mixture (Table 5) for two reasons: (1) to simplify the analysis of the obtained
peptides; and (2) all R-groups are present in the mixtures.

Table 5. Experiment-Testing Ikehara’s GADV-hypothesis.

GADV GADV Plus Amino Acids

Endogenous
Sources

Exogeneous
Sources Endogenous Sources Exogeneous Sources

Amino acid
proportion

Gly [1.00]/Ala
[2.00]/Val

[0.300]/Asp [0.150]

Gly [1.00]/Ala
[1.50]/Val

[0.300]/Asp [0.800]

Gly [1.00]/Ala [2.00]/β-Ala
[0.300]/Val [0.300]/Asp

[0.150]/α-ABA [0.150]/Phe
[0.050]/Lys [0.050]/γ-ABA [0.050]

Gly [1.00]/AIB [3.00]/γ-ABA
[1.50]/β-Ala [1.50]/Ala
[1.50]/IsoVal [1.00]/Asp

[0.800]/β-ABA [0.800]/Val
[0.300]/α-ABA [0.300]

Seawater composition

Seawater (Zaia, [67]) Samulewski et al. [66]

Na2SO4 (0.271 g), MgCl2.6H2O (0.500 g), CaCl2 2H2O
(2.50 g), KBr (0.050 g), K2SO4 (0.400 g), MgSO4 (15.00 g) CaCl2 2H2O (29.40 g), MgCl2. 6H2O (0.95 g), KCl (1.49 g), NaCl (1.17 g)

Hydrothermal conditions

The amino acids could be dissolved in distilled water and artificial seawater. The following minerals could be: montmorillonite,
magnetite, ferrihydrite, and zeolite Temperature100–150 ◦C, pH 6.00–7.00, and heating time 24 h.

Wet/dry cycles conditions

The amino acids could be dissolved in distilled water and artificial seawater. The following minerals could be: montmorillonite,
magnetite, ferrihydrite, and zeolite. Wet phase temperature 60 ◦C and pH 6.00–7.00, dry phase temperature 100–150 ◦C for 24 h

Wet/dry cycles conditions (using deliquesce of the salts)

The amino acids could be mixed with the salts of artificial seawater [67] and seawater [128]. Wet phase temperature 60 ◦C for 4 h,
dry phase temperature 100–150 ◦C for 20 h

In red non-PAAs, Gly-glycine, Ala-alanine, Val-valine, Asp-aspartic acid, Phe-phenylalanine, Lys-lysine,
ABA-Amino-n-butyric acid, AIB-Aminoisobutyric acid, IsoVal-isovaline.

For all experiments, the amount of adsorbed amino acids on the surface of the minerals should be
measured, because this could provide clues about the amino acid composition of the peptides.

As the experimental conditions suggested in this article could be considered narrow (Table 5),
readers may want to use other reaction conditions: temperature, pH, different artificial seawater,
and different minerals. However, it is important to use the set of amino acids described in Table 5.
I would like to suggest the following conditions: <pH 4.0 or >pH 9.0, variation in the total concentrations
of salts used in the artificial seawater (10%, 50%, and 150% of that suggested in Table 2), and the
minerals olivine, pyrite, and silica.

5.4.2. Hydrothermal Experiments

For hydrothermal experiments, a pH range from 6.0 to 7.0 is recommended (Table 5), because at this
range of pH, the pHpzc of magnetite and ferrihydrite are positively charged and montmorillonite and
zeolite are negatively charged (Table 3). In addition, this range of pH is above the ip (isoelectric point)
of most of the amino acids (Table 4). Thus, magnetite and ferrihydrite could adsorb more aspartic
acid and those amino acids whose ip is below the pH range. Montmorillonite and zeolite could
adsorb more lysine and amino acids whose ip is above of the pH range [4]. Table 3 does not specify
which type of zeolite could be used in the experiments. Using the property of zeolites that the
hydrophilic/hydrophobic character depends on Si/Al ratios [145], it is possible to design experiments
to obtain peptides with different proportions of R-groups of amino acids.
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The temperature (100–150 ◦C) suggested for hydrothermal experiments should be enough for
the peptide formations on the surface minerals, as well as in solution (Table 5) [106]. In addition,
we should remember that the salts of seawater change the water activity, facilitating the formation
of polymers [133]. However, the temperature could cause degradation of the amino acids and
peptides. According to theoretical calculations performed by Kitadai [153] non-PAAs are more stable
than PAAs. This could cause the obtention of peptides with a higher proportion of non-PAAs. However,
Kitadai [153] did not take the role of salts and minerals into account in his calculations.

Suggestions for Experimental Procedures

The following experimental suggestions could be helpful: (a) determine the adsorption and
desorption of individual amino acids and each set at room temperature, (b) polymerize only the adsorbed
amino acids, (c) polymerize the adsorbed amino acids plus amino acids in solution, (d) determine
the stability in solution of each amino acid and the sets of amino acids at the chosen temperature,
(e) determine the stability of the adsorbed peptides and peptides in solution, (f) always use a seawater,
and (g) add transition metals to the seawater (Cu2+, Fe2+, Fe3+, Ni2+, Zn2+).

5.4.3. Wet/Dry Cycle Experiments

For wet/dry cycle experiments, the temperature of 60 ◦C is suggested for the wet phase of
the cycle and for the dry phase of the cycle the same range used for hydrothermal experiments
(Table 5). For wet/dry cycles, it is important to perform the experiments in distilled water and low
salt concentrations because, probably, small lagoons of prebiotic Earth contained a low amount of
dissolved salts. The peptides will not be synthesized in the wet phase of the cycle, because of the low
temperature and time to dry the sample. However, the temperature range suggested for the dry phase
of the cycle is more than enough to remove all the water, promoting the formation of the peptide bond.
The pH range suggested is the same as for the hydrothermal experiments, and, thus, the observations
made for the hydrothermal experiments will be valid for the wet/dry cycles. As described above,
usually in wet/dry cycles, the water is supplied to the system by adding it. However as suggested by
Campbell et al. [134] various salts can remove water from the atmosphere, forming a liquid solution.
Thus, we also suggested a few experiments using this propriety of the salts (Table 5). The hypothesis
of Damer and Deamer could be tested experimentally, so amphiphilic molecules could be added to a
reactional system [135,136]. In Table 5, we do not suggest any experiment, but it would be interesting
to verify if the protocells make a selection of some type of specific peptides.

Suggestions for Experimental Procedures

For using the traditional methodology of wet/dry cycles, the following experimental suggestions
could be helpful: (a) perform wet/dry cycle experiments using a low amount of salts and distilled water,
(b) adsorb each amino acid or amino acid set and heat the dry solids at the temperature recommended
for the dry phase, (c) consider the possibility of working with mineral mixtures, and (d) add transition
metals to the mixture (Cu2+, Fe2+, Fe3+, Ni2+, Zn2+).

For using the deliquesce propriety of the salts, the following experimental suggestions could
be helpful: (a) perform wet/dry cycles using a salt mixture that resembles the composition of the salts of
seawater of the prebiotic Earth, (b) perform experiments using only dry samples, and (c) add transition
metals to the mixture (Cu2+, Fe2+, Fe3+, Ni2+, Zn2+).

6. What Should We Expect from These Experiments?

Naturally, we expect to obtain peptides whose composition contains only PAAs and L-amino acids.
However, we should always keep in our mind that these peptides do not need to be “perfect”, meaning
they would contain only PAAs and L-amino acids. They just need to show some advantages over
peptides synthesized randomly. There are two environments of prebiotic Earth in which peptides
can be synthesized: (a) hydrothermal vents and (b) solid state heating. In hydrothermal vents the
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formation of peptides occurs, because of the heat generated in these environments and because they
also contain minerals and transition metals. When mixtures of amino acids plus minerals are heated in
solid state, the formation of peptides occurs because of the elimination of water. Thus, using these two
environments, we should figure out one way to obtain peptides, at least, with a high amount of PAAs
and L-amino acids. In view of previous work that shows that minerals can adsorb amino acids and
catalyze the formation of peptides and even make the chiral selection of some them (Table 1), there is a
reasonable possibility that these experiments can at least obtain peptide sets with a high concentration
of PAAs and L-amino acids. However, among several sets of peptides containing L-, D-amino acids,
and non-PAAs and PAAs, how did molecular evolution select a few peptide sets containing high
amounts of PAAs and L-amino acids? It may be that this selection occurred not for one reason, but for
several reasons, such as: peptides with L-amino acids are more stable than peptides with D-amino
acids [52]; PAAs condense more extensively than non-PAAs [40]; peptides with PAAs are more stable
than peptides with non-PAAs [42]; hydrothermal vents with high salt concentrations need a specific
set of amino acids for protein folding to occur [48]; the high concentration of glycine, a non-chiral
amino acid on the prebiotic Earth [11]; the higher concentration of PAAs compared to non-PAAs on
prebiotic Earth [11]; β- or γ-amino acids cannot self-assemble to N-phosphopeptides [47]; a small
enantiomeric excess, due to the contribution of amino acids from exogenous sources [15–17,61]; or even
an unknown reason. Indeed, what we are suggesting is that without any RNA world or even a pre
genetic world a combination of several of these properties of peptide formation could result in peptide
sets with more similarity to modern proteins. Finally, a lot more experimental work is necessary to
establish how this important step in molecular evolution occurred.
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