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1. Introduction

Differential invariants of various groups play an important role in applications [1–3].
Classical curvatures of submanifolds in Euclidean space arise as differential invariants of the orthogonal
group. The corresponding problem for symplectic spaces was initiated in [4]. Further works in this
direction include [5–10]. In this paper we consider the linear symplectic group action and compute
the corresponding algebra of differential invariants. We will use either the standard representation or
its trivial extension; other actions were also considered in the literature [11] and we comment on the
relations of the above cited works to ours at the conclusion of the paper.

Let V = R2n(x, y) be equipped with the standard symplectic form ω = ∑n
1 dxi ∧ dyi.

Every infinitesimal symplectic transformation of V is given by the Hamiltonian function H ∈ C∞(V)

and has the form XH = ω−1dH, and the Lie bracket of vector fields corresponds to the Poisson bracket
of functions. By the Darboux-Givental theorem, the action of Symp(V, ω) has no local invariants.
However these arise when we restrict to finite-dimensional subalgebras/subgroups. Namely, functions
H quadratic in x, y form a subalgebra isomorphic to sp(2n,R). For functions of degree ≤2 we get the
affine symplectic algebra sp(2n,R)nR2n. We will concentrate on the linear case and compute the
algebra of differential invariants for submanifolds and functions on V.

It turns out that for curves and hypersurfaces one can describe the generators for all n that
we provide, while for the case of dimension and codimension greater than one, this becomes more
complicated. Of those, we consider in details only the case of surfaces in R4. Generators of the algebra
of differential invariants will be presented in the Lie-Tresse form as functions and derivations, and for
lower dimensions, we also compute the differential syzygies. We will mainly discuss the geometric
coordinate-free approach. The explicit formulae are rather large and will be shown in the Appendix A
only for n = 2.

We also consider the space W = R2n+1(x, y, z) equipped with the standard contact form α =

dz−∑n
1 yidxi. Every infinitesimal contact transformation of W is given by the contact Hamiltonian

H ∈ C∞(W) via α(XH) = H, XH(α) = ∂u(H), and the Lie bracket of vector fields corresponds to the
Lagrange bracket of functions. Again, the action of Cont(W, [α]) has no local invariants, however,
these arise when we restrict to finite-dimensional subalgebras/subgroups. Namely, functions H
quadratic in x, y, z with weights w(xi) = 1 = w(yi), w(z) = 2 form a subalgebra isomorphic to
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csp(2n,R). For functions of degree ≤2 we get the affine extension (R ⊕ sp(2n,R))n heis(2n + 1)
by the Heisenberg algebra. For simplicity, we will concentrate on the action of sp(2n,R), and then
comment how to extend to the conformally symplectic algebra and include the translations.

It is interesting to remark on the computational aspect of the results. There are two approaches
to compute differential invariants. The infinitesimal method is based on the defining Lie equations
and works universally for arbitrary Lie algebras of vector fields. The moving frame method is based
on elimination of group parameters and is dependent on explicit parametrization of the Lie group
(or pseudogroup in infinite-dimensional situation) and its action. In MAPLE, these in turn rely on
pdsolve and eliminate commands or some algorithmically optimized versions of those (via Gröbner
basis or similar). For the problem at hand, we can use both since one can locally parametrize the
group Sp(2n,R) and its linear action. The Lie algebra method works well in dimension 2 (symplectic
case n = 1) and fails further. The Lie group method works well in dimension 3 (contact case n = 1)
and fails further. Computational difficulties obstruct finishing calculations already in dimension 4
with these straightforward approaches. We show, however, how other geometric methods allow to
proceed further.

This paper is partially based on the results of [12], extending and elaborating it in several respects.
Some applications will be briefly discussed at the end of the paper. The paper is organized as follows.
In the next section, we recall the basics. Then, we describe in turn differential invariants of functions,
curves and hypersurfaces in symplectic vector spaces, and also discuss the particular case of surfaces in
R4. Then, we briefly discuss the invariants in contact vector spaces and demonstrate how to compute
differential invariants for conformal and affine extensions from our preceding computations.

We present most computations explicitly. Some large formulae are delegated to the Appendix A,
the other can be found as Supplementary Material in this article.

2. Recollections and Setup

We refer to [13] for details of the jet-formalism, summarizing the essentials here.

2.1. Jets

Let M be a smooth manifold. Two germs at a ∈ M of submanifolds N1, N2 ⊆ M of dimension n
and codimension m are equivalent if they are tangent up to order k at a. The equivalence class [N]ka
is called the k-jet of N at a. Denote Jk

a (M, n) the set of all k-jets at a and Jk(M, n) = ∪a∈M Jk
a (M, n) the

space of k-jets of n-submanifolds. This is a smooth manifold of dimension n + m(n+k
k ) and there are

natural bundle projections πk,l : Jk(M, n) → Jl(M, n) for k > l ≥ 0. Note that J0(M, n) = M and
J1(M, n) = Grn(TM), while πk,k−1 : Jk(M, n)→ Jk−1(M, n) are affine bundles for k > 1.

Since functions f ∈ C∞(M) can be identified with their graphs Σ f ⊂ M×R, the space of k-jets of
functions Jk M is defined as the space of k-jets of hypersurfaces Σ ⊂ M×R transversal to the fibers
of the projection to M. This jet space embeds as an open subset into Jk(M×R, n), where n = dim M
(and m = 1) and so its dimension is n + (n+k

k ).
Sometimes, we denote spaces Jk M and Jk(M, n) simply by Jk. The inverse limit along projections

πk,k−1 yields the space J∞ = lim←− Jk.
In local coordinates (x, y) on M a submanifold N can be written as yj = yj(xi), i = 1, . . . , n,

j = 1, . . . , m. Then the jet-coordinates are given by xi([N]ka) = ai, yj
σ([N]ka) =

∂|σ|yj

∂xσ (a) for a multi-index
σ = (i1, . . . , in) of length |σ| = ∑n

1 is ≤ k.

For the jets of functions u = u(x) we use the jet-coordinates xi([u]ka) = ai, uσ([u]ka) = ∂|σ|u
∂xσ (a).

We sometimes also write u instead of u0, and we often lower indices for the base coordinates, like xi
instead of xi etc, if no summation suffers.
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2.2. Prolongations

A Lie group action on a manifold M is a homomorphism Φ : G → Diff(M). Any g ∈ G determines
a point transformation Φg(a) = g · a, a ∈ M. This induces an action on germs of submanifolds, hence
on jets of submanifolds, namely

Φ(k)
g ([N]ka) = [Φg(N)]kΦg(a).

Similarly, if X is a vector field on M, corresponding to the Lie algebra g = Lie(G), the prolongation
or lift gives a vector field X(k) on Jk. If (x, u) are local coordinates on M (with xi interpreted as
independent and uj as dependent variables) and the vector field is given as X = ai∂xi + bj∂uj , then its
prolongation has the form

X(k) = aiD(k+1)
xi + ∑

|σ|≤k
Dσ(ϕj)∂

uj
σ
,

where ϕ = (ϕ1, . . . , ϕm) and ϕj = bj − aiuj
i is the generating vector-function, Dxi = ∂xi + ∑j,τ uj

τ+1i
∂

uj
τ

is the total derivative, D(k+1)
xi its truncation (restriction to (k + 1)-jets: |τ| ≤ k) and Dσ = Di1

x1 · · · Din
xn

for σ = (i1, . . . , in) is the iterated total derivative.

2.3. Differential Invariants

A differential invariant of order k is a function I on Jk, which is constant on the orbits of Φ(k)

action of G. If the Lie group G is connected this is equivalent to LX(k) I = 0 for all X ∈ g (some care
should be taken with this statement, mostly related to usage of local coordinate charts in jets, see the
first example in [14]).

The space of k-th order differential invariants forms a commutative algebra over R, denoted by
Ak. The injection π∗k+1,k induces the embedding Ak ⊂ Ak+1, and in the inductive limit we get the
algebra of differential invariants A ⊆ C∞(J∞), namely

A = lim−→Ak.

Denote by Ga = {g ∈ G : g · a = a} the stabilizer of a ∈ M. This subgroup of G acts on Jk
a .

The prolonged action of G is called algebraic if the prolongation G(k)
a is an algebraic group acting

algebraically on Jk
a ∀ a ∈ M. For our problem, the action of G on M is almost transitive and algebraic,

so by [14] the invariants I ∈ A can be taken as rational functions in jet-variables uj
σ; moreover they may

be chosen polynomial starting from some jet-order. This will be assumed in what follows.
In our situation A is not finitely generated in the usual sense since the number of independent

invariants is infinite. We will use the Lie–Tresse theorem [14] that guarantees that A is generated by a
finite set of differential invariants and invariant derivations.

Recall that an invariant derivation is such a horizontal (or Cartan) derivation ∇ : A → A
(obtained by a combination of total derivatives) that it commutes with the action of the group: ∀g ∈ G
we have g(k+1)

∗ ∇ = ∇g(k)∗ for k ≥ k0, where k0 is the order of ∇, which can be identified with the
highest order of coefficients in the decomposition ∇ = ∑i ai(x, uj

σ)Dxi . Equivalently we can write
∀X ∈ g: LX(k+1)∇ = ∇LX(k) for k ≥ k0. This implies ∇ : Ak → Ak+1 in the same range.

Invariant derivations form a submodule CDG ⊆ CD(J∞) in the space of all horizontal derivations.
It is a finitely generated A module: any ∇ ∈ CDG has the form ∇ = Ii∇i for a fixed set ∇i and Ii ∈ A.
By ([14] Theorem 21), the number of derivations ∇i is n.

We compose iterated operators ∇J : Ak → Ak+|J| for multi-indices J, and then A is generated by
∇J Ii for a finite set of Ii.

2.4. Counting the Invariants

An important part of our computations is a count of independent differential invariants.
Denote the number of those on the level of k-jets by sk. This number is equal to the transcendence
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degree of the field of differential invariants on Jk (when the elements of Ak are rational functions) and
it coincides with the codimension of G(k) orbit in Jk.

Since in our case G is a (finite-dimensional) Lie group, the action becomes eventually free,
i.e., G(k)

ak = id for sufficiently large k ≥ ` and generic ak ∈ Jk cf. [1]. In this case, the orbit is
diffeomorphic to G, in particular sk = dim Jk − dim G for k ≥ `.

The number of ”pure order“ k differential invariants is hk = sk − sk−1, so it becomes

hk = dim Jk − dim Jk−1 = m(n+k−1
k ) for k > `.

The Poincaré function P(z) = ∑∞
k=0 hkzk is rational in all local problems of analysis according to

Arnold’s conjecture [15]. In our case, this P(z) differs from m(1− z)−n by a polynomial reflecting the
action of G.

Note that by the eventual freeness of the action, the algebra A is generated by invariants and
derivations at most from the jet-level `.

2.5. The Equivalence Problem

The generators Ii (1 ≤ i ≤ s), ∇j (1 ≤ j ≤ n) are not independent, i.e., the algebra A is not
freely generated by them, in general. A differential syzygy is a relation among these generators.
Such an expression has the form F(∇J1(Ii1), . . . ,∇Jn(Iit)) = 0, where F is a function of t arguments
and J1, . . . , Jt are multi-indices. Choosing a generating set Fν of differential syzygies, we express

A = 〈Ii ;∇j | Fν〉.

This allows to solve the equivalence problem for submanifolds of functions with respect to G as
follows. Consider the above Lie–Tresse type representation of A. The collection of invariants Ii,∇j(Ii)

(totally r functions) allows to restore the generators, while the relations Fν constrain this collection.
Any submanifold N (for function f given as the graph Σ f ' M) canonically lifts to the jet-space J∞:
N 3 a 7→ [N]∞a . We thus map Ψ : N → Rr, Ψ(a) = (Ii([N]∞a ),∇j(Ii)([N]∞a )). Due to differential
syzygies the image is contained in some algebraic subset Q ⊂ Rr. Two generic submanifolds N1, N2

are G-equivalent iff Ψ(N1) = Ψ(N2) as (un-parametrized) subsets.

2.6. Conventions

All differential invariants below are denoted by I with a subscript. The subscript consists of
a number and a letter. The number reflects the order of an invariant, while the letter distinguishes
invariants of the same order. If no letter is given, there is only one new (independent) invariant on the
corresponding jet-space.

The symplectic Hamiltonian vector field in canonical coordinates on V has the form XH =

∑i Hyi ∂xi − Hxi ∂yi . The Poisson bracket given by [X f , Xg] = X{ f ,g} is equal to

{ f , g} =
n

∑
i=1

(
∂ f
∂xi

∂g
∂yi
− ∂ f

∂yi

∂g
∂xi

)
.

A basis of quadratic functions 〈xixj, xiyj, yiyj〉 3 f gives a basis of vector fields X f forming sp(2n,R).
This may be extended to csp(2n,R) by adding the homothety ζ = ∑i xi∂xi + yi∂yi that commutes with
sp(2n,R).

The contact Hamiltonian vector field in canonical coordinates on W has the form XH = H∂z +

∑n
1 D

(1)
xi (H)∂yi − HyiD

(1)
xi = (H − ∑ yi Hyi )∂z + ∑n

1 (Hxi + yi Hz)∂yi − Hyi ∂xi . The Lagrange bracket
given by [X f , Xg] = X[ f ,g] is equal to

[ f , g] =
n

∑
i=1

(
∂ f
∂xi

∂g
∂yi
− ∂g

∂xi

∂ f
∂yi

)
+

n

∑
i=1

yi

(
∂ f
∂z

∂g
∂yi
− ∂g

∂z
∂ f
∂yi

)
+

(
f

∂g
∂z
− g

∂ f
∂z

)
.
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A basis of quadratic functions 〈xixj, xiyj, yiyj〉 3 f gives a basis of vector fields X f forming sp(2n,R).
This may be extended to csp(2n,R) by adding the homothety X f = ∑i xi∂xi + yi∂yi + 2z∂z for f =

2z−∑i xiyi that commutes with sp(2n,R).

3. Functions on Symplectic Vector Spaces

The group G = Sp(2n,R) acts almost transitively on V = R2n (one open orbit that complements
the origin), and it is lifted to J0V = V ×R(u) with I0 = u being invariant. The prolonged action has
orbits of codimension 2 on J1V (one more invariant appears) and then the action becomes free on J2V.

An invariant on J1 is due to the invariant 1-form du and the invariant (radial) vector field
ζ = ∑i xi∂xi + yi∂yi : their contraction yields

I1 = du(ζ) =
n

∑
i=1

xiuxi + yiuyi .

3.1. The Case of Dimension 2n = 2

Here V = R2(x, y). To compute differential invariants of order k we solve the equation L
X(k)

i
I = 0,

I ∈ C∞(JkV), for a basis of the Lie algebra sp(2,R) = sl(2,R): X1 = x∂y, X2 = x∂x − y∂y, X3 = y∂x.
For k = 2, in addition to I0 and I1, we get

I2a = x2uxx + 2xyuxy + y2uyy,

I2b = xuyuxx − yuxuyy + (yuy − xux)uxy,

I2c = u2
xuyy − 2uxuyuxy + u2

yuxx.

These invariants are functionally (hence algebraically) independent.
To determine the invariant derivations, we solve its defining PDE. The invariant derivations of

order k = 1 are linear combinations of

∇1 = xDx + yDy, ∇2 = uxDy − uyDx.

Let A denote the algebra of differential invariants, whose elements can be assumed polynomial
in all jet-variables. Since the obtained invariants are quasi-linear in their respective top jet-variables,
and this property is preserved by invariant derivations, the algebra A is generated by them.

To find a more compact description, note that I1 = ∇1(I0) and

I2a = ∇2
1(I0)−∇1(I0), I2b = −∇2∇1(I0).

Thus only I0 and I2c suffice to generate A.
To describe the differential syzygies, note that ∇2(I0) = 0, and the commutator relation is

[∇1,∇2] =
I2b
I1
∇1 +

I2a − I1

I1
∇2.

In addition, when applying∇1,∇2 to I2a, I2b, I2c and using the commutator relation we get five different
invariants of order 3, while there are only four independent 3-jet coordinates. Thus computing the
symbols of the invariants and eliminating those coordinates we obtain the remaining syzygy:

(∇2(I2b) +∇1(I2c))I1 − (3I2a − I1)I2c + 3I2
2b = 0.
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To summarize, define

R1 = ∇2(I0),

R2 = I1[∇1,∇2]− I2b∇1 − (I2a − I1)∇2,

R3 = I1∇2(I2b) + I1∇1(I2c)− (3I2a − I1)I2c + 3I2
2b.

Then, the algebra of differential invariants is given by generators and relations as follows:

A = 〈I0, I2c ; ∇1,∇2 | R1,R2,R3〉.

3.2. Another Approach for n = 1

We act similar to [16].
Note that ∇1 corresponds to the radial vector field ζ and ∇2 = ω−1d̂u, where d̂ is the horizontal

differential (in this case d̂ = dx⊗Dx + dy⊗Dy, so d̂u = ux dx + uy dy). To find further invariants and
derivations we consider the quadratic form

Q2 = d2u = uxxdx2 + 2uxydx dy + uyydy2 ∈ π∗2 S2T∗V.

Lowering the indices with respect to the symplectic form (or partially contracting with ω−1 = ∂x ∧ ∂y)
we get the endomorphism

A = ω−1Q2 = uyy∂x ⊗ dy− uxy∂y ⊗ dy + uxy∂x ⊗ dx− uxx∂y ⊗ dx.

This can be lifted to the Cartan distribution on J∞ and thus applied to horizontal fields:

A∇1 = (xuxy + yuyy)Dx − (xuxx + yuxy)Dy,

A∇2 = (uxuyy − uyuxy)Dx − (uxuxy − uyuxx)Dy.

These are also invariant derivations and they can be expressed through the previous as follows:

A∇1 = − I2b
I1
∇1 −

I2a

I1
∇2, A∇2 =

I2c

I1
∇1 +

I2b
I1
∇2.

Note also that I2a = Q2(∇1,∇1), I2b = −Q2(∇1,∇2), I2c = Q2(∇2,∇2), so that we can generate all
the invariants uniformly.

3.3. The General Case

In general dimension 2n we still have the invariant derivations ∇1 corresponding to the radial
field ζ and ∇2 = ω−1Q1 for Q1 = d̂I0. Then, the horizontal field of endomorphisms A = ω−1Q2 for
Q2 = d̂2 I0 generates the rest: the invariant derivations ∇i+2 = Ai∇2 (alternatively ∇i+2 = Ai∇1)
for i = 1, . . . , 2n− 2 are independent (also with ∇1,∇2) on a Zariski open subset in the space of jets.
This gives a complete set of invariant derivations ∇1, . . . ,∇2n.

Taking into account I1 = ∇1(I0) the generating set of invariants can be taken I0 and Iij =

Q2(∇i,∇j). By dimensional count and independence it is enough to restrict to i = 1, 2 and 1 ≤ j ≤ 2n.
We obtain:
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Theorem 1. The algebra of differential invariants of the G-action on J∞(V) is

A = 〈I0, I1i, I2j ; ∇k | Rl〉

for some finite set of differential syzygiesRl .

This is a Lie-Tresse type of generation of A. Note also the following (non-finite) generation of this
algebra. The higher symmetric differentials Qk = dku ∈ π∗k SkT∗V can be contracted with invariant
derivations to get k-th order differential invariants Qk(∇j1 , . . . ,∇jk ). These clearly generate A.

There is an algorithmic way of describing relations (syzygies) between these invariants similar
to ([16], Section 4). We refer for explicit formulae of invariants to [12] for n = 2.

4. Curves in Symplectic Vector Spaces

Locally a curve in R2n is given as u = u(t) for t = x1 and u = (x2, . . . , xn, y1, . . . , yn) in the
canonical coordinates (x1, x2, . . . , xn, y1, . . . , yn) . The corresponding jet-space Jk(V, 1) has coordinates
ul , l ≤ k, where l stands for the l-tuple of t. For instance, J1(V, 1) = R4n−1(t, u, u1). Note that
dim Jk(V, 1) = 2n + k(2n− 1).

4.1. The Case of Dimension 2n = 2

Let us again start with the simplest example V = R2(x, y). The jet-space is Jk(V, 1) =

Rk+2(x, y, y1, . . . , yk). Here G = Sp(2,R) has an open orbit in J1(V, 1), and there is one new differential
invariant in every higher jet-order k.

Let us indicate in this simple case how to verify algebraicity of the action (this easily generalizes

to the other cases and will not be discussed further). The 1-prolonged action of g =

(
a b
c d

)
∈ G is

Φ(1)
g (x, y, y1) =

(
ax + by, cx + dy,

dy1 + c
by1 + a

)
.

Since the action is transitive on J0(V, 1) \ 0 = R2
×, choose p = (1, 0) as a generic point. Its stabilizer is

Gp =

{(
1 b
0 1

)}
⊂ G. The action of this on the fiber π−1

1,0 (p) is algebraic: y1 7→ y1
by1+1 .

Thus, the Lie-Tresse theorem [14] applies and the algebra of invariants A can be taken to consist
of rational functions in jet-variables, which are polynomial in jets of order ≥2.

The first differential invariant is easily found from the Lie equation:

I2 =
y2

(xy1 − y)3 .

Similarly, solving the PDE for the coefficients of invariant derivation, we find

∇ =
1

xy1 − y
Dx.

Now by differentiation, we get new differential invariants I3 = ∇I2, I4 = ∇2 I2, etc. Since these are
quasilinear differential operators, they generate the entire algebra. In other words, the algebra of
differential invariants is free:

A = 〈I2 ; ∇〉.
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4.2. The Case of Dimension 2n = 4

Let us use coordinates (t, x, y, z) on V = R4 with the symplectic form ω = dt ∧ dy + dx ∧ dz.
Note that dim Jk(V, 1) = 3k + 4, and the jet-coordinates on Jk are (t, x, y, z, . . . , xk, yk, zk). The action
of G = Sp(4,R) on Jk(V, 1) has orbits of dimensions 4, 7, 9, 10 for k = 0, 1, 2, 3 respectively. Thus the
first differential invariant appears already in jet-order 2, then two more appear in jet-order 3, and then
hk = 3 new invariants in every jet-order k ≥ 4.

The infinitesimal and moving frame methods fail to produce enough invariants here, so we apply
more geometric considerations.

We exploit that G preserves the symplectic form on V, but also the fact that the action is linear,
so the vector space structure of V is preserved as well. In particular, the origin is preserved, so we
can form a vector from the origin to any point p = (t, x, y, z) ∈ J0(V, 1). Denote the corresponding
vector by

v0 = (t, x, y, z) ≡ t∂t + x∂x + y∂y + z∂z.

Consider the space of 1-jets of unparametrized curves J1(V, 1). For a parameterization of the
curve c = (t, x(t), y(t), z(t)) the tangent vector at any point of this curve can be computed as w1 =

D(1)
t = ∂t + x1∂x + y1∂y + z1∂z, which is rescaled v1 = βw1 upon a change of parametrization. To make

v1 invariant we fix β by the condition ω(v0, v1) = 1. This normalization β = 1/(ty1 + xz1 − x1z− y)
gives a canonical horizontal (that is tangent to the curve) vector field, which can be interpreted as an
invariant derivative

∇ =
1

(ty1 + xz1 − x1z− y)
Dt.

The further approach is as follows. On every step there is a freedom associated to a
parameterization of a given curve. Fixing it in a canonical way via evaluation with the symplectic
form, we obtain invariantly defined vectors and henceforth invariants.

On the first step, changing the parameterization c = c(t) to another parameterization c = c(τ)
results in a change of the tangent vector by the chain rule:

dc
dt

=
dτ

dt
dc
dτ

.

This can be written as w1 = k1v1, for dτ/dt = k1. The vector w1, associated with a specific choice of
parameterization, is not canonical but convenient for computations. The above normalization k1 = 1/β

makes v1 a canonical choice.
The change of parameterization on 2-jets gives

d2c
dt2 =

d2c
dτ2

(
dτ

dt

)2
+

dc
dτ

d2τ

dt2 .

Denote v2 = d2c/dτ2, w2 = d2c/dt2 and d2τ/dt2 = k2. The equation becomes

w2 = v2k2
1 + v1k2.

In the parameterization c = c(t) the acceleration is w2 = (0, x2, y2, z2). We solve for v2 as

v2 =
w2 − v1k2

k2
1

.

Then, k2 can be fixed by ω(v0, v2) = 0. This uniquely determines v2, which can now be used to find
the first differential invariant. In fact, I2 = ω(v1, v2) is a differential invariant of order 2. In coordinates

I2 = ω(v1, v2) =
x1z2 − z1x2 + y2

(ty1 + xz1 − zx1 − y)3 .
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There are 2 independent third order invariants by our dimension count. The first can be obtained
as ∇(I2), to find the second we exploit the above normalization method on 3-jets. The change of
parameterization is

d3c
dt3 =

d3c
dτ3

(
dτ

dt

)3
+ 3

d2c
dτ2

dτ

dt
d2τ

dt2 +
dc
dτ

d3τ

dt3 .

Again, rewrite it in simpler notations as

w3 = v3k3
1 + 3k1k2v2 + k3v1.

Here, w3 = (0, x3, y3, z3) and the unknown k3 can be fixed by the condition ω(v0, v3) = 0, where

v3 =
w3 − 3k1k2v2 − k3v1

k3
1

.

This uniquely determines v3, which allows the computation of two new differential invariants:

I3a = ω(v1, v3), I3b = ω(v2, v3).

The invariants I3a and I3b are independent, but I3a can be expressed through∇(I2), so it is not required
in what follows.

Finally, we explore the forth order chain rule

d4c
dt4 =

d4c
dτ4

(
dτ

dt

)4
+ 6

d3c
dτ3

(
dτ

dt

)2 d2τ

dt2 +
d2c
dτ2

(
4

dτ

dt
d3τ

dt3 + 3
(

d2τ

dt2

)2)
+

dc
dτ

d4τ

dt4

that can be written as
w4 = v4k4

1 + 6v3k2
1k2 + v2

(
4k1k3 + 3k2

2

)
+ v1k4

with w4 = (0, x4, y4, z4). Find k4 by ω(v0, v4) = 0. This uniquely determines v4, then the invariants of
order 4 are found by the formulae

I4a = ω(v1, v4), I4b = ω(v2, v4), I4c = ω(v3, v4).

These are independent, but I4a and I4b can be expressed by the invariants of order 3 and the invariant
derivation, so they will not be required in what follows.

This gives the necessary invariants to generate the entire algebra of differential invariants.
To summarize, if we denote I3 = I3b and I4 = I4c, then the algebra of differential invariants is
freely generated as follows

A = 〈I2, I3, I4 ; ∇〉.

The explicit coordinate formulae of invariants are shown in the Appendix A.

4.3. The General Case

In dimension dim V = 2n the following dimensional analysis readily follows from the
normalization procedure developed above.
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Jet-level k dim Jk(V, 1) G-orbit dimension # new invariants hk
0 2n 2n 0
1 4n− 1 2n + (2n− 1) = 4n− 1 0
2 6n− 2 (4n− 1) + (2n− 2) = 6n− 3 1
3 8n− 3 (6n− 3) + (2n− 3) = 8n− 6 2
4 10n− 4 (8n− 6) + (2n− 4) = 10n− 10 3
. . . . . . . . . . . .
k 2n + k(2n− 1) 2(k + 1)n− (k+1

2 ) k− 1
. . . . . . . . . . . .
2n− 1 (2n− 1)2 + 2n (2n+1

2 ) 2n− 2
2n 4n2 99K stabilized 2n− 1

In particular, the number of pure order k differential invariants is hk = k− 1 for 1 ≤ k ≤ 2n and
hk = 2n− 1 for k > 2n.

If the canonical coordinates in R2n are (t, x, y, z), where x and z and (n− 1)-dimensional vectors,
then the invariant derivation is equal to

∇ =
1

(ty1 − y + xz1 − x1z)
Dt.

We also obtain the first differential invariant of order 2

I2 =
(x1z2 − x2z1 + y2)

(ty1 − y + xz1 − x1z)3 .

Then, we derive the differential invariant ∇(I2) and add to it another differential invariant I3 of order
3. Then, we derive the differential invariants ∇2(I2),∇(I3) and add another differential invariant I4 of
order 4. We continue obtaining new invariants by using the higher order chain rule and normalization
via the symplectic form up to order 2n.

In summary, we obtain 2n − 1 independent differential invariants I2, . . . , I2n of orders
2, . . . , 2n respectively.

Theorem 2. The algebra of differential invariants of the G-action on J∞(V, 1) is freely generated as follows:

A = 〈I2, . . . , I2n ; ∇〉.

5. Hypersurfaces in Symplectic Vector Spaces

Since hypersurfaces in R2 are curves, the first new case come in dimension 4. We consider this
first and then discuss the general case.

5.1. The Case of Dimension 2n = 4.

Let V = R4, denote its canonical coordinates by (x, y, z, u) with ω = dx ∧ dz + dy ∧ du.
Hypersurfaces can be locally identified as graphs u = u(x, y, z) and this gives parametrization of an
open chart in Jk(V, 3). We use the usual jet-coordinates ux, uxx, uyz, etc.

As is the cases above, straightforward computations become harder. Maple is not able to compute
all required invariants and derivations, so we again rely on a more geometric approach. Before going
through the method, we investigate the count of invariants.

The group G = Sp(4,R) acts with an open orbit on J0(V, 3). On the space of 1-jets the dimension
of the orbit is 7 = dim J1(V, 3), hence there are no invariants. The orbit stabilization is reached on
J2(V, 3), where the action is free. The rank of the action is 10 and dim J2(V, 3) = 13, so there are h2 = 3
independent differential invariants. For k > 2, the number of new differential invariants is hk = (k+2

2 ).
In particular, h3 = 10.
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The number of independent invariant derivations is 3, so these and 3 invariants of order 2
generate a total number of 9 invariants of order 3. In addition, commutators of invariant derivations
[∇i,∇j] = Ik

ij∇k give up to 9 more differential invariants of order 3. We will confirm that the totality of
these 18 contain 10 independent invariants of order 3, and hence suffice to generate also the differential
invariants of higher order.

The 0-jet p = (x, y, z, u) ∈ J0(V, 3) can be identified with the vector from the origin to this point,
which we denote by

v0 = (x, y, z, u) ≡ x∂x + y∂y + z∂z + u∂u.

The 1-jet of a hypersurface Σ = {u = u(x, y, z)} can be identified with its tangent space

TpΣ = 〈∂x + ux∂u, ∂y + uy∂u, ∂z + uz∂u〉 = 〈D(1)
x ,D(1)

y ,D(1)
z 〉.

The orthogonal complement to TpΣ with respect to ω is generated by

w1 = ∂y − uz∂x + ux∂z + uy∂u,

that is TpΣ⊥ω = 〈w1〉. The vector w1 is determined up to scale, which we fix via the symplectic form
so: v1 = k1w1 must satisfy ω(v0, v1) = 1. This normalization gives k1 = 1/(xux + yuy + zuz − u),
so the canonical vector v1 is equal to

v1 =
1

xux + yuy + zuz − u
(∂y − uz∂x + ux∂z + uy∂u).

This vector field is tangent to the hypersurface, so it is horizontal and can be rewritten in terms of the
total derivative. This yields the first invariant derivation:

∇1 =
Dy − uzDx + uxDz

xux + yuy + zuz − u
.

Let q = −u + u(x, y, z) be a defining function of the hypersurface Σ = {q = 0}. We have
TpΣ = Ker dq. A change of the defining function q′ = f q of Σ, with f ∈ C∞(V) such that f |Σ 6= 0, has
the following effect on the differential: dq′ = q d f + f dq. Therefore at p ∈ Σ we have dpq′ = f (p)dpq
and so TpΣ = Ker dq′.

Next we compute the second symmetric differential d2q of the defining function for Σ. A change
of the defining function q′ = f q has the following effect on the second differential:

d2q′ = d(d( f q)) = d(q d f + f dq) = q d2 f + 2 d f dq + f d2q.

At the points p ∈ Σ this simplifies to

d2
pq′ = 2 dp f dpq + f (p) d2

pq.

Restricting to the tangent space of Σ gives

d2q′
∣∣
TpΣ = f (p)d2q

∣∣
TpΣ.

Thus, the defining differential dq and the quadratic form d2q are defined up to the same scale.
We fix it again via the symplectic form: dpq′ = k2dpq must satisfy dpq′(v0) = 1, i.e., k2 = 1/dq(v0) for
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generic 1-jets. This normalization gives the quadratic form d2q′|TpΣ = k2d2q
∣∣
TpΣ = d2q

∣∣
TpΣ/dq(v0).

In coordinates, with q = −u + u(x, y, z), we get the expression

Q = d2q′
∣∣
TpΣ =

uxxdx2 + 2uxydxdy + 2uxzdxdz + uyydy2 + 2uyzdydz + uzzdz2

xux + yuy + zuz − u
.

The first invariant is then computed by

I2a = Q(v1, v1) =
u2

xuzz − 2uxuzuxz + u2
zuxx + 2uxuyz − 2uzuxy + uyy

(xux + yuy + zuz − u)3 .

Let us summarize the geometric data encoding the 2-jet that we obtained and which are supported
on the 3-dimensional tangent space TpΣ: the invariant vector v1, the symmetric 2-form Q of general
rank, the skew 2-form ω|TpΣ of rank 2 (v1 spans its kernel), and 1-form α = ω(v0, ·). These data
give a canonical splitting of the tangent space TpΣ = 〈v1〉 ⊕ Π, where Π = Ker(α). Indeed,
v1 /∈ Ker(α) because ω(v0, v1) = 1 by the normalization. Using this data, we can construct 2 more
invariant derivations.

Choose a nonzero w3 ∈ Π, Q(v1, w3) = 0. Then, choose w2 ∈ Π, Q(w2, w3) = 0. For generic
2-jet, the vectors w2, w3 are defined up to scale that we fix so: v2 ∈ 〈w2〉, v3 ∈ 〈w3〉 must satisfy
Q(v1, v2) = 1, ω(v2, v3) = 1.

Since v2, v3 ∈ TpΣ are horizontal, they generate two invariant derivations ∇2,∇3. Additionally
we get 2 differential invariants:

I2b = Q(v2, v2), I2c = Q(v3, v3).

A calculation of the rank of the corresponding Jacobi matrix shows that these are independent, and
moreover, that the data generate all differential invariants of order 3. Then, by independence of
∇1,∇2,∇3 all higher order invariants can be derived, so for a finite set of differential syzygies Rl
we get:

A = 〈I2a, I2b, I2c ; ∇1,∇2,∇3 | Rl〉

The coordinate formulae can be found in [12] (note that renumeration v2 ↔ v3 and a different
normalization is taken here).

5.2. The General Case

Now, we consider jets of hypersurfaces Σ ⊂ V = R2n for general n and compute their differential
invariants with respect to G = Sp(2n,R).

By the Lie-Tresse theorem [14] the algebra A can be assumed to consist of rational functions on
J∞(V, 2n− 1), which are polynomial in jet-variables of order ≥ 2.

The dimensional count easily generalizes to give h0 = h1 = 0, h2 = 2n− 1 and hk = (2n−2+k
k ) for

k > 2. There will be 2n− 1 independent invariant derivations ∇j, and as before these together with
second order invariants I2s (1 ≤ s ≤ 2n− 1) and the structure coefficients Ik

ij of the horizontal frame
∇j will suffice to generate all invariants.

We again have the position vector v0, the tangent vector v1 normalized by ω(v0, v1) = 1, and the
quadratic form Q on TpΣ. From this data in a Zariski open set of J2(V, 2n− 1) of generic 2-jets we get
a canonical basis v1, . . . , v2n−1 by normalizing in turn via ω and Q as follows (we repeat steps 0 and 1
that are already performed).

Step 0: TpΣ = 〈v1, . . . , v2n−1〉.
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Step 1: Choose v1 by 〈v1〉 ⊥ω 〈v1, . . . , v2n−1〉, 〈v2, . . . , v2n−1〉 ⊥ω 〈v0〉. Normalize ω(v0, v1) = 1.
Step 2: Choose v2 by 〈v3, . . . , v2n−1〉 ⊥Q 〈v1〉, 〈v2〉 ⊥Q 〈v3, . . . , v2n−1〉. Normalize Q(v1, v2) = 1.
Step 3: Choose v3 by 〈v3〉 ⊥ω 〈v3, . . . , v2n−1〉, 〈v4, . . . , v2n−1〉 ⊥ω 〈v2〉. Normalize ω(v2, v3) = 1.
Step 4: Choose v4 by 〈v5, . . . , v2n−1〉 ⊥Q 〈v3〉, 〈v4〉 ⊥Q 〈v5, . . . , v2n−1〉. Normalize Q(v3, v4) = 1.
Inductively, we get the interchangeable steps as follows.
Step (2r − 1): Choose v2r−1 by 〈v2r−1〉 ⊥ω 〈v2r−1, . . . , v2n−1〉, 〈v2r, . . . , v2n−1〉 ⊥ω 〈v2r−2〉.

Normalize ω(v2r−2, v2r−1) = 1.
Step 2r: Choose v2r by 〈v2r+1, . . . , v2n−1〉 ⊥Q 〈v2r−1〉, 〈v2r〉 ⊥Q 〈v2r+1, . . . , v2n−1〉. Normalize

Q(v2r−1, v2r) = 1.
The procedure stops at step (2n− 1). The frame vi is canonical:

ω−1 = v0 ∧ v1 + v2 ∧ v3 + · · ·+ v2n−2 ∧ v2n−1.

The only non-constant entries of the Gram matrix of Q in the basis vi are diagonal Q(vi, vi) = I2,i for
1 ≤ i < 2n. The Gram matrix consists of (n− 1) diagonal blocks of size 2× 2 and 1 diagonal block of
size 1× 1 as follows:

Q v1 v2 v3 v4 . . . v2n−3 v2n−2 v2n−1

v1 I2,1 1 0 0 . . . 0 0 0
v2 1 I2,2 0 0 . . . 0 0 0
v3 0 0 I2,3 1 . . . 0 0 0
v4 0 0 1 I2,4 . . . 0 0 0
...

...
...

...
...

. . .
...

...
...

v2n−3 0 0 0 0 . . . I2,2n−3 1 0
v2n−2 0 0 0 0 . . . 1 I2,2n−2 0
v2n−1 0 0 0 0 . . . 0 0 I2,2n−1

The horizontal vector fields vj correspond to invariant derivations ∇j, 1 ≤ j ≤ 2n − 1.
To summarize, we obtain the following statement.

Theorem 3. For the G-action on J∞(V, 2n− 1) the algebra A is generated by the differential invariants I2,i
and the invariant derivations ∇j, where 1 ≤ i, j ≤ 2n− 1.

6. General Submanifolds in a Symplectic Vector Space

The case of submanifolds of dimension and codimension greater than 1 is more complicated, no
straightforward computations work for G = Sp(2n,R) action on J∞(V, m), V = R2n. Yet, the geometric
methods applied above do generalize, and to illustrate this, we consider the simplest case n = m = 2
and then remark on the general case.

6.1. Surfaces in a Four-Dimensional Symplectic Space

The action has an open orbit in J1(V, 2), but becomes free on the level of 2-jets.
Since dim J2(V, 2) = 14 we get h2 = 4 differential invariants of order 2 and then at every higher
order k > 2 there will be hk = 2(k + 1) new invariants.

There will be two independent invariant derivations. Applying those to four differential invariants
of the second order gives a total of 8 invariants of order 3. A direct computation shows that
these are functionally (hence algebraic) independent. Since h3 = 8 this is enough to generate all
differential invariants.

In this case the algebra A of differential invariants can be chosen to consist of rational functions
that are polynomial in jets-variables of order >2.

Having done the counting, we can proceed with the geometric approach. Choose canonical
coordinates (t, s, x, y) on V = (R4, ω). Locally surfaces in V are given as Σ = {x = x(s, t), y = y(s, t)}.
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Here s, t will be treated as independent and x, y as dependent variables, whence the coordinates on
J∞(V, 2).

The 0-jet p = (t, s, x, y) ∈ J0 can be identified with the vector to that point from the origin
v0 = t∂t + s∂s + x∂x + y∂y.The 1-jet can be identified with the tangent space

TpΣ = 〈D(1)
t ,D(1)

s 〉 = 〈∂t + xt∂x + yt∂y, ∂s + xs∂x + ys∂y〉.

Equivalently, if the surface is described by Σ = { f = 0, g = 0} with f = x− x(t, s) and g = y− y(t, s),
then TpΣ = Ann(dp f , dpg), where dp f = dx− xtdt− xsds and dpg = dy− ytdt− ysds.

The restriction of ω to TpΣ has rank 2 on generic 1-jets, so TpΣ is a symplectic subspace of
dimension 2 and TpV = TpΣ⊕ TpΣ⊥ω.

Denote by π1 : TpV → TpΣ and π2 : TpV → TpΣ⊥ω the natural projections with respect
to this decomposition. Further for v ∈ TpV denote v = v‖ + v⊥, where v‖ = π1(v) ∈ TpΣ and
v⊥ = π2(v) ∈ TpΣ⊥ω.

Thus, 1-jet [Σ]1p is entirely encoded by (TpΣ, ω|TpΣ, v‖0) and (TpΣ⊥ω, ω|TpΣ⊥ω , v⊥0 ). Note also that

Ann(TpΣ) is identified with TpΣ⊥ω by the symplectic form ω.
Moving on to 2-jets there is more structure on the tangent space. The defining functions f , g can be

changed to F = α f + βg, G = γ f + δg, where α, β, γ, δ are arbitrary functions that satisfy αδ− βγ 6= 0
along Σ. Then Σ = {F = 0, G = 0} and the tangent space can be described as the annihilator of the
differentials of the new defining functions at p ∈ Σ:

dpF = α(p)dp f + β(p)dpg,

dpG = γ(p)dp f + δ(p)dpg.

Next, compute the second symmetric differential of f , g and restrict to TpΣ. Doing the same for F, G
results in

d2
pF = α(p)d2

p f + β(p)d2
pg,

d2
pG = γ(p)d2

p f + δ(p)d2
pg.

This gives a 2-dimensional spaceQ = 〈d2
p f |TpΣ, d2

pg|TpΣ〉 = 〈d2
pF|TpΣ, d2

pG|TpΣ〉 of quadratic forms, and
the above formulae show that there is a natural isomorphism between Ann(TpΣ) ⊂ T∗p V and Q. Our
goal is to find a canonical basis Q1, Q2 in this space.

Let Q1 ∈ Q be given by the condition Q1(v
‖
0 , v‖0) = 0. This ensures that Q1 has a Lorentzian

signature or is degenerate, and for a generic 2-jet we get that Q1 is non-degenerate. The vector v‖0
becomes null-like vector for Q1 that is yet defined up to scale. A Lorentzian metric on the plane has
two independent null-like vectors and this gives a way to fix Q1 and a vector w‖ ∈ TpΣ complementary

to v‖0 as follows:

ω(v‖0 , w‖) = 1, Q1(w‖, w‖) = 0, Q1(v
‖
0 , w‖) = 1.

Note that this does not involve square roots, but only linear algebra. Indeed, the first condition fixes
the second null-like vector up to change w‖ 7→ w‖ + kv‖0 . The second condition fixes k and the last
normalizes Q1.

The quadratic form Q1 corresponds to a 1-form σ1 ∈ Ann(TpΣ) such that the symmetric
differential of an extension of σ1 to a section of Ann(TΣ), restricted to TpΣ equals Q1 = dsym

p σ1.
Then, fix w⊥ ∈ TpΣ⊥ω uniquely by the conditions σ1(w⊥) = 0, ω(v⊥0 , w⊥) = 1 (for a generic 2-jet
σ1(v⊥0 ) 6= 0).

Then, define σ2 ∈ Ann(TpΣ) by the conditions σ2(v⊥0 ) = 0, σ2(w⊥) = 1. This gives a unique
1-form independent of σ1. It in turn corresponds to a quadratic form Q2 = dsym

p σ2.
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The remaining evaluations yield differential invariants

I2a = σ1(v⊥0 ), I2b = Q2(v
‖
0 , v‖0), I2c = Q2(v

‖
0 , w‖), I2d = Q2(w‖, w‖).

The vectors v‖0 and w‖ are tangent vectors to Σ (horizontal) so they correspond to the invariant
derivations ∇1,∇2 and we conclude:

Theorem 4. For the G-action on J∞(V, 2) the algebra A is generated by the differential invariants
I2a, I2b, I2c, I2d and invariant derivations ∇1,∇2.

The explicit form of these generators in jet-coordinates can be found in [12].

6.2. A Remark about the General Case

In general, it is easy to check that G = Sp(2n,R) acts with one open orbit in J1(V, m), V = R2n,
so there are no first order invariants. However, there are always second order invariants. Their number
is at least dim J2(V, m)− n(2n + 1), but this can be non-positive for m� n.

Thus, combining the ideas on differentials and quadratic forms with ω-orthogonal complements,
one can get some of the invariants. If they are not sufficient, third and higher symmetric powers dr f of
the defining functions f should be explored.

From the investigated cases, we cannot observe a pattern and hence cannot universally describe
all differential invariants of G = Sp(2n,R) action on J∞(V, m), V = R2n.

7. Note on Extension of the Group

One can also consider invariants of functions and submanifolds in symplectic V = R2n with
respect to conformal symplectic group CSp(2n,R) = Sp(2n,R)× R+, the affine symplectic group
ASp(2n,R) = Sp(2n,R)nR2n and affine conformal symplectic group ACSp(2n,R) = CSp(2n,R)n
R2n. Denote a group in this list by H.

Since our G is a subgroup of H, the algebras of differential invariants AH for each of the cases
are subalgebras in the algebra AG that we previously computed (enhanced notations should be
self-evident). One imposes the homogeneity assumption or translation-invariance or both on a general
combination of invariants.

Let us discuss how to do this in all three cases. For brevity of exposition, we restrict to the case
n = 1 (functions and curves on symplectic plane), the general case is similar.

7.1. Conformal Symplectic Group Action: Functions

Consider functions on the conformal symplectic plane, H = CSp(2n,R). For n = 1 observe
H ' GL(2,R). We recall the invariants from Section 3.1 and note that all of them are homogeneous
with respect to scaling ξ = x∂x + y∂y, corresponding to the center of h = gl(2,R). Restricting to
invariants and derivations of weight 0 we obtain the algebra of differential h-invariants.

The invariants I0, I1 have weight 0, and the invariants I2a, I2b, I2c have weights 0,−2,−4
respectively. Therefore, for the new algebra AH there are two independent invariants of order ≤1 and
two additional invariants of order 2, namely I0, I1, I2a and I′2b = I−2

2b I2c in the notations of Section 3.1.
The invariant derivations are ∇1,∇2 of weights 0,−2 respectively. Therefore we obtain two

invariant derivations with respect to h: ∇1 and ∇′2 = I−1
2b ∇2.

Now a straightforward verification shows that∇1(I2a),∇1(I′2b),∇
′
2(I2a),∇′2(I′2b) are independent

in 3-jets, which implies that the algebra AH of differential invariants is generated by I0, I′2b and ∇1,∇′2.
Note that I1 = ∇1(I0) and I2a = ∇1(I1)− I1.

To complete the picture, here are the differential syzygies: ∇′2(I0) = 0, ∇′2(I1) = −1 and

[∇1,∇′2] =
1
I1
∇1 +

( I2a

I1
+∇′2(I2a)

)
∇′2.
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Denote these byR1,R2,R3. There is also a forth order differential syzygyR4:

∇′2(I3a) +
1

2I′2b
∇′2(I3b)−

1
2I′2b
∇1(I3c)−

1
2I2

1 I′2b

[
(I′2b I3b − 3I3b I3c − I3c)I2

1

+
((
(3I3b + 4)I2a − 5I3a

)
I′2b − 4I2a I3c − 4I3b − 4

)
I1 + 6I2

2a I′2b − 6I2a

]
= 0,

where I3a = ∇1(I2a), I3b = ∇′2(I2a), I3c = ∇1(I′2b) and I3d = ∇′2(I′2b). With this we obtain a complete
description of the algebra of differential H-invariants:

AH = 〈I0, I′2b ; ∇1,∇′2 | R1,R2,R3,R4〉.

7.2. Conformal Symplectic Group Action: Curves

Now, we discuss differential invariants of curves with respect to the same H as in Section 7.1.
Consider the invariants from Section 4.1 and note that all of them are homogeneous with respect to
scaling ξ = x∂x + y∂y, corresponding to the center of h. Again, we have to restrict to invariants and
derivations of weight 0 to describe the algebra AH .

The invariant I2 has weight −4 and the derivation ∇ weight −2. Thus the derived invariants
Ik+2 = ∇k(I2) have weights −2(k + 2) for k ≥ 0. In particular, I′3 = I2

3 /I3
2 has weight 0 and similar for

∇′ = I2 I−1
3 ∇ in the notations of Section 4.1. Therefore, these freely generate the algebra of differential

H-invariants:

AH = 〈I′3 ; ∇′〉.

7.3. Affine Symplectic Group Action: Functions

Consider differential invariants of functions on the affine symplectic plane, H = ASp(2n,R). For
n = 1 observe H = SAff(2,R). We recall the generating invariants from Section 3.1, and note that they
indeed depend explicitly on x, y except for I0 and I2c.

To single out invariants in AG that are x, y-independent eliminate x, y from the system {I1 =

c1, I2a = c2, I2b = c3} to get a translation-invariant polynomial on J2 that depends parametrically
on c1, c2, c3. Taking the coefficients of this expression with respect to those parameters, we obtain
the invariants I2c and I′2 = uxxuyy − u2

xy = Hess(u). Then substituting the obtained expressions for
x, y into the invariant derivative ∇1 and simplifying modulo the obtained invariants (note that ∇2 is
already H-invariant) we get new invariant derivative

∇′1 = (uxuyy − uyuxy)Dx − (uxuxy − uyuxx)Dy.

Note that ∇′1(I0) = I2c so the latter generator can be omitted. The commutator of invariant
derivations is

[∇′1,∇2] = −
∇2(I2c)

I2c
∇′1 +

(∇′1(I2c)

I2c
− 2I′2

)
∇2.
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Denote this relation and the relation∇2(I0) = 0 byR1,R2. Note that∇′1(I0) is a second order invariant,
and application of ∇′1,∇2 to it and I′2 gives four third-order invariants. Further differentiation gives
six fourth-order invariants, whence the syzyzyR3:

− I2c∇2(I3b) +∇′1(I3c) + I′2∇2(I3d)

− 1
I2c

[
12I′22 I2

2c − 10I′2 I2c I3c + 3I′2 I2
3d + 3I2

2c I3a − 3I2c I3b I3d + 3I2
3c

]
= 0,

where I3a = ∇′1(I′2), I3b = ∇2(I′2), I3c = ∇′1(I2c) and I3d = ∇2(I2c). Therefore the algebra of differential
H-invariants is

AH = 〈I0, I′2 ; ∇′1,∇2 | R1,R2,R3〉.

7.4. Affine Symplectic Group Action: Curves

Now, we discuss the case of curves on the conformal symplectic plane, with the same H as in
Section 7.3. Consider the invariants from Section 4.1 and note that Ik+2 = ∇k I2 are not translationally
invariant. However, using the elimination of parameters trick as above we arrive to micro-local
differential invariant and invariant derivation

I′4 = 3
√

y2(3y−2
2 y4 − 5y−3

2 y2
3), ∇′ = 1

3
√

y2
Dx.

In other words, these are invariants with respect to h but not with respect to H. Indeed, by the global
Lie-Tresse theorem [14] we know that the invariants should be rational. To get generators we therefore
pass to

I′′4 = (I′4)
3 and ∇′′ = I′4∇′.

Consequently these freely generate the algebra of differential H-invariants:

AH = 〈I′′4 ; ∇′′〉.

7.5. Affine Conformal Symplectic Group Action: Functions

Let us discuss differential invariants of functions on the affine conformal symplectic plane,
H = ACSp(2n,R). For n = 1 observe H = Aff(2,R). We can combine the approaches of the previous
two sections, for instance by taking the affine symplectic differential invariants and restricting to those
of weight 0 with respect to the scaling by the center action.

Referring to the notations of Section 7.3 we get that the weights of I0, I′2 are 0,−4, while that of
∇′1,∇2 are −4,−2 respectively. Therefore, the algebra of differential invariants AH is generated by the
invariant derivations

∇′′1 =
1
I′2
∇′, ∇′′2 =

I′2
∇2(I′2)

∇2

and the differential invariants (derived invariants ∇′′1 I0, (∇′′1 )2 I0, ∇′′2∇′′1 I0 are omitted)

I0, I′′3a =
∇′1(I′2)
(I′2)

2 , I′′3b =
(∇2 I′2)

2

(I′2)
3 .
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Denote byRl the unknown differential syzygies. Then the algebra of differential invariants is

AH = 〈I0, I′′3a, I′′3b ; ∇′′1 ,∇′′2 | Rl〉.

7.6. Affine Conformal Symplectic Group Action: Curves

Similarly for the case of curves on the conformal symplectic plane, with the same H as in
Section 7.5, we get in the notations of Section 7.4 that the weights of I′′4 is −4 and that of ∇′′ is −2.
Therefore, the algebra of differential invariants AH is generated by

I5 =
(∇′′ I′′4 )2

(I′′4 )
3 and ∇′′′ =

I′′4
∇′′(I′′4 )

∇′′.

In fact, it is a free differential algebra

AH = 〈I5 ; ∇′′′〉.

8. Differential Invariants in Contact Spaces

Let W be a contact space that is a contactification of the symplectic vector space V. In coordinates,
W = R2n+1(x, y, z) is equipped with the contact form α = dz− y dx such that its differential dα =

dx ∧ dy descends to the symplectic form on V = R2n(x, y).
As the equivalence group, we take either G = Sp(2n,R) lifted to an action on W from the

standard linear action on V, or its central extension Ĝ = CSp(2n,R) corresponding to the scaling
(x, y, z) 7→ (λx, λy, λ2z). (One can also consider the affine extensions, as was done in Section 7 but we
skip doing this.)

Note that the group G does not have an open orbit on W because I0 = 2z− xy is an invariant.
This gives a way to carry over the results on the algebra of differential invariants in V to that in
W (for both functions and submanifolds; note that the formulae from the symplectic case enter
through a change of variables, which is due to the lift of Hamiltonian vector fields XH to contact
Hamiltonian fields).

Then, we can single out the subalgebra AĜ ⊂ AG as the space of functions of weight 0 with
respect to the scaling above (or its infinitesimal field). In particular, as I0 has weight 2, it is not a scaling
invariant, and in fact, the action of Ĝ on W is almost transitive.

Below, we demonstrate this two-stage computation in the simplest case n = 1. Note that the
action of Ĝ = GL(2,R) ⊃ G = SL(2,R) on W = R3(x, y, z) has the formula

ΦA(x, y, z) =
(
ax + by, cx + dy, (ad− bc)(z− 1

2 xy) + 1
2 (ax + by)(cx + dy)

)
.

with A =

(
a b
c d

)
∈ Ĝ. This explicit parametrization is a base for an application of the moving frame

method, which involves normalization of the group parameters via elimination. (This was already
exploited in Sections 7.3 and 7.4.) This algorithm (we refer for details to [1]; an elaborated version of
it, the method of equivariant moving frame, was further developed in the works by Peter Olver and
co-authors) allows to carry the computations below; however, for n > 1 it would meet the complexity
issues. Yet, the method we propose works for arbitrary n > 1 as a straightforward generalization.
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8.1. Differential Invariants: Curves

We begin with the group G = Sp(2,R) = SL(2,R). Its action on W has a base invariant

I0 = 2z− xy.

The curves will be represented as y = y(x), z = z(x) and the projection to R2(x, y) restores the
symplectic action. We note that invariants from Section 4.1 are still G-invariants in the contact action,
and we will use them:

I2a =
y2

(xy1 − y)3 , ∇ =
1

xy1 − y
Dx.

Differential invariants of order ≤ 2 are generated by I0, I1 = ∇(I0), I2a and I2b = ∇(I1). Of course,
in Lie-Tresse generating set we omit the derived invariants I1, I2b, namely

AG = 〈I0, I2a ; ∇〉.

However these derived invariants are useful in generating the algebra of Ĝ-invariants. Indeed,
with respect to the action of the center ξ = x∂x + y∂y + 2z∂z, the weights of I0, I1, I2a, I2b are 2, 0,−4,−2
and the weight of ∇ is −2. Thus, in order to obtain Ĝ-invariants we pass to weight 0 combinations
(I1 is already invariant)

I′2a = I2
0 I2a, I′2b = I0 I2b, ∇′ = I0∇.

Explicitly after simplifications I1 7→ 1
2 (I1 + 1), I′2b 7→

1
2 I′2b we get:

I1 =
z1 − y

xy1 − y
, ∇′ = 2z− xy

xy1 − y
Dx,

I′2a =
(2z− xy)2

(xy1 − y)3 y2,

I′2b =
2z− xy

(xy1 − y)3

(
x(y− z1)y2 − (xy1 − y)(y1 − z2)

)
.

The count of invariants is h0 = 0, h1 = 1 and hk = 2 for k ≥ 2. We conclude:

Theorem 5. The algebra of differential invariants of the Ĝ-action on J∞(W, 1) is freely generated as follows:

AĜ = 〈I1, I′2a ; ∇′〉.

8.2. Differential Invariants: Surfaces

Now we consider the action of G and Ĝ on surfaces given as z = z(x, y). Since projection
to R2(x, y) gives the symplectic plane, the G-computations can be derived from Section 3.1 with
substitution u = 2z− xy. This gives us the following differential invariants and invariant derivations
with respect to G:

I0 = 2z− xy, ∇1 = xDx + yDy, ∇2 = (x− 2zy)Dx + (2zx − y)Dy,
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and with the notations I1 = 1
2∇1(I0), I2a = ∇1(I1)− I1, I2b = − 1

2 (∇2(I1) + I2a − I1) the following
first and second order invariants

I1 = xzx + yzy − xy,

I2a = x2zxx + 2xyzxy + y2zyy − xy,

I2b = x(zy − x)zxx − yzxzyy + (y(zy − x)− xzx)zxy + xzx,

I2c = z2
xzyy − 2zx(zy − x)zxy + (zy − x)2zxx + zx(zy − x).

Now to obtain Ĝ-invariants note that I0, I1, I2a, I2b, I2c all have weight 2 with respect to ξ, while ∇1,∇2

are already invariant. Thus the invariants are

I′1 = I−1
0 I1, I′2a = I−1

0 I2a, I′2b = I−1
0 I2b, I′2c = I−1

0 I2c.

We have:
I′2a = ∇1(I′1) + 2(I′1)

2 − I′1, I′2b = −1
2
∇1(I′1)−

1
2
∇2(I′1)− (I′1)

2 + I′1,

so these can be omitted from the list of generators.
The count of Ĝ-invariants is h0 = 0, h1 = 1 and hk = k + 1 for k ≥ 2.
Applying the derivations to the generating invariants and counting the relations, we find that

beside the commutation relation

[∇1,∇2] +
∇2(I′1)

I′1
∇1 −

(∇1(I′1)
I′1

+ 2(I′1 − 1)
)
∇2 = 0

there is one more relation generating the module of differential syzygies

∇2
1(I′1) + 2∇1∇2(I′1) +∇2

2(I′1)− 4∇1(I′2c)

− 3(I′1)
−1(∇1(I′1)

2 + 2∇1(I′1)∇2(I′1)− 4∇1(I′1)I′2c +∇2(I′1)
2)

− 2(I′1 − 1)
(
3∇1(I′1) + 4∇2(I′1)− 8I′2c

)
− 4I′1(I′1 − 1)(2I′1 − 1) = 0.

Denote these syzygies byR1 andR2.
Let us summarize the results.

Theorem 6. The algebra of differential invariants of the Ĝ-action on J∞(W, 2) is generated as follows:

AĜ = 〈I′1, I′2c ; ∇1,∇2 | R1,R2〉.

8.3. Differential Invariants: Functions

Skipping the intermediate computation with the group G let us directly pass to the description
of invariants on J∞(W) with respect to the group Ĝ. Fix the coordinates as follows: W = R3(x, y, z)
with the contact form α = dz− y dx as before, J0 = W ×R(u) and for the jet-coordinates we use the
numbered multi-index notations uσ.

The count of the number of differential invariants is as follows: h0 = 1, h1 = 2 and hk = (k+2
2 ) for

k ≥ 2.
The zero and first order invariants are

I0 = u, I1a = (xy− 2z)u3, I1b = xu1 + y(u2 + xu3).
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Next we obtain the invariant derivations

∇1 = xDx + yDy + 2zDz,

∇2 = (xy− 2z)Dz,

∇3 = (xu3 + u2)(xy− 2z)Dx − u1(xy− 2z)Dy − xu1(xy− 2z)Dz.

Note that I1a = ∇2(I0), I1b = (∇1 + ∇2)(I0) and ∇3(I0) = 0. The latter is the first differential
syzygy, denoted

R1 = ∇3(I0).

Second order differential invariants ∇i(I1a),∇i(I1b) contain only 5 independent. We find the
remaining 1 differential invariant via the the method of moving frames and get

Second Order Differential Invariants

I2a = y2u2,2 + y(4zu2,3 + 2xu1,2 + u2) + 4z2u3,3

+z(4xu1,3 + 4u3) + x(xu1,1 + u1)

I2b = (xy− 2z)(yu2,3 + 2zu3,3 + xu1,3 + 2u3)

I2c = −(xy− 2z)(x2(u1u1,3 − u3u1,1) + x(u1(yu2,3 + 2zu3,3 + u3 + u1,2)

−yu3u1,2 − 2zu3u1,3 − u2u1,1) + u1(yu2,2 + 2zu2,3)

−u2(yu1,2 + 2zu1,3))

I2d = (xy− 2z)(−2u3 + (xy− 2z)u3,3)

I2e = −(xy− 2z)(x2y(u1u3,3 − u3u1,3) + x(y(u1u2,3 − u2
3 − u2u1,3)

+u1(−2zu3,3 − u3) + 2zu3u1,3)− yu2u3 − 2z(u1u2,3 − u2u1,3))

I2 f = x4y2u2
1u3,3 − 2x4y2u1u3u1,3 + x4y2u2

3u1,1 + 2x3y2u2
1u2,3

−x3y2u1u2
3 − 2x3y2u1u3u1,2 − 2x3y2u1u2u1,3 + 2x3y2u2u3u1,1

−4x3yzu2
1u3,3 + 8x3yzu1u3u1,3 − 4x3yzu2

3u1,1 + x2y2u2
1u2,2

−x2y2u1u2u3 − 2x2y2u1u2u1,2 + x2y2u2
2u1,1 − 8x2yzu2

1u2,3

+4x2yzu1u2
3 + 8x2yzu1u3u1,2 + 8x2yzu1u2u1,3 − 8x2yzu2u3u1,1

+4x2z2u2
1u3,3 − 8x2z2u1u3u1,3 + 4x2z2u2

3u1,1 − 4xyzu2
1u2,2

+4xyzu1u2u3 + 8xyzu1u2u1,2 − 4xyzu2
2u1,1 + 8xz2u2

1u2,3

−4xz2u1u2
3 − 8xz2u1u3u1,2 − 8xz2u1u2u1,3 + 8xz2u2u3u1,1

+4z2u2
1u2,2 − 4z2u1u2u3 − 8z2u1u2u1,2 + 4z2u2

2u1,1

Note that I2a, I2b, I2c, I2d, I2e can be expressed through I0, I1a, I1b and invariant derivations.
Thus they need not enter the set of generators.

All the differential syzygies coming from the commutators are

R2 = [∇1,∇2],

R3 = (I1a + I1b)[∇1,∇3] + I2c(∇1 +∇2)− (I2a + I2b)∇3,

R4 = (I1a + I1b)[∇2,∇3]− (I1b(I1a + I1b)− I2e)∇1 + (I1a(I1a + I1b) + I2e)∇2

− (I2b + I2d − 2(I1a + I1b))∇3.
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The remaining differential syzygies are found by the symbolic method: find a relation between the
symbols of differentiated invariants, get a linear combination of lower order and express it through the
invariants established earlier.

R5 = (I1a + I1b)(∇3(I2b)−∇1(I2e))− (I2c − I2e)I2b + I2a I2e − I2c I2d,

R6 = (I1a + I1b)(∇3(I2c)−∇1(I2 f ))− 3I2
2c − (I2

1a + I1a I1b + 3I2e)I2c + 3I2 f (I2a + I2b),

R7 = (I1a + I1b)(−∇3(I2e) +∇2(I2 f ))− I4
1b − 4I1a I3

1b − (5I2
1a + 2I2c)I2

1b

− (2I3
1a + (2I2c − 3I2e)I1a + 4I2 f )I1b + 3I2e I2

1a + 4I2 f I1a + 3I2
2e

+ 3I2c I2e − 3I2 f (I2b + I2d).

Theorem 7. The algebra of differential invariants of the Ĝ-action on J∞(W) is generated as follows:

AĜ = 〈I0, I2 f ; ∇1,∇2,∇3 | Ri = 0, i = 1 . . . 7〉.

9. Conclusions

In this paper, we computed the algebra of differential invariants for various geometric objects on
symplectic spaces with several choices of the equivalence group and touched upon a relation between
the invariants of the pair (group, subgroup) action.

For most of the text we worked with the linear symplectic group, but we demonstrated how to
extend the results for conformal symplectic and affine symplectic groups, treated in other publications.
Some of the objects were also investigated by different authors, namely jets of curves [5,10] and
hypersurfaces [9], yet the technique and the description of the algebras are quite distinct. Surfaces in
four-dimensional symplectic space were also studied in [6–8], but they considered Lagrangian surfaces
while our focus was on symplectic (generic) submanifolds.

Other geometric objects appeared in [11], which intersects with our work by studying functions
on the symplectic spaces. Again the approaches differ significantly: in [11] the infinite number of
generators were computed (with a nontrivial change of variables) while our method uses the Lie-Tresse
finite type presentation of the algebra (in the original jet-coordinates). This latter allows, in particular,
to solve the equivalence problem via a finite-dimensional signature variety.

The work [11] also described invariants in the adjoint bundle, and one can consider other
geometric spaces on which the symplectic group acts. For instance, [17] was devoted to four-fold
surfaces in 6-dimensional Lagrangian Grassmanian, satisfying the integrability condition. It would be
worth characterizing those via symplectic invariants.

Finally note that one can approach the equivalence problem of geometric objects via discretizations,
with more algebraic methods, see [18].
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Appendix A. Differential Invariants of Curves in 4-Dimensions

Here are explicit expressions of the differential invariants of curves x = x(t), y = y(t), z = z(t),
as derived in Section 4.2. These as well as other long formulae resulting from our calculations can be

http://www.mdpi.com/2073-8994/12/12/2023 /s1
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found in Supplementary Materials. Below γ = 1/(ty1 + xz1 − x1z− y) is the factor of Dt in∇. The jet
notations are xt = x1, xtt = x2, xttt = x3 etc, likewise for y and z.

Differential invariants that together with ∇ generate A

I2 = γ3(x1z2 − z1x2 + y2)

I3b = −γ6(tx1y2z3 − tx1y3z2 − tx2y1z3 + tx2y3z1 + tx3y1z2 − tx3y2z1

−xy2z3 + xy3z2 + x2yz3 − x2y3z− x3yz2 + x3y2z)

I4c = −γ10(t3x1y2
1y3z4 − t3x1y2

1y4z3 − 3t3x1y1y2
2z4 + 4t3x1y1y2y3z3

+3t3x1y1y2y4z2 − 4t3x1y1y2
3z2 + 3t3x1y3

2z3 − 3t3x1y2
2y3z2 + 3t3x2y2

1y2z4

−4t3x2y2
1y3z3 − 3t3x2y1y2

2z3 − 3t3x2y1y2y4z1 + 4t3x2y1y2
3z1

+3t3x2y2
2y3z1 − t3x3y3

1z4 + 4t3x3y2
1y3z2 + t3x3y2

1y4z1 + 3t3x3y1y2
2z2

−4t3x3y1y2y3z1 − 3t3x3y3
2z1 + t3x4y3

1z3 − 3t3x4y2
1y2z2 − t3x4y2

1y3z1

+3t3x4y1y2
2z1 − 3t2xx1y1y2z2z4 + 4t2xx1y1y2z2

3 + 2t2xx1y1y3z1z4

−4t2xx1y1y3z2z3 − 2t2xx1y1y4z1z3 + 3t2xx1y1y4z2
2 − 3t2xx1y2

2z1z4

+6t2xx1y2
2z2z3 + 4t2xx1y2y3z1z3 − 6t2xx1y2y3z2

2 + 3t2xx1y2y4z1z2

−4t2xx1y2
3z1z2 + 3t2xx2y2

1z2z4 − 4t2xx2y2
1z2

3 + 3t2xx2y1y2z1z4

−6t2xx2y1y2z2z3 − 3t2xx2y1y4z1z2 + 6t2xx2y2y3z1z2 − 3t2xx2y2y4z2
1

+4t2xx2y2
3z2

1 − 2t2xx3y2
1z1z4 + 4t2xx3y2

1z2z3 − 4t2xx3y1y2z1z3

+6t2xx3y1y2z2
2 + 4t2xx3y1y3z1z2 + 2t2xx3y1y4z2

1 − 6t2xx3y2
2z1z2

−4t2xx3y2y3z2
1 + 2t2xx4y2

1z1z3 − 3t2xx4y2
1z2

2 − 2t2xx4y1y3z2
1

+3t2xx4y2
2z2

1 − 2t2x2
1y1y3zz4 + 2t2x2

1y1y4zz3 + 3t2x2
1y2

2zz4

−4t2x2
1y2y3zz3 − 3t2x2

1y2y4zz2 + 4t2x2
1y2

3zz2 + 4t2x1x2y1y3zz3

−3t2x1x2y1y4zz2 − 6t2x1x2y2
2zz3 + 6t2x1x2y2y3zz2 + 3t2x1x2y2y4zz1

−4t2x1x2y2
3zz1 + 2t2x1x3y2

1zz4 − 4t2x1x3y1y2zz3 − 2t2x1x3y1y4zz1

+4t2x1x3y2y3zz1 − 2t2x1x4y2
1zz3 + 3t2x1x4y1y2zz2 + 2t2x1x4y1y3zz1

−3t2x1x4y2
2zz1 − 3t2x2

2y2
1zz4 + 6t2x2

2y1y2zz3 + 3t2x2
2y1y4zz1

−6t2x2
2y2y3zz1 + 4t2x2x3y2

1zz3 − 6t2x2x3y1y2zz2 − 4t2x2x3y1y3zz1

+6t2x2x3y2
2zz1 + 3t2x2x4y2

1zz2 − 3t2x2x4y1y2zz1 − 4t2x2
3y2

1zz2

+4t2x2
3y1y2zz1 − 3tx2x1y2z1z2z4 + 4tx2x1y2z1z2

3 + 3tx2x1y2z2
2z3

+tx2x1y3z2
1z4 − 4tx2x1y3z1z2z3 − 3tx2x1y3z3

2 − tx2x1y4z2
1z3

+3tx2x1y4z1z2
2 + 3tx2x2y1z1z2z4 − 4tx2x2y1z1z2

3 − 3tx2x2y1z2
2z3

+4tx2x2y3z2
1z3 + 3tx2x2y3z1z2

2 − 3tx2x2y4z2
1z2 − tx2x3y1z2

1z4

+4tx2x3y1z1z2z3 + 3tx2x3y1z3
2 − 4tx2x3y2z2

1z3 − 3tx2x3y2z1z2
2 + tx2x3y4z3

1
+tx2x4y1z2

1z3 − 3tx2x4y1z1z2
2 + 3tx2x4y2z2

1z2 − tx2x4y3z3
1 + 3txx2

1y2zz2z4

−4txx2
1y2zz2

3 − 2txx2
1y3zz1z4 + 4txx2

1y3zz2z3 + 2txx2
1y4zz1z3 − 3txx2

1y4zz2
2

−3txx1x2y1zz2z4 + 4txx1x2y1zz2
3 + 3txx1x2y2zz1z4 − 6txx1x2y2zz2z3

−4txx1x2y3zz1z3 + 6txx1x2y3zz2
2 + 2txx1x3y1zz1z4 − 4txx1x3y1zz2z3

+4txx1x3y3zz1z2 − 2txx1x3y4zz2
1 − 2txx1x4y1zz1z3 + 3txx1x4y1zz2

2
−3txx1x4y2zz1z2 + 2txx1x4y3zz2

1 − 3txx2
2y1zz1z4 + 6txx2

2y1zz2z3

−6txx2
2y3zz1z2 + 3txx2

2y4zz2
1 + 4txx2x3y1zz1z3 − 6txx2x3y1zz2

2
+6txx2x3y2zz1z2 − 4txx2x3y3zz2

1 + 3txx2x4y1zz1z2 − 3txx2x4y2zz2
1

−4txx2
3y1zz1z2 + 4txx2

3y2zz2
1 + tx3

1y3z2z4 − tx3
1y4z2z3 − 3tx2

1x2y2z2z4

+3tx2
1x2y4z2z2 − tx2

1x3y1z2z4 + 4tx2
1x3y2z2z3 − 4tx2

1x3y3z2z2 + tx2
1x3y4z2z1

+tx2
1x4y1z2z3 − tx2

1x4y3z2z1 + 3tx1x2
2y1z2z4 + 3tx1x2

2y2z2z3 − 3tx1x2
2y3z2z2

−3tx1x2
2y4z2z1 − 4tx1x2x3y1z2z3 + 4tx1x2x3y3z2z1 − 3tx1x2x4y1z2z2

+3tx1x2x4y2z2z1 + 4tx1x2
3y1z2z2 − 4tx1x2

3y2z2z1 − 3tx3
2y1z2z3 + 3tx3

2y3z2z1

+3tx2
2x3y1z2z2 − 3tx2

2x3y2z2z1 − t2xy2
1y3z4 + t2xy2

1y4z3 + 3t2xy1y2
2z4

−4t2xy1y2y3z3 − 3t2xy1y2y4z2 + 4t2xy1y2
3z2 − 3t2xy3

2z3 + 3t2xy2
2y3z2

−2t2x1yy1y3z4 + 2t2x1yy1y4z3 + 3t2x1yy2
2z4 − 4t2x1yy2y3z3 − 3t2x1yy2y4z2
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+4t2x1yy2
3z2 − 6t2x2yy1y2z4 + 8t2x2yy1y3z3 + 3t2x2yy2

2z3 + 3t2x2yy2y4z1

−4t2x2yy2
3z1 + 3t2x2y1y2y4z− 4t2x2y1y2

3z− 3t2x2y2
2y3z + 3t2x3yy2

1z4

−8t2x3yy1y3z2 − 2t2x3yy1y4z1 − 3t2x3yy2
2z2 + 4t2x3yy2y3z1

−t2x3y2
1y4z + 4t2x3y1y2y3z + 3t2x3y3

2z− 3t2x4yy2
1z3 + 6t2x4yy1y2z2

+2t2x4yy1y3z1 − 3t2x4yy2
2z1 + t2x4y2

1y3z− 3t2x4y1y2
2z + 3tx2y1y2z2z4

−4tx2y1y2z2
3 − 2tx2y1y3z1z4 + 4tx2y1y3z2z3 + 2tx2y1y4z1z3 − 3tx2y1y4z2

2
+3tx2y2

2z1z4 − 6tx2y2
2z2z3 − 4tx2y2y3z1z3 + 6tx2y2y3z2

2 − 3tx2y2y4z1z2

+4tx2y2
3z1z2 + 3txx1yy2z2z4 − 4txx1yy2z2

3 − 2txx1yy3z1z4 + 4txx1yy3z2z3

+2txx1yy4z1z3 − 3txx1yy4z2
2 + 2txx1y1y3zz4 − 2txx1y1y4zz3 − 3txx1y2

2zz4

+4txx1y2y3zz3 + 3txx1y2y4zz2 − 4txx1y2
3zz2 − 6txx2yy1z2z4 + 8txx2yy1z2

3
−3txx2yy2z1z4 + 6txx2yy2z2z3 + 3txx2yy4z1z2 − 3txx2y1y2zz4 − 4txx2y1y3zz3

+6txx2y1y4zz2 + 6txx2y2
2zz3 − 12txx2y2y3zz2 + 3txx2y2y4zz1 − 4txx2y2

3zz1

+4txx3yy1z1z4 − 8txx3yy1z2z3 + 4txx3yy2z1z3 − 6txx3yy2z2
2 − 4txx3yy3z1z2

−2txx3yy4z2
1 + 8txx3y1y2zz3 − 4txx3y1y3zz2 − 2txx3y1y4zz1 + 6txx3y2

2zz2

+4txx3y2y3zz1 − 4txx4yy1z1z3 + 6txx4yy1z2
2 + 2txx4yy3z2

1 − 3txx4y1y2zz2

+2txx4y1y3zz1 − 3txx4y2
2zz1 + 2tx2

1yy3zz4 − 2tx2
1yy4zz3 − 4tx1x2yy3zz3

+3tx1x2yy4zz2 − 3tx1x2y2y4z2 + 4tx1x2y2
3z2 − 4tx1x3yy1zz4 + 4tx1x3yy2zz3

+2tx1x3yy4zz1 + 2tx1x3y1y4z2 − 4tx1x3y2y3z2 + 4tx1x4yy1zz3 − 3tx1x4yy2zz2

−2tx1x4yy3zz1 − 2tx1x4y1y3z2 + 3tx1x4y2
2z2 + 6tx2

2yy1zz4 − 6tx2
2yy2zz3

−3tx2
2yy4zz1 − 3tx2

2y1y4z2 + 6tx2
2y2y3z2 − 8tx2x3yy1zz3 + 6tx2x3yy2zz2

+4tx2x3yy3zz1 + 4tx2x3y1y3z2 − 6tx2x3y2
2z2 − 6tx2x4yy1zz2 + 3tx2x4yy2zz1

+3tx2x4y1y2z2 + 8tx2
3yy1zz2 − 4tx2

3yy2zz1 − 4tx2
3y1y2z2 + 3x3y2z1z2z4

−4x3y2z1z2
3 − 3x3y2z2

2z3 − x3y3z2
1z4 + 4x3y3z1z2z3 + 3x3y3z3

2 + x3y4z2
1z3

−3x3y4z1z2
2 − 3x2x1y2zz2z4 + 4x2x1y2zz2

3 + 2x2x1y3zz1z4 − 4x2x1y3zz2z3

−2x2x1y4zz1z3 + 3x2x1y4zz2
2 − 3x2x2yz1z2z4 + 4x2x2yz1z2

3 + 3x2x2yz2
2z3

−3x2x2y2zz1z4 + 6x2x2y2zz2z3 − 4x2x2y3zz1z3 − 9x2x2y3zz2
2 + 6x2x2y4zz1z2

+x2x3yz2
1z4 − 4x2x3yz1z2z3 − 3x2x3yz3

2 + 8x2x3y2zz1z3 + 3x2x3y2zz2
2

−4x2x3y3zz1z2 − x2x3y4zz2
1 − x2x4yz2

1z3 + 3x2x4yz1z2
2 − 3x2x4y2zz1z2

+x2x4y3zz2
1 − xx2

1y3z2z4 + xx2
1y4z2z3 + 3xx1x2yzz2z4 − 4xx1x2yzz2

3
+3xx1x2y2z2z4 + 4xx1x2y3z2z3 − 6xx1x2y4z2z2 − 2xx1x3yzz1z4

+4xx1x3yzz2z3 − 8xx1x3y2z2z3 + 4xx1x3y3z2z2 + 2xx1x3y4z2z1

+2xx1x4yzz1z3 − 3xx1x4yzz2
2 + 3xx1x4y2z2z2 − 2xx1x4y3z2z1

+3xx2
2yzz1z4 − 6xx2

2yzz2z3 − 3xx2
2y2z2z3 + 9xx2

2y3z2z2 − 3xx2
2y4z2z1

−4xx2x3yzz1z3 + 6xx2x3yzz2
2 − 6xx2x3y2z2z2 + 4xx2x3y3z2z1

−3xx2x4yzz1z2 + 3xx2x4y2z2z1 + 4xx2
3yzz1z2 − 4xx2

3y2z2z1 + x2
1x3yz2z4

−x2
1x3y4z3 − x2

1x4yz2z3 + x2
1x4y3z3 − 3x1x2

2yz2z4 + 3x1x2
2y4z3

+4x1x2x3yz2z3 − 4x1x2x3y3z3 + 3x1x2x4yz2z2 − 3x1x2x4y2z3 − 4x1x2
3yz2z2

+4x1x2
3y2z3 + 3x3

2yz2z3 − 3x3
2y3z3 − 3x2

2x3yz2z2 + 3x2
2x3y2z3

+2txyy1y3z4 − 2txyy1y4z3 − 3txyy2
2z4 + 4txyy2y3z3 + 3txyy2y4z2

−4txyy2
3z2 + tx1y2y3z4 − tx1y2y4z3 + 3tx2y2y2z4 − 4tx2y2y3z3

−3tx2yy2y4z + 4tx2yy2
3z− 3tx3y2y1z4 + 4tx3y2y3z2 + tx3y2y4z1z

+2tx3yy1y4z− 4tx3yy2y3 + 3tx4y2y1z3 − 3tx4y2y2z2 − tx4y2y3z1

−2tx4yy1y3z + 3tx4yy2
2z− 3x2yy2z2z4 + 4x2yy2z2

3 + 2x2yy3z1z4

−4x2yy3z2z3 − 2x2yy4z1z3 + 3x2yy4z2
2 − 2xx1yy3zz4 + 2xx1yy4zz3

+3xx2y2z2z4 − 4xx2y2z2
3 + 3xx2yy2zz4 + 4xx2yy3zz3 − 6xx2yy4zz2

−2xx3y2z1z4 + 4xx3y2z2z3 − 8xx3yy2zz3 + 4xx3yy3zz2 + 2xx3yy4zz1

+2xx4y2z1z3 − 3xx4y2z2
2 + 3xx4yy2zz2 − 2xx4yy3zz1 + 2x1x3y2zz4

−2x1x3yy4z2 − 2x1x4y2zz3 + 2x1x4yy3z2 − 3x2
2y2zz4 + 3x2

2yy4z2

+4x2x3y2zz3 − 4x2x3yy3z2 + 3x2x4y2zz2 − 3x2x4yy2z2 − 4x2
3y2zz2

+4x2
3yy2z2 − xy2y3z4 + xy2y4z3 + x3y3z4 − x3y2y4z− x4y3z3 + x4y2y3z).
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