
symmetryS S

Article

Kramers Degeneracy and Spin Inversion in a Lateral
Quantum Dot

Konstantin Pichugin 1, Antonio Puente 2 and Rashid Nazmitdinov 3,4,*
1 Kirensky Institute of Physics, Federal Research Center KSC Siberian Branch, Russian Academy of Sciences,

660036 Krasnoyarsk, Russia; knp@tnp.krasn.ru
2 Departament de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain; toni.puente@uib.es
3 Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia
4 Faculty of Natural and Engineering Science, Dubna State University, 141982 Dubna, Russia
* Correspondence: rashid@theor.jinr.ru

Received: 19 October 2020; Accepted: 8 December 2020; Published: 10 December 2020
����������
�������

Abstract: We show that the axial symmetry of the Bychkov–Rashba interaction can be exploited
to produce electron spin-flip in a circular quantum dot, without lifting the time reversal symmetry.
In order to elucidate this effect, we consider ballistic electron transmission through a two-dimensional
circular billiard coupled to two one-dimensional electrodes. Using the tight-binding approximation,
we derive the scattering matrix and the effective Hamiltonian for the considered system. Within this
approach, we found the conditions for the optimal realization of this effect in the transport properties
of the quantum dot. Numerical analysis of the system, extended to the case of two-dimensional
electrodes, confirms our findings. The relatively strong quantization of the quantum dot can make
this effect robust against the temperature effects.
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1. Introduction

Spin-polarized transport in semiconductor nanostructures attracts a continuous experimental
and theoretical attention due to great interests for both basic research and device applications (see for
a review [1–3]). Indeed, apart fundamental aspects related to the origin of spin current in nanosystems,
the inversion of spin polarization is necessary, for example, for operation of spin-based logic elements.
The inversion of spin polarization can be achieved in an external AC field with the aid of the electron
spin resonance (see, for example, [4]), or by the lifting the spin degeneracy by means of a magnetic
field that induces the Zeeman splitting (e.g., [5]). The spin currents can be inverted also by mechanical
strain of a silicene [6]. Periodically rippled graphene can as well invert the polarized spin current,
by changing the electron flow direction through the system [7].

One of the main requirements for device operability is the efficient manipulation of spin-polarized
currents in a semiconductor structure. An additional condition for device applications is that
a polarized current should be generated by means of all-electrical methods. In particular, a remarkable
progress has been achieved in all-electrical injection from ferromagnetic contacts [8,9] and
(Ga,Mn)As [10]. Alternatively to the injection, a spin-orbit interaction (SOI) present in semiconductors
provides a natural mechanism to manipulate the spin (e.g., [11–14]). In particular, the electrical field,
caused by the structure inversion asymmetry of the heterostructure, gives rise to the Bychkov–Rashba
term [15,16]. The strength of this interaction can be controlled by means of an applied electric
field [17–19]. It should be mentioned that the Rashba interaction is one of the basic ingredients
in the physics of Majorana fermions [20–22]. This physics is based on two superconducting electrodes
electrically connected to a semiconductor nanowire with strong Rashba coupling, and a uniform
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magnetic field. The explosive activity in this direction includes among many proposals as well the use
of high-temperature cuprate superconductors [23] and exotic pairs of parafermions without magnetic
field [24] to create Majorana zero modes for quantum computing applications (e.g., [25–27]).

Several proposals rely on the SOI as the basic mechanism to achieve a spin filtering effect
in low-dimensional semiconductor structures [28–31]. In fact, it might allow for an all-electrical
spin-polarized current generation. The relatively small energy scale, produced by the SOI, presents,
however, a major obstacle for technological applications. Indeed, the spin splitting induced by the SOI
in typical semiconductor alloys can reach a few meV [17,18]. This scale stipulates certain restrictions
on the choice of nanosystems that would be enabled to overcome the impact of thermal effects.
It is well known that wide gap semiconductors (e.g., GaAs) possess a relatively weak spin-orbit
interaction. In contrast, narrow gap semiconductors own strong spin-orbit couplings as well as
g factors. These two factors guide the choice of most favorable materials, especially, in view of the
Majorana physics. The latter question is, however, beyond the scope of the present paper, and we
leave this problem for future. The main result of the present paper is that the symmetry of a circular
quantum dot can be used to obtain the robust mechanism to inverse z-component of spin-polarized
current for non-magnetic metallic contacts.

2. Symmetry of Rashba SOI

It is well known that the invariance of the SOI with respect to the time-reverse operation leads to
the Kramers degeneracy (e.g., [32]). Therefore, any system, where the SOI is the only spin-dependent
term, will exhibit this two-fold degeneracy. Explicitly, the time reversal symmetry is obtained by
inverting both spin and momentum operators. The resulting states, although degenerated in energy,
are distinguished by an opposite orbital motion and an opposite spin orientation.

To employ this fundamental feature, we consider a two-dimensional (2D) semiconductor quantum
dot (QD) with a circular confinement and the Rashba spin-orbit interaction. In the effective mass
approximation for the conduction band, the Hamiltonian can be written as Ĥ = ∑N

i=1 ĥi, with the
single-particle Hamiltonian taken in the form

ĥ = Ĥ0 + ĤR =
p̂2

x + p̂2
y

2m∗
+ Vext(r) + ĤR, (1)

where m∗ is the electron effective mass and Vext(r) is an external rotationally symmetric potential.
We consider the limit of the weak Coulomb interaction, when the external potential dominates in
electron properties (e.g., [33]). The Bychkov–Rashba interaction has the form: ĤR = α̃

(
p̂yσx − p̂xσy

)
/h̄.

The strength parameter α̃ depends strongly on the material, reaching its maximum value for narrow
gap III-V semiconductor alloys. For instance, typical values of α̃ = 10–40 meV × nm have been
experimentally determined for different InAs-based structures [28,29,34]. An important feature is that
the Bychkov–Rashba interaction preserves the axial symmetry, i.e.,

[
ĤR, Ĵz

]
= 0, where Ĵz = L̂z + ŝz.

Therefore, the full Hamiltonian obeys the conservation law
[
Ĥ, Ĵz

]
= 0.

In the dimensionless cylindrical coordinates r =
√

x2 + y2/d and φ = arctan(y/x) the
Hamiltonian (1) takes the form

ĥ = −∆ + V(r) + α

[(
0 e−iφ

−eiφ 0

)
∂

∂r

− i
r

(
0 e−iφ

eiφ 0

)
∂

∂φ

]
. (2)
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Here α = 2m∗α̃d/h̄2, ∆ = ∂2

∂r2 + 1
r

∂
∂r +

1
r2

∂2

∂φ2 is the Laplace operator, and the parameter d is
a characteristic length in our system. Since the eigenstates of the Hamiltonian (2) are eigenstates of the
Jz operator, they can be expressed in the following form

Φnj =

(
unj(r)ei(j−1/2)φ

vnj(r)ei(j+1/2)φ

)
, (3)

where n = 1, 2, ... and j = 1/2, 3/2, ... stand for radial and the angular momentum quantum numbers,
respectively. To simplify the eigenvalue problem, we represent the wavefunction (3) as a formal series
with respect to the strength of the spin-orbit interaction α

Φnj = ei(j−1/2)φ ∑
m

αm

(
um

nj(r)
vm

nj(r)e
iφ

)
. (4)

At m = 0 the wavefunction f 0
nj(r) is the radial part of the Shrödinger equation solution without

the spin-orbit interaction

− ∆ f 0
nj(r) + (Vext(r) +

(j− 1/2)2

r2 ) f 0
nj(r) = Enj f 0

nj(r) . (5)

We recall that the energy scale, produced by the effective external potential Vext(r), is larger than
that produced by the spin-orbit interaction (cf [35]). Therefore, it is enough to consider the expansion
of the wavefunction (4) up to the first order with the respect to the strength parameter. As a result,
we obtain two differential equations for the coefficients um

nj(r), vm
nj(r), at m = 1:(

2r( f 0
nj)
′ + f 0

nj)
)
(u1

nj)
′ + r f 0

nj(u
1
nj)
′′ = 0 , (6)

r2( f 0
nj)
′
(

4(v1
nj)
′ + 2

)
+ f 0

nj

(
r
(

2r(v1
nj)
′′ + 2(v1

nj)
′ − 2j + 1

)
− 4jv1

nj

)
= 0 (7)

The trivial solution of Equation (6) is u1
nj = 0, while we obtain v1

nj = r/2 to hold true Equation (7).
Thus, the approximate eigenfunctions of the Hamiltonian (2) to the first order in α can be written in
the form

Φnj ≈ f 0
nj(r)e

i(j−1/2)φ

(
1

−[αr/2]eiφ

)
. (8)

Below we will use this function to find the optimal conditions for the electron spin-flip
phenomenon in the QD.

3. Effective Hamiltonian Model

To analyze transport properties of the circular QD we employ the effective Hamiltonian
method [36,37]. According to this method, the scattering system is described by the Hamiltonian that
contains the structure with discrete spectrum (our QD), the continuum with the external scattering
states (external electrodes), and the interaction between continuum states with QD’s eigenstates.
Evidently, once the system is opened, the discrete states of QD’s own the widths, i.e., they transform to
resonance states. The main object in such an investigation is the scattering matrix that describes the
relation between the amplitudes of incoming states from electrodes and the amplitudes of the reflected
states from, or transmitted through the structure into electrodes.

One of the efficient approaches to reach reliable numerical results on ballistic transport through
mesoscopic system is based on the tight-binding model. Following [38] we model the scattering system
as a two-dimensional billiard with two attached 1D electrodes in the tight-binding representation
(see details in Appendix A). In this case, the scattering matrix that describes scattering from a channel
C′ to a channel C takes the form
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SCC′(E) = δCC′ − 2πiψ1
C(E)ψ1

C′(E)∑
mn

W∗nCFnm(E)WmC′ . (9)

Here, ψ1
C =

√
sin k

π – the wave function of a semi-infinite long electrodes (without the SOI) at the
contact point; E is the electron energy in the electrode in the 1D tight-binding model. The matrix F is

defined as F =
(

E− He f f (E)
)−1

, while the effective Hamiltonian has form

He f f
nm (E) = δnmεn − exp(ik)∑

C
WnCW∗mC . (10)

Here, the coefficients
WnC = Ψ∗n(r = rC) (11)

are the normalized eigenfunctions Ψn(r), corresponding to the eigenvalue εn of our structure; rC—the
coordinate of C-th electrode junction (see Figure A1 and discussion around it in Appendix A).
Note, that the index C denotes the electrode and as well the spin orientation.

Assuming a weak coupling of our structure with the external electrodes, let us consider a pair of
degenerate levels with energy εp = εp+1 ≈ E, i.e., near the energy E of a scattering electron. We assume
also a strong confinement potential Vext(r), that allows the neglecting of resonance overlapping for
the open system. As discussed above, the pair of corresponding eigenfunctions are time conjugated:
Ψp+1 = T̂ Ψp, where T̂ = −iσyK̂ is the time-reverse operator. As a result, the following relations
take place

Wp+1c↑ = −W∗pc↓, Wp+1c↓ = W∗pc↑. (12)

From this property it follows immediately that the effective Hamiltonian (10) is a diagonal matrix
due to the orthogonality condition ∑C W∗pCWp+1C = 0. Consequently, we obtain for the S-matrix
elements between two electrodes the following definitions:

Sc↑c′↑ = δcc′ − X(E)
(

Wpc↑W∗pc′↑ + W∗pc↓Wpc′↓
)

, (13)

Sc↑c′↓ = −X(E)
(

Wnc↑W∗pc′↓ −W∗pc↓Wpc′↑
)

, (14)

Sc↓c′↑ = −X(E)
(

Wnc↓W∗pc′↑ −W∗pc↑Wpc′↓
)

, (15)

Sc↓c′↓ = δcc′ − X(E)
(

Wpc↓W∗pc′↓ + W∗pc↑Wpc′↑
)

, (16)

where
X(E) =

2i sin k
E− εp + exp(ik)w2

p
. (17)

Here, we introduce the parameter

w2
p = ∑

c
|Wpc↑|2 + |Wpc↓|2. (18)

The resonant condition arises at the electron energy

Eres = εp − w2
p cos k, (19)

when the factor (17) reaches its maximal value 2/w2
p. Hereafter, we assume that the ballistic transport

occurs at the resonance energy (19). From Equations (13)–(16) it follows that

|Sc↑c↓|2 = |Sc↓c↑|2 = 0, (20)

|Sc↑c′↑|2 = |Sc↓c′↓|2, (21)

|Sc↑c′↓|2 = |Sc↓c′↑|2 . (22)
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There are a few remarks in order. First, it should be noted that Equations (20)–(22) lead us to the
fact that at the transport through our system from electrode c′ to c the spin polarization is

Pcc′ =
|Sc↑c′↑|2 + |Sc↑c′↓|2 − |Sc↓c′↑|2 − |Sc↓c′↓|2

|Sc↑c′↑|2 + |Sc↑c′↓|2 + |Sc↓c′↑|2 + |Sc↓c′↓|2
= 0 .

This result is in the agreement with the statement that a nonzero spin polarization in system with
the SOI cannot occur if there is only one open channel in electrodes [39,40].

Second, from Equation (20) it follows that the reflection coefficient with the spin-flip is always
zero. The reflection coefficient without the spin-flip can be rewritten as

Scσcσ = 1− X(E)
(
|Wpcσ|2 + |Wpcσ|2

)
, σ =↑, ↓ . (23)

Finally, without loss of generality, we assume the equal coupling of the QD’s states to both
electrodes (1 and 2). As a result, taking into account the definition (18), we have(

|Wp1↑|2 + |Wp1↓|2
)
=
(
|Wp2↑|2 + |Wp2↓|2

)
= w2

p/2 . (24)

Evidently, at the resonance energy (19) the reflection (23) becomes zero, and, consequently,
we obtain for the S-matrix

S(Eres) =

(
0 T†

T 0

)
, (25)

with 2× 2 matrix

T =

(
S2↑1↑ S2↑1↓
S∗2↑1↓ S∗2↑1↑

)
. (26)

From the unitarity of S matrix S†S = 1 it follows that T†T = 1. The spin-orbit interaction
converts a two-component spinor into another two-component spinor. In particular, it could change
the incoming spin up electron state | ↑〉 to the outgoing spin down electron state | ↓〉 and vice versa.
Consequently, to reach the ideal electron spin-flip phenomenon we require that the direct scattering
matrix elements (non-spin-flip components) should be equal zero: T11 = T22 = 0 ⇒ S2σ1σ = 0.
From Equations (13) and (16) it follows that this requirement holds if the following relation takes place
for the eigenstates of our QD:

Wp2↑W∗p1↑ = −W∗p2↓Wp1↓ . (27)

To see the consequences of this relation for our system, we apply this condition to the eigenstates
of the QD of the radius R: W∗pc↑ = unj(rc) exp(i(j − 1/2)φc), W∗pc↓ = vnj(rc) exp(i(j + 1/2)φc)

[see Equation (3)]. In the tight-binding approximation the point rc is located just before the quantum
point contact (QPC) between the QD and the electrode (see Figure A1). At the QPC r = R, and the
radial wave function ψ(r) [v(r) or u(r)] takes the form at r = rc:

ψ(rc) ≈ ψ(R)− dψ(R)
dR

a0 + .. . (28)

Here a small quantity a0 is the distance between lattice sites. Taking into account that ψ(R) = 0 at
the Dirichlet boundary condition (a closed QD), we obtain:

W∗nc↑ = −a0u′nj(R) exp[i(j− 1/2)φc],

W∗nc↓ = −a0v′nj(R) exp[i(j + 1/2)φc] (29)

(prime denotes derivative over R). As a result, the condition (27) takes the form

[u′nj(R)]2 exp[−i(j− 1/2)(φ2 − φ1)] = −[v′nj(R)]2 exp[i(j + 1/2)(φ2 − φ1))] , (30)
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that leads us to the following equations:

[u′nj(R)]2 = [v′nj(R)]2, (31)

exp[2ij(φ2 − φ1)] = −1. (32)

For the approximate eigenfunction (8) we obtain the condition Rα ≈ 2, resolving Equation (31).
Among solutions of Equation (32) there is one φ2 − φ1 = π which is common for all possible states
with the quantum number j. In other words, an electron with the spin up (down), injected from one
electrode to the QD, exits from the opposite electrode with the spin down (up). Thus, by altering either
the spin-orbit strength α or the QD’s radius R within the condition Rα ≈ 2, we obtain the spin-flip
transmission through our structure.

To illuminate this analytical solution, we consider the simplest quantum well potential of the
form Vext(r < R) = 0, Vext(R) = ∞. The solution of the eigenvalue problem for this potential provides
the radial wavefunctions [v(r) and u(r)] in terms of the Bessel functions (e.g., [41]). In this case,
the Dirichlet boundary condition for the wavefunction (3) yields the equation

Jj−1/2(µ+)Jj+1/2(µ−) = Jj−1/2(µ−)Jj+1/2(µ+) , (33)

that defines the energy spectrum εnj. Here, Jj±1/2(r) is the Bessel functions, and the parameter µ± has
the following structure

µ± =
(

α/2±
√

εnj + (α/2)2
)

R . (34)

The application of Equation (31) leads to the transcendental equation

Jj−1/2(µ+)± Jj+1/2(µ+) = 0. (35)

Plus or minus sign here are opposite to signs of u′v′-derivatives. In the case of the ideal spin-flip
process the numerical solution of the transcendental Equation (35) for several lowest eigenvalues with
quantum numbers j and n gives Rα = 1.5 . . . 2.5 (see Table 1). Please note that the transport properties
could be affected at the interface between the 1D lead and the 2D QD. However, the use of the QPC
restricts the number of open channels between the electrode and the QD [42]. Consequently, we belief
that our results will be valid for a realistic situation as well. To confirm our findings, we consider a 2D
case below.

Table 1. Value of Rα for quantum numbers n and j.

n j Rα

0 1/2 1.68
0 3/2 1.85
1 1/2 1.57
0 5/2 1.98
1 3/2 1.61
2 1/2 1.59
0 7/2 2.1

4. The 2D Model

The results, obtained with the aid of the one-dimension electrodes, serve to illustrate the basic
principles of the spin-flip at the transmission through the QD. To elucidate these principles we have
considered the particular situation, when direct transmission matrix elements were equal zero. In this
section, to demonstrated the vitality and the validity of our findings we consider the 2D structure
depicted in Figure 1. The QD is modelled by a constant potential (gray) with the SOI included.
The ballistic electrons, propagating from one electrode to another, tunnel to the QD through the
thin potential shell (dark gray). On the thin lines the Dirichlet boundary conditions are imposed.
All electrodes have equal width d, while the circular QD has the radius R = 2d.
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SOI

Figure 1. Sketch of the 2D device that consists of a circular lateral QD. The effective QD’s confinement
includes a constant potential with the Rashba interaction (gray region). Additional thin (0.1d) constant
potential shell (dark gray region) controls the coupling between the QD and two electrodes.

We perform numerical calculations in the framework of the tight-binding approach on the square
lattice n = nx x̂ + nyŷ (x̂ and ŷ are 2D vectors of elementary translations with length a0 in x and y
direction, a0—lattice constant, nx and ny—integers). In the tight-binding approximation the system
Hamiltonian (1) has the following form

Ĥ = Ĥ0 + ĤR
Ĥ0 = ∑

n,σ
εnσc†

nσcnσ − ∑
〈nm〉,σ

tc†
nσcmσ

ĤR = − α
2a0

∑
n

{
i
(

c†
n↑cn+ŷ↓ + c†

n↓cn+ŷ↑
)
−

(
c†

n↑cn+x̂↓ − c†
n↓cn+x̂↑

)}
+ H.c. .

(36)

Here, we use the following notations: εn,σ = 4t−V(nxa0, nya0), t = h̄2/2m∗a2
0; the indices 〈nm〉

stand for nearest neighbor sites n and m. We solve the Schrödinger equation in a discretized space,
according to the method developed by Ando [43]. Examples of numerical treatment of quantum
billiards within this approach can be found, for example, in Refs. [44,45]. In our calculations the
electrode width d = 40a0; while dimensionless units are defined as E = EF/E0 = EF2m∗d2/h̄2,
α = α̃/(dE0) = α̃2m∗d/h̄2, where the characteristic length of the device d was chosen as the unit
length. In these units the energy range 2(d/a0)

2(1− cos(πa0/d)) < E < 2(d/a0)
2(1− cos(2πa0/d))

corresponds to one transverse mode in all contacts.
Figure 2 displays the numerical results for the direct process |S2↑1↑|2 as a function of the electron

energy and the strength of the Rashba interaction. The results are in a good agreement with those that
have been obtained from the condition (35) (see Table 1).

Figure 2. The probability for the direct transmission |S2↑1↑|2 as function of the electron energy and
the parameter Rα. Red crosses indicate (E, Rα) that correspond to |S2↑1↑|2=0 for: n = 0, j = 1/2,
n = 0, j = 3/2, n = 1, j = 1/2.
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It is noteworthy that the approximate condition Rα ≈ 2 is unique in that there is no dependence
neither on the electron energy, nor on the spin of the electron state. In other words, it can be
fulfilled for a set of QD’s electron states even at large opening of the QD. To model this case
(a resonance overlapping regime), we remove the potential barrier between the QD and the electrodes.
Indeed, the direct spin transmission |S2↑1↑|2 is suppressed strongly near Rα ∼ 1.6 (see Figure 3a).
In this case, the spin-flip process, averaged over energy (available at the one channel transport),
becomes a dominant phenomenon, reaching about ∼97% of the efficiency (see Figure 3b). In other
words, the thermal effects affect only slightly the spin-flip process even in the regime of the large
opening of the QD.

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

(b)

Figure 3. Quantum dot with radius R = 2d without any additional potential. The probability
for the direct transmission |S2↑1↑|2 as function of the electron energy and the parameter Rα (a).
Average effectivity of spin invertor

∫
dE|S2↓1↑|2/

∫
dE(|S2↓1↑|2 + |S2↑1↑|2) over energy range

2(d/a0)
2(1− cos(πa0/d)) < E < 2(d/a0)

2(1− cos(2πa0/d)) (b).

Larger the dot radius lesser the spin-orbit strength is required to hold the condition Rα ≈ 2.
However, with the increase of the dot radius the spacing between levels becomes smaller. Note, that in
principle, QD levels will be affected by the coupling as well. In fact, they will be shifted with
respect to those of the closed QD, especially, in the case of a strong electron-electron interaction [46].
Therefore, the discussed effect is most probable in a narrow gap semiconductor QD with a strong
confinement potential and at the weak coupling regime. In this case, the resonance states will be well
separated from each to other.

However, as discussed above, the overlapping of resonances and the thermal smearing decrease
the efficiency of the spin-flip phenomenon as well. To evaluate the energy scaling we transform
the equation αR = 2 in dimensional units: R̃α̃ = h̄2/m∗ ≈ 0.076/(m∗/me) nm2 eV. In the case of
InAs α̃ = 40 meV nm with m∗ = 0.023 me the desired QD radius should be R̃ ≈ 80 nm. For the QD’
radius R̃ =100 nm the spacing between lowest levels is of the order ∆E ≈ 5h̄2/2m∗R̃2 ≈ 0.8 meV.
The temperature smearing will be significant if kT > ∆E. In other words, our device could operate with
100% efficiency at T < 9K, which is far from the typical temperature values∼100 mK for single-electron
tunneling spectroscopy experiments (see, for example, the textbook [42]).

5. Summary

We suggest the mechanism of the z-component spin inversion with the aid of the circular lateral
QD that symmetrically coupled to two electrodes. The effective confinement potential of the QD
consists of the circular potential well. From our analysis of the ballistic electron transport through



Symmetry 2020, 12, 2043 9 of 16

the QD with the Rashba SOI, it follows the Kramers degeneracy of the QD levels could lead to the
destructive interference of the direct (σ → σ) spin scattering process, while producing the spin-flip
phenomenon. We found that the optimal conditions for the realization of the perfect spin-flip processes
is subject to the condition α̃R̃ ≈ h̄2/m∗. In fact, this condition depends quite weakly on the particular
choice of the quantum level. We found that this effect is robust for the QD’s states at the temperature
less than 9 K.
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methodology, visualization, A.P.; conceptualization, validation, investigation, writing–review and editing,
supervision, R.N. All authors have read and agreed to the published version of the manuscript.
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Appendix A. Derivation of Effective Hamiltonian on 2D Square Lattice

The Hamiltonian of our scattering system can be presented as follows:

Ĥ = Ĥ0 + V̂ , (A1)

where the Hamiltonian Ĥ0 consists of three terms: two electrodes (C = L, R or 1, 2) with continuous
spectra and a closed substructure with a discrete spectrum:

Ĥ0 = ĤL + ĤB + ĤR

ĤB = ∑
n

En|n〉〈n|, (A2)

ĤC =
∫

dEE|E, C〉〈E, C|.

The corresponding eigenstates are normalized:

〈n|m〉 = δnm, (A3)

〈E, C|E′, C〉 = δ(E− E′). (A4)

The V̂ operator connects the closed substructure (ĤB) with electrodes (ĤL,R). The stationary
Shrödinger equation for the Hamiltonian Ĥ0 reads as

(E− Ĥ0)|φ〉 = 0 , (A5)

while we are interested in the solution for the total Hamiltonian (A1)

(E− Ĥ0)|ψ〉 = V̂|ψ〉 . (A6)

For the energy E different from the eigenvalue of the closed substructure En we can define the
operator (E + iε− Ĥ)−1. Consequently, if the outgoing wave boundary condition is adopted, we can
transform Equation (A6) to the Lippmann-Schwinger equation

|ψ〉 = |φ〉+ 1
(E− Ĥ0)

V̂|ψ〉 . (A7)

The formal solution of this equation reads as

F̂(E)|ψ〉 =
(

1− 1
(E− Ĥ0)

V̂
)
|ψ〉 = |φ〉 . (A8)
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Following Refs. [36,37], with the aid of the basis states (A3) we construct projector operators for
each term in the Hamiltonian (A2):

P̂B = ∑
n
|n〉〈n|, (A9)

P̂C =
∫

dE|E, C〉〈E, C| , (A10)

with the properties

P̂s P̂s′ = δss′ P̂s, (A11)

P̂sĤP̂s′ = δss′ Ĥs, (A12)

∑
s=L,B,R

P̂s = 1. (A13)

By means of the projection operators the Lippmann-Schwinger Equation (A8) transforms to the
following form((

∑
s=L,B,R

P̂s

)
F̂(E)

(
∑

s′=L,B,R
P̂s′

))(
∑

s=L,B,R
P̂s

)
|ψ〉 =

(
∑

s′′=L,B,R
P̂s′′

)
|φ〉 P̂L F̂P̂L P̂L F̂P̂B P̂L F̂P̂R

P̂B F̂P̂L P̂B F̂P̂B P̂B F̂P̂R
P̂R F̂P̂L P̂R F̂P̂B P̂R F̂P̂R


 |ψL〉
|ψB〉
|ψR〉

 =

 |φL〉
|φB〉
|φR〉

 . (A14)

Here, each block of the matrix representation of the operator F(E) (A14) has the following structure

P̂s F̂P̂s′ = P̂s

(
1− 1

E− Ĥ0
V̂
)

P̂s′ = P̂s

(
1− 1

E− Ĥ0

(
∑

s′′=L,B,R
P̂s′′

)
V̂

)
P̂s′ (A15)

=

(
δss′ −

1
E− Ĥs

P̂sV̂P̂s′

)
.

Our closed substructure is subjected to the Dirichlet boundary conditions on junction with
electrodes, i.e., the following condition P̂sV̂P̂s = 0 takes place. In other words, the operator V̂ does not
affect the structure of the isolated subsystem. As a result, we have

P̂s F̂P̂s = 1. (A16)

Another reasonable assumption is the absence of the direct connection between electrodes:

P̂C F̂P̂C′ = δCC′ . (A17)

Taking into account the above arguments, we transform the Lippmann-Schwinger Equation (A14)
to the form

1 − 1
E−ĤL

P̂LV̂P̂B 0

− 1
E−ĤB

P̂BV̂P̂L 1 − 1
E−ĤB

P̂BV̂P̂R

0 − 1
E−ĤR

P̂RV̂P̂B 1


 |ψL〉
|ψB〉
|ψR〉

 =

 |φL〉
|φB〉
|φR〉

 . (A18)

Considering the initial state |φ〉 in the form |φL〉
|φB〉
|φR〉

 =

 αL|E, L〉
0

αR|E, R〉

 , (A19)
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we present the scattering state |ψ〉 as |ψL〉
|ψB〉
|ψR〉

 =

 (αLr + αRt′)|E, L〉
|ψB〉

(αLt + αRr′)|E, R〉

 , (A20)

defining the scattering matrix elements

S =

(
r t′

t r′

)
(A21)

To get to the heart of the problem, let us consider, for example, the second equation from (A18),
and corresponding wavefunctions |ψL〉, |ψR〉 from Equation (A20):(

1− 1
E− ĤB

∑
C=L,R

P̂BV̂P̂C
1

E− ĤC
P̂CV̂P̂B

)
|ψB〉 =

1
E− ĤB

∑
C=L,R

P̂BV̂P̂C|φC〉 (A22)

Multiplying the both sides of Equation (A22) by E− ĤB, we obtain(
E− ĤE f f

)
|ψB〉 = ∑

C=L,R
P̂BV̂P̂C|φC〉 (A23)

with the following definition of the effective Hamiltonian

ĤE f f = ĤB + ∑
C=L,R

P̂BV̂P̂C
1

E− ĤC
P̂CV̂P̂B = ĤB + ∑

C=L,R
X̂C . (A24)

The eigenstates of HB form the natural basis for the effective Hamiltonian. Taking into account
this fact, we obtain by means of Equation (A23) the following system

∑
m

(
E− 〈n|ĤE f f |m〉

)
〈m|ψB〉 = ∑

C=L,R
〈n|V̂

∫
dE|E, C〉〈E, C|φC〉. (A25)

Here, the matrix elements 〈n|ĤE f f |m〉 have the following structure

〈n|ĤE f f |m〉 = δnmEn + ∑
C=L,R

〈n|V̂P̂C
1

E− ĤC
P̂CV̂|m〉 = δnmEn + ∑

C=L,R
X̂C

nm , (A26)

where the matrix elements of X̂C operator are

〈n|X̂C|m〉 = 〈n|V̂
(∫

dE′|E′, C〉〈E′, C|
)

1
E− ĤC

(∫
dE′′|E′′, C〉〈E′′, C|

)
V̂|m〉 . (A27)

Using the definition of ĤC (A2), we can write

X̂C
nm =

∫
dE′〈n|V̂|E′, C〉 1

E− E′
〈E′, C|V̂|m〉 . (A28)

To obtain the matrix elements 〈n|V̂|E, C〉 = 〈E, C|V̂|n〉∗ we make the transformation to the
tight-binding representation by inserting the resolution of identity 1 = ∑j |j〉〈j| into the definition:

〈n|V̂|E, C〉 = 〈n|
(

∑
j
|j〉〈j|

)
V̂

∑
j′
|j′〉〈j′|

 |E, C〉 = ∑
jj′
〈n|j〉〈j|V̂|j′〉〈j′|E, C〉 . (A29)
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To visualize the idea of the tight-binding approach, Figure A1 displays the example of the 2D
cavity connected to 1D electrodes. We can see that the matrix elements 〈j|V̂|j′〉 = 〈j′|V̂|j〉∗ are nonzero
only for j = (N, 1), j′ = (N + 1, 1) at the connection to the right continuum and for j = (0, 1), j′ = (1, 1)
at the connection to the left continuum. We introduce the coefficients

WnC = ∑
j∈B,j′∈C

〈n|j〉〈j|V̂|j′〉, (A30)

WnR = 〈n|(N, 1)〉〈(N, 1)|V̂|(N + 1, 1)〉, (A31)

WnL = 〈n|(1, 1)〉〈(1, 1)|V̂|(0, 1)〉 , (A32)

that are independent on energy. As a result, the matrix elements (A29) can be written in the form

〈n|V̂|E, C〉 = WnC〈jCin|E, C〉, (A33)

〈n|V̂|E, L〉 = WnL〈(0, 1)|E, L〉, (A34)

〈n|V̂|E, R〉 = WnR〈(N + 1, 1)|E, R〉, (A35)

where jCin denotes the beginning of the semi-infinite electrode C. Taking into account the definition
Equation (A33), the expression (A28) can be written in the form

X̂C
nm = WnCW∗mC

∫
dE′
|〈jCin|E

′, C〉|2

E− E′
(A36)

-1 0 1 2 jx

L B

...

N N+1

R
jy

2

1

jin

L

jin

R

Figure A1. Connection between bounded system B and electrode C. The coupling operator 〈j|V̂|j′〉 =
〈j′|V̂|j〉∗ = 〈(jx, jy)|V̂|(j′x, j′y)〉 is nonzero only for jx = 0, j′y = 1 and jy = j′y = 1 at the connection to
the left electrode and for jx = N, j′y = N + 1 and jy = j′y = 1 at the connection to the right electrode.

In the tight-binding representation the electron wave function 〈jCin|E
′, C〉 in the electrode C is

(see Equation (A50))

〈jCin|E, C〉 = sin(|k|)√
π| sin(k)|

=
(1− (E/2)2)1/4

√
π

, (A37)

where for the 1D tight-binding model the dispersion E = −2 cos(k) is used. The integration in
Equation (A36) over zone from E = −2 to E = 2 yields [see Equation (A52)] the expression for matrix
elements of the operator X̂C

〈n|X̂C|m〉 =
WnCW∗mC

π

∫ 2

−2
dE′
√

1− (E′/2)2

E− E′
= −WnCW∗mCeik. (A38)

The scattering matrix elements SCC′(E), describing the transition from a continuum C′ to
a continuum C at the incident energy E, are [37]

SCC′(E) = δCC′ − 2πi〈E, C|P̂CV̂P̂B

(
E− Ĥe f f (E)

)−1
P̂BV̂P̂′C|E, C′〉 . (A39)

Inserting the resolution of identities 1 = ∑j |j〉〈j|, 1 = ∑n |n〉〈n|, by means of
Equations (A19), (A23), (A30) and (A33), we obtain



Symmetry 2020, 12, 2043 13 of 16

SCC′(E) = δCC′ − 2πiψ1
C(E)ψ1

C′(E)∑
mn

W∗nCFnm(E)WmC′ . (A40)

Here, the function ψ1
C = 〈jCin|E, C〉 (see Figure A1) are the wave functions of the semi-infinite

electrodes at the QPC.

Appendix A.1. Normalization Constant of the Electrode Eigenfunctions

We consider the electron eigenstate in the electrode as

〈j|E, C〉 = a(k) sin(kj) (A41)

with the normalization constant a(k) and −π < k < π. These functions must satisfy the equation

∞

∑
j=1
〈j|E, C〉〈E′, C|j〉 = δ(E− E′) (A42)

First, let us rewrite δ(E− E′) using dispersion relation E = −2 cos(k) at −π < k ≤ π:

δ(E− E′) = δ
(
−2(cos(k)− cos(k′)

)
= δ

(
4 sin

(
k + k′

2

)
sin
(

k− k′

2

))

=
δ
(

k−k′
2

)
4|
√
| sin(k)|

√
| sin(k′)|

+
δ
(

k+k′
2

)
4|
√
| sin(k)|

√
| sin(k′)|

. (A43)

On the other hand, we have

∞

∑
j=1
〈j|E, C〉〈E′, C|j〉 = a(k)a∗(k′)

∞

∑
j=1

sin(kj) sin(k′ j) (A44)

=
a(k)a∗(k′)

2

∞

∑
j=1

(
cos((k− k′)j)− cos((k + k′)j)

)
.

The Lagrange’s trigonometric identity

N

∑
n=1

cos(nθ) = −1
2
+

sin
(
(2N + 1) θ

2

)
2 sin

(
θ
2

) (A45)

helps us to write down

1
2
+

∞

∑
n=1

cos(nθ) = lim
N→∞

sin
(
(2N + 1) θ

2

)
2 sin

(
θ
2

) =
θ/2

2 sin
(

θ
2

) lim
N→∞

sin
(
(2N + 1) θ

2

)
θ/2

=
π

2
δ

(
θ

2

)
. (A46)

Taking into account the above results, we have for Equation (A44)

∞

∑
j=1
〈j|E, C〉〈E′, C|j〉 = a(k)a∗(k′)π

4

(
δ

(
k− k′

2

)
− δ

(
k + k′

2

))
. (A47)

Finally, combining Equations (A43) and (A47), we have for Equation (A42)

1
4|
√
| sin(k)|

√
| sin(k′)|

(
δ
(

k−k′
2

)
+ δ

(
k+k′

2

))
= a(k)a∗(k′)π

4

(
δ
(

k−k′
2

)
− δ

(
k+k′

2

))
. (A48)

Comparing the left and the right sides of this equation, we obtain
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a(k) =
sgn(k)√
π| sin(k)|

. (A49)

Consequently, Equation (A41) becomes

〈j|E, C〉 = sin(|k|j)√
π| sin(k)|

. (A50)

Appendix A.2. Integral Over Zone

We recall that E = Re(E) + iε and

lim
ε→0+

a∫
−a

dx
f (x)

x + iε
= lim

ε→0+

a∫
−a

dx
x− iε

x2 + ε2 f (x) = lim
ε→0+

a∫
−a

dx
(

x f (x)
x2 + ε2 − i

ε f (x)
x2 + ε2

)

= P
a∫
−a

dx
f (x)

x
− iπ f (0), (A51)

As a result, we have∫ 2

−2
dE′
√

1− (E′/2)2

E− E′
= P

∫ 2

−2
dE′
√

1− (E′/2)2

E− E′
− iπ

∫ 2

−2
dE′δ(E− E′)

√
1− (E′/2)2

= π

(
E
2
− i
√

1− (E/2)2
)

(A52)

= −πeik.

Here we use the dispersion relation E = −2 cos(k).
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2. Žutić, I.; Fabian, J.; Sarma, D.S. Spintronics: Fundamentals and applications. Rev. Mod. Phys. 2004, 76, 323.
[CrossRef]

3. Hanson, R.; Kouwenhoven, L.P.; Petta, J.R.; Tarucha, S.; Vandersypen, L.M.K. Spins in few-electron
quantum dots. Rev. Mod. Phys. 2007, 79, 1217–1265. [CrossRef]

4. Engel, H.A.; Loss, D. Detection of Single Spin Decoherence in a Quantum Dot via Charge Currents.
Phys. Rev. Lett. 2001, 86, 4648–4651. [CrossRef] [PubMed]

5. Dehghan, E.; Khoshnoud, D.S.; Naeimi, A. Logical spin-filtering in a triangular network of quantum
nanorings with a Rashba spin-orbit interaction. Phys. B Condens. Matter 2018, 529, 21–26. [CrossRef]

6. Sattari, F.; Mirershadi, S. Spin-dependent transport properties in strained silicene with extrinsic Rashba
spin-orbit interaction. J. Magn. Magn. Mater. 2018, 445, 6–10. [CrossRef]

7. Pudlak, M.; Nazmitdinov, R.G. Spin-dependent electron transmission across the corrugated graphene.
Physica E 2020, 118, 113846. [CrossRef]

8. Lou, X.; Adelmann, C.; Crooker, S.A.; Garlid, E.S.; Zhang, J.; Reddy, K.S.M.; Flexner, S.D.; Palmstrm, C.J.;
Crowell, P.A. Electrical detection of spin transport in lateral ferromagnet-semiconductor devices. Nat. Phys.
2007, 3, 197. [CrossRef]

9. Dash, S.P.; Sharma, S.; Patel, R.S.; de Jong, M.P.; Jansen, R. Electrical creation of spin polarization in silicon at
room temperature. Nature 2009, 462, 491. [CrossRef]

10. Ciorga, M.; Einwanger, A.; Wurstbauer, U.; Schuh, D.; Wegscheider, W.; Weiss, D. Electrical spin injection
and detection in lateral all-semiconductor devices. Phys. Rev. B 2009, 79, 165321. [CrossRef]

11. Valín-Rodríguez, M.; Nazmitdinov, R.G. Model for spin-orbit effects in two-dimensional semiconductors in
magnetic fields. Phys. Rev. B 2006, 73, 235306. [CrossRef]

http://dx.doi.org/10.1126/science.1065389
http://www.ncbi.nlm.nih.gov/pubmed/11711666
http://dx.doi.org/10.1103/RevModPhys.76.323
http://dx.doi.org/10.1103/RevModPhys.79.1217
http://dx.doi.org/10.1103/PhysRevLett.86.4648
http://www.ncbi.nlm.nih.gov/pubmed/11384305
http://dx.doi.org/10.1016/j.physb.2017.09.076
http://dx.doi.org/10.1016/j.jmmm.2017.08.067
http://dx.doi.org/10.1016/j.physe.2019.113846
http://dx.doi.org/10.1038/nphys543
http://dx.doi.org/10.1038/nature08570
http://dx.doi.org/10.1103/PhysRevB.79.165321
http://dx.doi.org/10.1103/PhysRevB.73.235306


Symmetry 2020, 12, 2043 15 of 16

12. Fabian, J.; Matos-Abiague, A.; Ertler, C.; Stano, P.; Žutić, I. Semiconductor spintronics. Acta Phys. Slovaca
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