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Abstract: Spontaneous Symmetry Breaking (SSB) in λΦ4 theories is usually described as a 2nd-order
phase transition. However, most recent lattice calculations indicate instead a weakly 1st-order phase
transition as in the one-loop and Gaussian approximations to the effective potential. This modest
change has non-trivial implications. In fact, in these schemes, the effective potential at the minima
has two distinct mass scales: (i) a first mass mh associated with its quadratic curvature and (ii)
a second mass Mh associated with the zero-point energy which determines its depth. The two
masses describe different momentum regions in the scalar propagator and turn out to be related by
M2

h ∼ m2
h ln(Λs/Mh), where Λs is the ultraviolet cutoff of the scalar sector. Our lattice simulations of

the propagator are consistent with this two-mass picture and, in the Standard Model, point to a value
Mh ∼ 700 GeV. However, despite its rather large mass, this heavier excitation would interact with
longitudinal W’s and Z’s with the same typical coupling of the lower-mass state and would therefore
represent a rather narrow resonance. Two main novel implications are emphasized in this paper:
(1) since vacuum stability depends on the much larger Mh, and not on mh, SSB could originate within
the pure scalar sector regardless of the other parameters of the theory (e.g., the vector-boson and
top-quark mass) (2) if the smaller mass were fixed at the value mh =125 GeV measured at LHC,
the hypothetical heavier state Mh would then naturally fit with the peak in the 4-lepton final state
observed by the ATLAS Collaboration at 700 GeV.
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1. Introduction

Spontaneous Symmetry Breaking (SSB) through the vacuum expectation value 〈Φ〉 6= 0 of a
fundamental scalar field, the BEH field [1,2], is an essential element of the Standard Model. This original
idea has been recently confirmed by the discovery at LHC [3,4] of a narrow scalar resonance with mass
mh ∼ 125 GeV whose characteristics fit well with the theoretical expectations. This has produced the
widespread belief that any change of this general picture could only originate from new physics.

However, this conclusion might not be entirely true. In fact, at present, only the gauge and Yukawa
interactions of the 125 GeV resonance have been tested. Instead, the possible effects of a genuine scalar
self-coupling λ = 3m2

h/〈Φ〉2 are still below the precision of the observations. This suggests that some
uncertainty on the origin of SSB may still persist.

Originally, the underlying mechanism was identified in a classical double-well, scalar potential.
However, later, after Coleman and Weinberg [5], the classical potential was replaced by the quantum
effective potential Veff(ϕ) which includes the zero-point energy of all fields in the theory.
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Yet, SSB could still originate within the pure λΦ4 sector if the other fields give a negligible
contribution to the vacuum energy. To fully appreciate this point, we must start from scratch
and consider one aspect which has still to be clarified: the nature of the phase transition in a
pure λΦ4 scalar theory in 4D. More precisely, is it a 2nd-order phase transition or a (weakly)
1st-order transition? Surprising as it may be, this apparently minor change can have substantial
phenomenological implications.

To this end, in Sections 2–4 we will give a general overview of the problem and argue that SSB
in pure λΦ4 theory is a weak 1st-order phase transition. Then, in this picture, besides the known
resonance with mass mh ∼ 125 GeV, we expect a new excitation of the BEH field with a much larger
mass Mh ∼ 700 GeV. Since vacuum stability depends on this larger Mh, and not on mh, SSB could well
originate within the pure scalar sector regardless of the remaining parameters of the theory (as the
vector boson or top-quark mass).

However, despite such large mass, this heavier state would interact with longitudinal W’s and
Z’s with the same typical strength of the lower-mass state. As such, it would represent a rather
narrow resonance. On this basis, in Sections 5 and 6, we will consider these more phenomenological
aspects and their implications for the present LHC experiments.

2. SSB: 2nd- or (Weak) 1st-Order Phase Transition?

To introduce the problem, let us start with the classical potential (λ > 0)

Vclass(ϕ) =
1
2

m2 ϕ2 +
λ

4!
ϕ4 (1)

Here, there is no ambiguity. As one varies the m2 parameter, one finds a 2nd-order phase transition
occurring for m2 = 0. However, in the full quantum theory is this conclusion still so obvious? To this
end, one should look at the effective potential and study vacuum stability depending on the physical
mass, say m2

Φ, in the symmetric vacuum at ϕ = 0

V′′eff(ϕ = 0) ≡ m2
Φ (2)

Clearly, this is locally stable if m2
Φ > 0. However, for m2

Φ > 0, is this symmetric vacuum also
globally stable? Or, instead, could the SSB transition be 1st-order and occur for some very small but still
positive m2

Φ = m2
c > 0? Then, if this were true, the lowest-energy state for the classically scale-invariant

case m2
Φ = 0 would correspond to the broken-symmetry phase with an expectation 〈Φ〉 6= 0.

This dilemma, on the nature of the phase transition, goes back to the pioneering work of Coleman
and Weinberg [5]. After subtracting a ϕ− independent constant and quadratic divergences, in this
massless limit of λΦ4, their original 1-loop result was

V1−loop(ϕ) =
λ

4!
ϕ4 +

λ2 ϕ4

256π2

[
ln( 1

2 λϕ2/Λ2
s )−

1
2

]
(3)

where Λs is a large ultraviolet cutoff. As it is well known, this 1-loop form could equivalently be
expressed as the sum of classical background + zero-point energy of a field with a ϕ−dependent mass
M(ϕ) given by

M2(ϕ) ≡ 1
2

λϕ2 (4)

namely

V1−loop(ϕ) =
λϕ4

4!
− M4(ϕ)

64π2 ln
Λ2

s
√

e
M2(ϕ)

(5)
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By using this notation, there are non-trivial minima for those values, say ϕ = ±v, where

M2
h ≡ M2(±v) =

λv2

2
= Λ2

s exp(−32π2

3λ
) (6)

Therefore, since the massless theory exhibits SSB, the 1-loop potential indicates a 1st-order phase
transition. Actually, it is a weak 1st-order transition because, in units of the M2

h in Equation (6), the mass
mΦ in the symmetric phase is bounded to be smaller than a critical mass [6]

m2
Φ < m2

c =
λM2

h
64π2

√
e
∼

M2
h

ln(Λs/Mh)
� M2

h (7)

With such extremely small critical mass, SSB emerges as an infinitesimally weak 1st-order
transition which could hardly be distinguished from a 2nd-order transition unless one looks on
an extremely fine scale.

As is well known [5], though, the standard Renormalization-Group (RG) improvement of the
1-loop potential contradicts this scenario. Indeed, leading-logarithmic terms entering the effective
potential are re-absorbed into an effective coupling λ(ϕ) giving a re-summed expression

VRG(ϕ) ∼ λ(ϕ)

4!
ϕ4 (8)

Thus, by restricting to λ(ϕ) > 0, the 1-loop minimum disappears and we would again predict a
2nd-order transition at m2

Φ = 0. The standard view is that it is this latter point of view to be reliable.
To see why things are not so simple, let us consider another approximation scheme. Specifically,

the Gaussian effective potential [7,8]. Diagrammatically, this corresponds to the infinite re-summation
of all one-loop bubbles with mass M(ϕ) and has a variational nature by exploring the Hamiltonian
operator within the Gaussian functional states. For this reason, it is a very natural alternative because
a Gaussian set of Green’s functions would fit with the “triviality” of λΦ4 theory in 4D. An early
calculation [9] of the Gaussian effective potential for the one-component λΦ4 theory confirmed the
1st-order scenario in agreement with the 1-loop potential. This is because the existing corrections
beyond 1-loop reproduce the some functional form and thus support the same 1st-order picture.

Further calculations, by Bryhaye and one of us [10,11], confirmed that by imposing
V′′Gauss(ϕ = 0) = 0, the Gaussian effective potential for the O(2) and O(N)-symmetric scalar theories
exhibits SSB thus again supporting the weak 1st-order picture. In particular, it was noted the
non-uniformity of the two limits N → ∞ and ultraviolet cutoff Λs → ∞.

To fully appreciate the substantial equivalence with the one-loop potential, we observe that the
infinite additional terms in the Gaussian effective potential can be expressed in a form analogous to
Equation (5) with a simple redefinition of the classical background and of the ϕ−dependent mass in
the zero-point energy, i.e.,

VGauss(ϕ) =
λ̂ϕ4

4!
− Ω4(ϕ)

64π2 ln
Λ2

s
√

e
Ω2(ϕ)

(9)

with

λ̂ =
λ

1 + λ
16π2 ln Λs

Ω(ϕ)

and Ω2(ϕ) =
λ̂ϕ2

2
(10)

This shows that the 1-loop potential also admits a non-perturbative interpretation. In fact,
by displaying the same basic structure of classical background + zero-point energy, it represents the
prototype of all gaussian and post-gaussian calculations [12,13]. At the same time, it also explains why
1-loop and Gaussian approximations, although differing in terms of the bare parameters, can become
identical in a suitable renormalization scheme [14,15].

This concordance among various approximations may cast some doubts on the re-summation
in Equation (8) and its 2nd-order scenario. Nevertheless, at the time of those works, the precise
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motivation for the discrepancy was not understood. Thus, the whole problem of SSB in pure λΦ4

theories did not attract much attention, also due to the lack of definite phenomenological implications.
However, two subsequent theoretical developments, producing new evidence in favor of the

1st-order scenario, have refreshed anew the interest into the whole problem:
(i) the first development was concerning the physical mechanisms [6] underlying SSB as a 1st-order

transition. In fact, once SSB really coexists with a physical mass 0 < m2
Φ ≤ m2

c for the elementary
quanta of the symmetric phase, these quanta, the “phions” [6], should be considered to be real particles
although, being “frozen” in the broken-symmetry vacuum, they would not be directly observable
(like quarks). Now, the conventional picture of λΦ4 corresponds to a repulsive interaction. Only its
strength decreases at large distance. However, then, this is somewhat mysterious. In fact, if the
interaction remains always repulsive, how could this broken-symmetry vacuum with 〈Φ〉 6= 0, a Bose
condensate of phions, have a lower energy than the 〈Φ〉 = 0 empty state with no phions? Here,
a crucial observation [6] was that phions, moreover the +λδ3(r) contact repulsion, also feel a−λ2 e−2mΦr

r3

attraction arising at 1-loop and which becomes more and more important when mΦ → 0 (From the
scattering amplitudeM, computed from Feynman graphs, one can define an interparticle potential
which is nothing but the 3D Fourier transform ofM, see Feinberg et al. [16,17].). By including both
effects, one can now understand [6] why, for small enough mΦ, the attraction can dominate and
the lowest-energy state becomes a state with a non-zero density of phions Bose-condensed in the
zero-momentum state.

However, then, if SSB is produced by these two competing effects (short-range repulsion and
long-range attraction) we now understand the failure of the standard RG-analysis. In fact, the attractive
term originates from the ultraviolet-finite part of the 1-loop graphs. Therefore, to correctly include
higher-order effects, one should renormalize both the tree-level contact repulsion and the 1-loop,
long-range attraction, as if there were two different coupling constants in the theory. This different
procedure has been adopted by Stevenson [18], see Figure 1. By avoiding double counting, he has
shown that the simple 1-loop result and its RG-improvement, in this new scheme, now agree very well
so that the weak 1st-order scenario is confirmed.

Figure 1. The re-arrangement of perturbation theory introduced by Stevenson [18] in his alternative
analysis of Veff(ϕ). The quanta of the symmetric phase with mass mΦ, besides the contact +λδ3(r)
repulsion, also feel a −λ2 e−2mΦr

r3 attraction from the Fourier transform of the ultraviolet-finite part of
the 1-loop term [6]. Its range diverges in the mΦ → 0 limit and, for mΦ below a critical mass mc,
the attraction will dominate and induce SSB. Since higher-order contributions simply renormalize these
two basic effects, the resulting RG-improvement, in this new scheme, now confirms the 1st-order phase
transition scenario as at 1-loop.

(ii) recent lattice simulations of pure λΦ4 in 4D [19–21], obtained with different algorithms in
the Ising limit of the theory (and on the present largest available lattices), indicate that the SSB phase
transition is weakly 1st-order.

Since the above arguments (i) and (ii) confirm the 1st-order picture of SSB, and the general validity
of the 1-loop and Gaussian approximations to the effective potential, we will now consider in Section 3
some important physical implications of this scenario.
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3. Two-Mass Scales in the Broken Phase

To explore the physical implications of a 1st-order scenario of SSB, we will restrict to the one-loop
approximation Equation (5) of Veff(ϕ) which is equivalent to the Gaussian approximation result
Equation (9). Equation (5) is just a different way of re-writing Equation (3) but intuitively supports the
traditional view where the broken-symmetry phase is a simple massive theory with mass Mh as in
Equation (6). Thus, one expects that up to small perturbative corrections, this is the mass parameter
entering the scalar propagator.

To see why, again, things are not so simple, let us compute the quadratic shape of the effective
potential, i.e., its second derivative at the minimum. This other quantity, say m2

h, has the value

m2
h ≡ V′′eff(±v) =

λ2v2

32π2 =
λ

16π2 M2
h ∼

M2
h

L
� M2

h (11)

where L ≡ ln Λs
Mh

. Now, the derivatives of the effective potential are just (minus) the n-point functions
for zero external momentum. In particular, one finds

m2
h ≡ V′′eff(ϕ = ±v) = −Π(p = 0) = |Π(p = 0)| (12)

Therefore, by expressing the inverse propagator as

G−1(p) = p2 −Π(p) (13)

we find G−1(p) ∼ (p2 + m2
h) for p→ 0. This means that apparently, it is this smaller mass m2

h, and not
M2

h, which enters the (low-momentum) propagator. However, now, in the λ→ 0 limit, m2
h and M2

h are
vastly different scales (i.e., do not differ by small perturbative corrections). Thus one may ask: which
is the right mass?

To better understand this point, let us sharpen the meaning of Mh by using the general relation
which expresses the zero-point-energy (“zpe”) in terms of the trace of the logarithm of G−1(p), i.e.,

zpe =
1
2

∫ d4 p
(2π)4 ln(p2 −Π(p)) (14)

Thus, after subtracting a constant and quadratic divergences, to match the 1-loop Equation (5),
we can impose appropriate limits in the logarithmic divergent part (i.e., p2

max ∼
√

eΛ2
s and p2

min ∼ M2
h)

zpe = −1
4

∫ pmax

pmin

d4 p
(2π)4

Π2(p)
p4 ∼ −〈Π

2(p)〉
64π2 ln

p2
max

p2
min
∼ −

M4
h

64π2 ln
√

eΛ2
s

M2
h

(15)

This relation indicates that M4
h reflects the typical, average 〈Π2(p)〉 at non-zero p2. Therefore,

if we trust in the 1-loop relation M2
h ∼ m2

h ln Λs
Mh

, we should observe large deviations in the propagator
if we try to extrapolate to higher-p2 with the 1-particle form G−1(p) ∼ (p2 + m2

h) which is valid for
p→ 0. In other words, in a 1st-order picture of SSB, the idea of a simple massive propagator seems to
be wrong.

To show that these are not just speculations, let us compare with lattice calculations of the scalar
propagator in the broken-symmetry phase. The simulation was performed [22] in the 4D Ising limit
which has always been considered a convenient laboratory to exploit the non-perturbative aspects
of the theory. It is the λΦ4 in the limit of an infinite bare coupling λ0 = +∞, as sitting exactly at the
Landau pole. As such, for a finite cutoff Λs, it represents the best possible definition of the local limit
for a non-zero, low-energy coupling λ ∼ 1/L (where L = ln(Λs/Mh)). For the convenience of the
reader, we will report here the main results of [22].
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In the Ising limit, the broken-symmetry phase corresponds to values of the basic hopping
parameter κ > κc, with the critical κc = 0.0748474(3) [19,20]. We computed the field vacuum
expectation value

v = 〈|φ|〉 , φ ≡ 1
V4

∑
x

φ(x) (16)

and the connected propagator
G(x) = 〈φ(x)φ(0)〉 − v2 (17)

where with 〈...〉 we are indicating the average over lattice configurations.
In terms of the Fourier transform of the propagator, the extraction of mh is straightforward, i.e.,

G(p = 0) =
1

|Π(p = 0)| ≡
1

m2
h

(18)

Instead Mh had to be extracted from the data for the Fourier transformed propagator at higher
momentum. To this end, we first fitted the data to the 2-parameter form

Gfit(p) =
Zprop

p̂2 + m2
latt

(19)

in terms of the lattice squared momentum p̂2 with p̂µ = 2 sin pµ/2. The quality of this fit was then
studied to understand how reliable the determination Mh ≡ mlatt is from the higher-momentum region.
Finally, the propagator data were re-scaled by the factor ( p̂2 + m2

latt). In this way, deviations from a
straight line will show up clearly if a fitted mass Mh ≡ mlatt fails to describe the lattice data when
p→ 0.

The results in the symmetric phase, see Figure 2, show that there, with just a single lattice mass
one can describe all data down to p = 0.

0 1 2 3 4 5 6 7 8

p
∧2

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

 G
(p̂

) 
 (

p̂
2
+

m
2
)

κ=0.0740

Figure 2. The data for the re-scaled lattice propagator ref. [22] in the symmetric phase at κ = 0.074
depending on the square lattice momentum p̂2 with p̂µ = 2 sin pµ/2. In this case, the mass fitted from
higher-p̂2, Mh = mlatt = 0.2141(28), describes well the data down to p = 0. The dashed line is the
fitted Zprop = 0.9682(23).

In the broken phase, for κ = 0.0749, the results for the largest lattice 764 are reported
in Figures 3 and 4. The larger mass obtained from the higher-momentum fit p̂2 > 0.1 was
Mh ≡ mlatt = 0.0933(28). As one can see from Figure 3, this fitted mass describes the data for
not too small momentum. But for p → 0 the deviations from a straight line become highly
significant statistically. In this low-p̂2 limit, in fact, the data would require the other mass
mh = |Π(p = 0)|1/2 = 0.0769, see Figure 4.
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100K meas.

Figure 3. The data for the re-scaled lattice propagator ref. [22] in the broken phase at κ = 0.0749.
The mass used for the re-scaling, Mh = mlatt = 0.0933(28), was obtained from fitting to all data with
p̂2 > 0.1. The black square at p = 0 is Z(p = 0) = M2

h/m2
h = 1.47(9) as computed from the fitted Mh

for mh = |Π(p = 0)|1/2 = 0.0769.

0 0.025 0.05 0.075 0.1

p̂
2

0.9

0.95

1

(p̂
2
 +

 m
2
) 

 G
(p̂

2
)

κ=0.0749

m
latt

=0.0769

κ=0.0749 

76
4
 lattice 

100K meas.

Figure 4. The lattice data of ref. [22] at κ = 0.0749 for p̂2 < 0.1. The mass used here for the re-scaling
has been fixed at the value mh = |Π(p = 0)|1/2 = 0.0769.

The difference between Mh = 0.0933(28) and mh = 0.0769 has the high statistical significance
of 6 sigma. More importantly, once m2

h is directly computed from the zero-momentum limit of G(p)
and Mh is extracted from its behavior at higher p2, the extrapolation of the results toward the critical
point [22] is well consistent with the expected increasing logarithmic trend M2

h ∼ Lm2
h.

4. The Relative Magnitude of mh, Mh and 〈Φ〉

As summarized in Section 3, our lattice simulations supports the idea of a scalar propagator
which, in the broken phase, interpolates between two different mass scales mh and Mh (Two-mass
scales also require some interpolating form for the scalar propagator in loop corrections. Since some
precise measurements, e.g., AFB of the b-quark or sin2 θw from NC experiments [23], still favor a
rather large BEH particle mass, this could help to improve the present rather low quality of the
overall Standard Model fit). The lattice data are also consistent with the trend M2

h ∼ m2
h ln(Λs/Mh)

predicted by the one-loop and Gaussian approximations to the effective potential. Since the two
masses do not scale uniformly in the Λs → ∞ limit (This non- uniform scaling is crucial not to run
in contradiction with the “triviality” of λΦ4 in 4D [22]. In fact, this implies a continuum limit with
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a Gaussian set of Green’s functions and therefore with a massive free-field propagator. Thus, in an
ideal continuum theory, there can only be one mass depending on the unit of mass (mh or Mh) adopted
for measuring momenta), the question naturally arises about the extension to the Standard Model
and their relationship with the fundamental weak scale 〈Φ〉 ∼ (GFermi

√
2)−1/2 ∼ 246.2 GeV. In fact,

it seems that we should now introduce two different coupling constants, say m2
h/〈Φ〉2 and M2

h/〈Φ〉2.
However, then, since M2

h ∼ Lm2
h � m2

h, are we faced with a weak- or a strong-coupling theory?
To approach the problem in a systematic way, let us first return to the one-loop relations

Equations (5) and (6) in Section 2 and observe that the vacuum energy depends on Mh, not on
mh, namely

E = Veff(±v) = −
M4

h
128π2 = const. Λ4

s exp(−64π2

3λ
) (20)

This means that the critical temperature to restore the symmetry, kBTc ∼ Mh, and the whole
stability of the broken-symmetry phase will depend on Mh, not on mh.

This remark will be crucial to understand the cutoff dependence of the various scales and to
formulate a description of SSB which in principle can be extended to the Λs → ∞ limit. In fact, since for
any non-zero low-energy coupling λ there is a Landau pole Λs, we will consider the entire set of pairs
(Λs,λ), (Λ′s,λ′), (Λ′′s ,λ′′)...with larger and larger cutoffs, smaller and smaller couplings but all with the
same vacuum energy as in Equation (20). This amounts to impose(

Λs
∂

∂Λs
+ Λs

∂λ

∂Λs

∂

∂λ

)
E(λ, Λs) = 0 (21)

a condition which can be derived from the more general requirement of RG-invariance for the effective
potential in the (ϕ, λ, Λs) 3-space(

Λs
∂

∂Λs
+ Λs

∂λ

∂Λs

∂

∂λ
+ Λs

∂ϕ

∂Λs

∂

∂ϕ

)
Veff(ϕ, λ, Λs) = 0 (22)

In fact, for ϕ = ±v, where (∂Veff/∂ϕ) = 0, Equation (21) follows directly from (22).
It is important that in this RG-analysis, besides a first invariant mass scale I1 = Mh, if we

introduce an anomalous dimension for the vacuum field

Λs
∂ϕ

∂Λs
≡ γ(λ)ϕ (23)

there will be a second invariant [22] associated with the RG-evolution in the (ϕ, λ, Λs) 3-space, namely

I2(ϕ) = ϕ exp(
∫ λ

dx
γ(x)
β(x)

) (24)

This invariant fixes a particular normalization (The anomalous dimension of ϕ reflects the fact that
from Equation (6), the cutoff-independent combination is λv2 ∼ M2

h = I2
1 and not v2 itself implying

γ = β/(2λ) [22]. This somewhat resembles the definition of the physical gluon condensate in QCD
which is 〈g2Fa

µνFaµν〉 and not just 〈Fa
µνFaµν〉.) of ϕ and is then the natural candidate to represent the

weak scale I2(v) = 〈Φ〉 ∼ 246.2 GeV. The minimization of the effective potential is then translated
into a proportionality of the two invariants through some constant K, say

Mh = K〈Φ〉 (25)

Such guiding principle indicates that Mh and 〈Φ〉 scale uniformly while at the same time, M2
h ∼

Lm2
h and 〈Φ〉2 ∼ Lm2

h. Therefore, by assuming the theoretical predictions for the ratio mh/〈Φ〉,
and computing the Mh/mh ratio from our lattice data for the propagator, we have extracted the
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constant K. As shown in [22] such procedure, where the cutoff-dependent L drops out, leads to a final
estimate K = 2.92± 0.12 or

Mh ∼ 720± 30 GeV (26)

which includes various statistical and theoretical uncertainties and updates the previous work of
refs. [24,25].

We emphasize that the relation Mh = K〈Φ〉 does not introduce a new large coupling 3K2 = O(10)
which modifies the phenomenology of the broken phase. This 3K2 is clearly quite distinct from the
other coupling λ = 3m2

h/〈Φ〉2 ∼ 1/L but should not be viewed as a coupling producing observable
interactions. Since M4

h reflects the magnitude of the vacuum energy density, it would be natural
to consider K2 ∼ λL as a collective self-interaction of the vacuum condensate which persists when
Λs → ∞. This original view [14,15] can intuitively be formulated in terms of a scalar condensate whose
increasing density ∼ L [6] compensates for the decreasing strength λ ∼ 1/L of the two-body coupling
(This view of SSB has some analogy with the occurring of superconductivity in solid-state physics.
There, the superconductive phase occurs even for an arbitrary small two-body attraction ε between
the two electrons in a Cooper pair. However, the energy density and the collective quantities of the
superconductive phase (as energy gap, critical temperature, etc.) depend on a much larger coupling
εN obtained by re-scaling ε with the large density of states at the Fermi surface. This means that the
same macroscopic description could be obtained with smaller and smaller ε and Fermi systems with
suitably larger and larger N. In this analogy λ is the counterpart of ε and K2 of εN).

Instead, λ ∼ 1/L is the right coupling for the individual interactions of the vacuum excitations,
i.e., the BEH field and the Goldstone bosons. Consistently with the “triviality” of λΦ4 theory,
these interactions will become weaker and weaker when Λs → ∞.

With this description of the scalar sector, and by using the Equivalence Theorem [26,27], the same
conclusion applies to the high-energy interactions of the BEH field with the longitudinal vector bosons
in the full ggauge 6= 0 theory. In fact, the limit of zero-gauge coupling is smooth [28]. Therefore, up to
corrections proportional to ggauge, a heavy BEH resonance will interact exactly with the same strength
as in the ggauge = 0 theory [29]. For the convenience of the reader, this point will be summarized in
Section 5. In Section 6, we will instead consider some phenomenological implications for the present
LHC experiments.

5. Observable Interactions for a Large Mh

As anticipated, the quantity 3K2 should be understood as a collective self-coupling of the scalar
condensate whose effects are re-absorbed into the vacuum structure. As such, it is basically different
from the coupling λ defined through the β−function

ln
µ

Λs
=
∫ λ

λ0

dx
β(x)

(27)

For β(x) = 3x2/(16π2) + O(x3), whatever the bare contact coupling λ0 at the asymptotically
large Λs, at finite scales µ ∼ Mh this gives λ ∼ 16π2/(3L) with L = ln(Λs/Mh). It is this latter
coupling which governs the residual interactions among the fluctuations with very small deviations
from a purely quadratic potential for Λs → ∞.

By introducing the W-mass Mw = ggauge〈Φ〉/2 and with the notations of [30], a convenient
way [29] to express these residual interactions in the scalar potential is (r = M2

h/4M2
w = K2/g2

gauge)

Uscalar =
1
2

M2
hh2 + ε1rggaugeMwh(χaχa + h2) +

1
8

ε2rg2
gauge(χ

aχa + h2)2 (28)
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The two parameters ε1 and ε2, which are usually set to unity, take into account the basic difference
λ 6= 3K2, i.e.,

ε2
1 = ε2 =

λ

3K2 ∼ 1/L (29)

Then, one can consider that corner of the parameter space [29], namely large K2 but Mh � Λs,
that does not exist in the conventional view where one assumes λ = 3K2.

A possible objection to this scenario might concern its validity in the full gauge theory. In fact,
the original calculation [31] in the unitary gauge could give the impression of the opposite view.
Specifically, that with a heavy Higgs resonance of mass Mh, longitudinal WLWL scattering is indeed
governed by the large parameter K2 = M2

h/〈Φ〉2. Since this is an important point, we will repeat here
the main argument of [29].

In the unitary-gauge calculation of WLWL → WLWL high-energy scattering, the lowest-order
amplitude A0 is formally O(g2

gauge) but one ends up with

A0(WLWL →WLWL) ∼
3M2

hg2
gauge

4M2
w

=
3M2

h
〈Φ〉2 = 3K2 (30)

In this chain, g2
gauge comes from the vertices. The 1/M2

w originates from the external longitudinal

polarizations ε
(L)
µ ∼ (kµ/Mw) and the factor M2

h emerges after expanding the Higgs field propagator

1
s−M2

h
→ 1

s
(1 +

M2
h

s
+ ...) (31)

Then the leading 1/s contribution cancels against a similar term from the other diagrams
(which otherwise would give an amplitude growing with s) and the M2

h from the expansion of
the propagator is effectively “promoted” to the role of coupling constant. In this way, one gets exactly
the same result as in a pure λΦ4 theory with a contact coupling λ0 = 3K2.

However, this is only the tree approximation. To obtain the full result, let us observe that the
Equivalence Theorem is a non perturbative statement which holds to all orders in the pure scalar
self-interactions [28]. Therefore, we have not to worry to re-sum the infinite series of higher-order
vector-boson graphs. However, from the χχ→ χχ amplitude at a scale µ for ggauge = 0

A(χχ→ χχ)
∣∣∣
ggauge=0

∼ λ ∼ 1
ln(Λs/µ)

(32)

we can deduce the result for the longitudinal vector bosons in the ggauge 6= 0 theory, i.e.,

A(WLWL →WLWL) = [1 + O(g2
gauge)] A(χχ→ χχ)

∣∣∣
ggauge=0

∼ λ ∼ 1
ln(Λs/µ)

(33)

Then, in the present perspective of a large but finite Λs, where mh and Mh now coexist and could
be experimentally determined, at µ ∼ Mh the putative strong interactions proportional to λ0 = 3K2

should actually be viewed as weak interactions controlled by the much smaller coupling

λ =
3m2

h
〈Φ〉2 = 3K2 m2

h
M2

h
(34)

Analogously, the conventional very large width into longitudinal vector bosons computed
with the coupling λ0 = 3K2, say Γconv(Mh → WLWL) ∼ M3

h/〈Φ〉2, should instead be re-scaled
by ε2

1 = (λ/3K2) = m2
h/M2

h. This gives
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Γ(Mh →WLWL) ∼
m2

h
M2

h
Γconv(Mh →WLWL) ∼ Mh

m2
h

〈Φ〉2 (35)

In this way, through the decays of the heavier state, the scalar coupling λ = 3m2
h/〈Φ〉2 ∼ 1/L

could finally become visible.

6. Some Predictions for the LHC Experiments

Let us take seriously the idea of a BEH field with two vastly different mass scales,
namely mh ∼ 125 GeV and Mh ∼ 700 GeV. Is there any experimental signal from the LHC experiments?
If so, what kind of phenomenology should we expect?

To address these questions, we will use a small but definite experimental evidence: the peak in the
4-lepton final state which is presently observed by the ATLAS Collaboration [32] for an invariant mass
µ4l = 700 GeV. We emphasize that this should be taken seriously. In fact, an independent analysis of
these data and their combination [33] with the corresponding ones of the CMS Collaboration indicates
an evident excess, over the background, at the level of about 5 sigma.

Of course, the 4-lepton channel is only one decay channel of a hypothetical heavier BEH resonance
and, for a more complete analysis, we should also consider the other final states. For instance the decay
into two photons, a channel that in the past has been showing other intriguing evidence for the near
energy µγγ ∼ 750 GeV. However, the 4-lepton channel, has the advantage of being experimentally very
clean and, just for this reason, is called the “golden” channel to detect a possible heavy BEH resonance.
At the same time, as in ref. [34], the main effect can be analyzed at a very simple level. For this reason,
one can meaningfully start from here.

Let us consider the peak in the number of events observed by ATLAS in the 4-lepton channel for
an invariant mass µ4l = 700 GeV (l = e, µ). From Figure 4a of [32] this corresponds to

3 . npeak[4l] . 9 ATLAS− 700 GeV (36)

above the very small background nbkg ∼ 1 event. By subtracting this background, we get

npeak[4l] ∼ 5± 3 (non− bkg) EXP (37)

Since the ATLAS efficiency for reconstructed 4-lepton events at large transverse momentum is
about 100%, for the given luminosity of 36.1 f b−1, we obtain a peak cross-section

σpeak(pp→ 4l) ∼ (0.14± 0.08) f b (38)

For our estimates, we will assume the invariant mass µ4l = 700 GeV to be the same pole mass
Mh = 700 GeV of our heavier excitation of the BEH field. Moreover, if we consider this as a relatively
narrow resonance, the corrections due to its virtual propagation should be small [35] and one could
approximate the result in terms of on-shell branching ratios as

σ(pp→ Mh → 4l) ∼ σ(pp→ Mh) · B(Mh → ZZ) · 4B2(Z → l+l−) (39)

In this relation, the Z−boson branching fraction into charged leptons is known precisely and one
finds 4B2(Z → l+l−) ∼ 0.0045.

Concerning the other branching ratio B(Mh → ZZ), for Mh = 700 GeV, the only unconventional
aspect of our picture concerns the coupling of the heavy BEH resonance to longitudinal vector bosons
which is proportional to λ = 3m2

h/〈Φ〉2 ∼ 1/L and not to 3M2
h/〈Φ〉2. Therefore, given a decay width

Γ(Mh → ZZ), we could use the conventional estimate for Mh = 700 GeV [36,37]

Γconv(Mh → ZZ) ∼ 56.7 GeV (40)



Symmetry 2020, 12, 2037 12 of 15

and, by replacing instead

Γ(Mh → ZZ) ∼
m2

h
M2

h
Γconv(Mh → ZZ) (41)

obtain mh as

mh ∼
√

Γ(Mh → ZZ)
56.7 GeV

700 GeV (42)

Equivalently, given a value of mh we can compute

Γ(Mh → ZZ) ∼
m2

h
(700 GeV)2 56.7 GeV (43)

Here, we will follow this latter strategy and assume mh = 125 GeV which gives

Γ(Mh → ZZ) ∼ 1.8 GeV (44)

Thus, to obtain B(Mh → ZZ), we only need to estimate the total decay width. Here, we will
retain exactly the other contributions reported in the literature [36,37] for Mh = 700 GeV

Γ(Mh → fermions + gluons + photons...) ∼ 28 GeV (45)

and the same dimensionless ratio
Γ(Mh →WW)

Γ(Mh → ZZ)
∼ 2.03 (46)

These input numbers (which have very small uncertainties) will then produce a total decay width

Γ(Mh → all) ∼ 28 GeV + 3.03 Γ(Mh → ZZ) ∼ 33.5 GeV (47)

and a branching ratio

B(Mh → ZZ) ∼ 1.8
33.5

∼ 0.054 (48)

Let us now consider the total cross-section σ(pp→ Mh), for production of a heavy BEH resonance
with mass Mh ∼ 700 GeV. Here, the two main contributions derive from more elementary parton
processes where two gluons or two vector bosons VV fuse to produce the heavy state Mh (here
VV = WW, ZZ would be emitted by two quarks inside the protons). For this reason, the two process
are usually called Gluon-Gluon Fusion (GGF) and Vector-Boson Fusion (VBF) mechanisms, i.e.,

σ(pp→ Mh) ∼ σ(pp→ Mh)GGF + σ(pp→ Mh)VBF (49)

The traditional importance of the latter process for large Mh is understood by noticing that the
VV → Mh process is the inverse of the Mh → VV decay and therefore σ(pp → Mh)VBF can be
expressed [38] as a convolution with the parton densities of the same BEH resonance decay width.
Thus, once its coupling to longitudinal W’s and Z’s were proportional to K2 = M2

h/〈Φ〉2, with a
conventional width Γconv(Mh → WW + ZZ) ∼ 172 GeV for Mh ∼ 700 GeV, the VBF mechanism
would become important. However, this coupling is not present in our model, where instead we expect

Γ(Mh →WW + ZZ) ∼
m2

h
M2

h
Γconv(Mh →WW + ZZ) ∼ 5.5 GeV (50)

For this reason, the whole VBF will also be correspondingly reduced from its conventional value
σconv(pp→ Mh)VBF = 250÷ 300 f b, i.e.,

σ(pp→ Mh)VBF ∼
5.5
172

σconv(pp→ Mh)VBF . 10 f b (51)
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This is much smaller than the uncertainty in the pure GGF contribution and will be ignored in
the following.

In the end, the GGF term. Here, we will separately adopt two slightly different estimates. On the
one hand, the value σ(pp → Mh)GGF = 800(80) fb of ref. [36] and on the other hand, the value
σ(pp→ Mh)GGF = 1078(150) fb of ref. [37]. These values refer to

√
s = 14 TeV and will be re-scaled by

about −12% for the present center of mass energy
√

s = 13 TeV. In the two cases, the errors take into
account uncertainties in the normalization scale and in the parametrization of the parton distributions.

Altogether, for B(Mh → ZZ) = 0.054 and 4B2(Z → l+l−) ∼ 0.0045, our predictions for the
4-lepton cross-section and the number of events (for luminosity of 36.1 f b−1 and 139 f b−1) are reported
in Table 1.

Table 1. For Mh = 700 GeV and mh = 125 GeV, we report our predictions for the peak cross-section
σ(pp→ 4l) and the number of events at two values of the luminosity. The two total cross sections are
our extrapolation to

√
s = 13 TeV of the values in [36,37] for

√
s = 14 TeV. As explained in the text,

only the GGF mechanism is relevant in our model.

σ(pp→ Mh) σ(pp→ 4l) n[4l](L = 36.1 f b−1) n[4l](L = 139 f b−1)

700(70) fb 0.17(2) fb 6.1± 0.6 23.6± 2.4

950(150) fb 0.23(4) fb 8.3± 1.3 32.1± 5.1

From this comparison we deduce that without introducing any free parameter, our model can
easily reproduce the presently observed number of events n[4l] ∼ 5± 3. This is why, our hypothetical
new resonance could naturally fit with the ATLAS peak. At present, this is the only possible conclusion
and a real test of our picture is postponed to the analysis of the entire statistics L = 139 f b−1. If the
new Mh ∼ 700 GeV were really there, the peak should become four times higher but remain well
above the background which is very small at that energy. Thus, the profile of the resonance should
become visible and direct determinations of the total decay width should be feasible. An experimental
result Γexp(Mh → all) = 33÷ 34 GeV would favor an experimental branching ratio Bexp(Mh → ZZ)
close to our reference value 0.054 and, therefore, improve the agreement of our smaller mh with the
value 125 GeV which is measured directly at LHC. Thus, the description of SSB given here would find
a first experimental confirmation.
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