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Abstract: In recent years, with the popularity of social media, users are increasingly keen to express
their feelings and opinions in the form of pictures and text, which makes multimodal data with
text and pictures the con tent type with the most growth. Most of the information posted by
users on social media has obvious sentimental aspects, and multimodal sentiment analysis has
become an important research field. Previous studies on multimodal sentiment analysis have
primarily focused on extracting text and image features separately and then combining them
for sentiment classification. These studies often ignore the interaction between text and images.
Therefore, this paper proposes a new multimodal sentiment analysis model. The model first
eliminates noise interference in textual data and extracts more important image features. Then, in the
feature-fusion part based on the attention mechanism, the text and images learn the internal features
from each other through symmetry. Then the fusion features are applied to sentiment classification
tasks. The experimental results on two common multimodal sentiment datasets demonstrate the
effectiveness of the proposed model.
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1. Introduction

With the increasing popularity of social media, people are increasingly keen to express their
views or opinions on social media platforms. In social media, hundreds of millions of data records
are generated every day. A large volume of data is in the form of text and image combinations,
which constitute a huge volume of multimodal data. Rich sentimental information exists in the
multimodal data. The data are helpful to understand people’s attitudes and views on some events by
analyzing the sentiment of multimodal data. Multimodal sentiment analysis has great application value
in box office predictions, political elections, stock market predictions, and so on. In the graphic data of
social media, text and images contain sentimental information, which is different and complementary
to each other. Compared with the single-mode data of text or an image, multimodal data contains
more information and can better reveal the real feelings of users. However, multimodal sentiment
analysis remains a particularly challenging task. First, sentimental information in different modal data
is different, so the sentimental feature representation of the modal data must be obtained effectively
for sentiment analysis. From the human viewpoint, not all image areas in a picture are related to
sentimental expression, and not all words in text data are related to sentiment. Therefore, in feature
extraction, we should highlight the sentimental key areas of the image and eliminate the noise
interference in the textual data. Second, different modal data must express the underlying features
of different dimensions and attributes. In previous studies, the sentiment analysis of single-mode
texts primarily used traditional statistical methods, which are highly dependent on the quality of
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the extracted features [1,2]. For example, Rodger et al. [3] used data envelopment analysis (DEA)
as a Word Sense Disambiguation (WSD) tool to automatically identify the appropriate meaning of
words in sentences, so as to determine the inherent meaning of voter intentions regarding possible
political candidates. The sentiment analysis of single-mode images also depends on the quality of
features selected by hand-designed extraction rules. These images often contain redundant sentimental
information. With the continuous development of machine learning and deep learning, researchers
have developed many new methods for sentiment analysis of multimodal data and have achieved
good results [4,5].

Multimodal sentiment analysis is an increasingly important research field, and many researchers
have conducted studies in this field. For multimodal sentiment analysis tasks, the core challenge is
how to make better use of modal internal information and modal interaction information. The internal
information of the mode is information that can be mined and used by a single independent mode,
and the interaction between modes provides useful information. The interaction between modes can
be determined by the correlation and connection between different modes [6,7]. Determing how to use
the interactive information between different modes is also the biggest difference between multimodal
tasks and single-modal tasks. Therefore, multimodal affective analysis must determine effective ways
to combine the information of each mode. By capturing the similar structure between different modal
data, effective information missing in traditional tasks is captured to maximize the fusion of modal
information and the interaction between the modes.

However, most of the previous studies cannot effectively use the internal information and
interaction information of text and image modes. Xu et al. [8] proposed a deep semantic network
for multimodal sentiment analysis. The long short-term memory (LSTM) model of image features
combined with an attention mechanism was used to extract keywords, but this only focused on the
one-way influence of the image on the text without considering the influence of the text on the image.
Xu et al. [9] also proposed a new co-memory network to learn the interaction information between text
words and image content, and then applied the obtained fusion features to sentiment classification.
However, the coarse-grained attention mechanism of this method can be regarded as using a single
attention vector to participate in multiple content types, which may hide some features of the involved
content and lead to information loss.

To solve the above problems, this paper proposes a multimodal sentiment classification model
based on a fine-grained attention mechanism. First, given the high noise of the textual data, we use
the denoising autoencoder to extract features that represent the original text more accurately. Second,
the improved variational auto-encoder combined with the attention mechanism is used to extract
image features. Then, a fusion model based on the attention mechanism is proposed to learn the modal
fusion representation vector of the image and text information interactively. This model can focus on
the relevant parts of the text and image, and fuse the most useful information from both.

Our contributions in this paper are summarized as follows:

• We use a denoising autoencoder and improve the variational auto-encoder combined with an
attention mechanism (VAE-ATT) to extract text features and image features, respectively, to extract
more accurate features representing the original data.

• We propose a new multimodal cross-feature fusion model based on the attention mechanism
(CFF-ATT), which can effectively fuse the features of different modes and provide more effective
and accurate information for sentiment classification.

Finally, the method was tested on two different standard Twitter datasets. A comparative
experiment was conducted, which fully verified the feasibility and superiority of the proposed model
in this paper.

The remainder of the article is structured as follows. Section 2 briefly discusses the recent
work in the field of multimodal sentiment analysis. Section 3 describes the proposed multimodal
sentiment classification model based on the attention mechanism. Section 4 presents and discusses the
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experimental results of the model on two different Twitter datasets and the comparison experiments.
Finally, Section 5 summarizes the paper and proposes future work in multimodal sentiment analysis.

2. Related Work

Traditional sentiment analysis is mostly based on textual data [10]. In recent years, due to the
rapid popularization of social media, users can express their views and opinions in different forms such
as text, image, audio, video, and so on, which promotes the multimodality of the content uploaded
by users on social networking sites. Therefore, multimodal sentiment analysis has become a research
hotspot in the fusion of textual and image information. Previous studies have primarily used traditional
feature-based classification methods to achieve sentiment classification. Borth et al. [11] extracted
1200 adjective–noun pairs using the machine learning method, combined them as mid-level features of
images with original features, and calculated their sentimental scores. Cao et al. [12] used a sentiment
dictionary to extract textual features, using adjective–noun pairs (ANP) to extract visual sentiment
ontology in images and describing it as its sentimental feature. Finally, the text and image features
were weighted and fused, and then sentiment classification was conducted. Poria et al. [13] extracted
the sentimental features of text, voice, and video and then spliced them together to input a support
vector machine (SVM) classifier for sentiment classification. Wang et al. [14] built a unified cross-media
bag-of-words model for text and images, and obtained text and image features through this model.
Then, logistic regression, SVM and the Naive Bayes classifier were used to classify these features
and make a comparative analysis. Baecchi et al. [15] proposed a new semi-supervised sentiment
classification model, CBOW-DA-LR, which expanded the CBOW model, represented text features with
a distributed vector, extracted image features with the denoising autoencoder, and classified textual
and image-fusion features in an unsupervised and semi-supervised manner.

With the rapid development of machine learning and the deep neural network, multimodal
sentiment analysis based on deep learning has made a series of achievements. You et al. [16] proposed
a cross-modal consistent regression (CCR) method, which considered that the sentimental tendencies
of image, text, and joint features of images and text should be consistent. Therefore, in the process of
text and image-feature fusion, the consistency constraint was added to obtain the fusion feature vector,
and then sentiment classification was conducted. You et al. [17] proposed a TreeLSTM model using
a tree structure combined with a visual attention mechanism. The model analyzed the sentimental
polarity of text and images using the internal correlation between the text and image and obtained
good results. Chen et al. [18] combined the attention mechanism with SVM and a convolutional neural
network (CNN), constructed a text sentiment classification model and image sentiment classification
model, and then studied the different effects of various fusion methods on image and text sentiment
classification. Yu et al. [19] used CNN to extract text features at the word, phrase, and sentence levels
and then fused the text and image features in a feature layer to complete the sentiment classification
task. Cai et al. [20] used two independent CNNs to learn the text and image features, and then took
them as the input for another CNN to learn the internal relationship between the text and image.

Xu et al. [8] proposed a deep semantic network for multimodal sentiment analysis and extracted
keywords with the LSTM model of image features combined with the attention mechanism. Xu et al. [9]
also proposed a new co-memory network to learn the interaction information between text words and
image content, and then applied the fusion features obtained to sentiment classification. In particular,
video can also be regarded as a kind of multimodal data. Poria et al. [21] proposed an analysis
framework for video sentiment classification, the model uses multi-core learning (MKL) to fuse video,
audio, and text features for classification. Zadeh et al. [22] proposed the tensor fusion method to
extract the joint feature representation of video data. This method is used to model single-mode,
dual-mode and triple-mode features, and effectively learn the interaction information for each mode.
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3. Proposed Model

In this section, we introduce our multimodal sentiment analysis model: CFF-ATT. The text
and image data in social media often exist at the same time, but sometimes a single text may
correspond to multiple images. To facilitate the processing of multimodal data, we consider them
to exist symmetrically, that is, we assume that a text corresponds to an image. The proposed model
has the same level of processing for text and an image, and finally, fuses their features. This takes
full advantage of their symmetry. We set an image–text pair as (X, I), where X denotes a single
text, X = {X1, X2, . . . , XM}, and I denotes a single image. The goal of our model is to correctly
predict the sentimental polarity of image–text pairs u ∈ {positive, negative, neutral}. The overall
framework of the model presented in this paper is shown in Figure 1. The bottom layer of the model is
the text-feature extraction module and image-feature extraction module, transforming the text from
X = {x1, x2, . . . , xM} to Y = {y1, y2, . . . , yM} ∈ Rdw×M, where dw is the dimension of the word vector.
The image was converted to a fixed-size vector. The next layer of the model is a feature fusion module,
which contains an attention mechanism that interactively learns shared implicit representations of
the text and images to fuse them across modes. At the top of the model is a full connectivity layer,
which connects two different main and secondary features from the fusion module as input to complete
the sentiment classification.

Figure 1. Overall structure of the multimodal sentiment analysis model.

3.1. Text-Feature Extraction Module

The function of the text-feature extraction layer is to map each word to a low-dimensional
vector, also known as word embedding. Considerable noise exists in the textual data of social media,
which affects the accuracy of feature extraction. To eliminate noise interference and obtain more
robust features, we used a denoising autoencoder (DAE) to extract text features [23]. The denoising
autoencoder erases the original input matrix with a certain probability distribution (usually using
the binomial distribution), that is, each value is randomly set to zero. In this way, part of the features
of some data is missing. The loss of data features makes the original data “impure”. This kind of
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data “impurity” is similar to adding noise. To remove the noise interference, the encoder conducts a
training series and finally achieves the purpose of reproducing the original data, which is the meaning
of denoising. Specifically, the vectorized matrix representation of the text was destroyed to obtain
the matrix. The damaged matrix was input into the encoder to obtain the encoding, and then a
reconstruction matrix was obtained by the reconstruction of the decoder. The reconstructed matrix
was compared with the original matrix to obtain the reconstruction error. Then, the parameters of the
encoder and decoder were adjusted to minimize the reconstruction error to obtain the final encoding.
Taking the encoding features obtained from the upper layer as the input of the lower layer, the coding
of the lower layer was obtained using the same method. Finally, the above process was repeated until
a specified number of layers was encoded. In short, by constructing a deep network and training
a low-dimensional feature code layer by layer, the low-dimensional feature most representative of
text was extracted to achieve the feature dimensionality reduction of high-dimensional text data.
The structure of the denoising autoencoder is presented in Figure 2.

Figure 2. Structure diagram of the denoising autoencoder.

The encoder f (x̂) was used for dimensionality reduction of high-dimensional data. First, the input
vector x was destructed to obtain x̂, and then it was input into the encoder f (x̂). After the linear
transformation and activation function, the implicit encoding result is finally obtained. Decoder g (y)
was used for the reconstruction process of low-dimensional coding, that is, the hidden layer data were
mapped back to the reconstruction, which is expressed as the following functions:

y = f (x̂) = S f
(
Wx̂ + by

)
, (1)

z = g (y) = Sg
(
W ′y + bz

)
, (2)

where S f is a nonlinear activation function, and its expression is:

S f = sigmoid (y) =
1

1 + e−y , (3)

where Sg is the activation function of the decoder, W ′ = WT is the transposition of W. Therefore,
we only need to train W. Moreover, by and bz are bias vectors. We used the sigmoid function in
this paper.

The training process for a DAE is to find the minimum reconstruction error of parameter
θ =

{
W, by, bz

}
in the training sample set. The expression of the reconstruction error is as follows:

HDAE = ∑
x∈D

L (x, g ( f (x̂))), (4)

where L is the reconstruction error function. In the experiment, the cross-entropy loss function is
always superior to the square deviation loss function. Therefore, we adopted the cross-entropy loss
function, and the expression is as follows:

L(x, z) = − 1
n

dx

∑
i=1

[xi ln zi + (1− xi) ln (1− zi)], (5)
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where n is the sample number of the training set, xi is the i-th input, and zi is the corresponding data
after decoding and reconstruction of the i-th input.

The autocoder was trained by the classical stochastic gradient descent algorithm. In each iteration,
the weight matrix was updated by Formula (6):

W ←W − ϕ× ∂L (x, y)
∂W

, (6)

by ← by −
∂L (x, y)

∂by
, (7)

by ← by −
∂L (x, y)

∂by
, (8)

where ϕ is the learning rate, and by and bz adopt the same updating method.

3.2. Image-Feature Extraction Module

We used an improved attention-based variational auto-encoder (VAE-ATT) to extract image
features. Our goal is to automatically learn from the data to map from the raw data to the representation
of the data. The deep neural network VAE comprises an encoder and decoder. As displayed in
Figure 3, the essence of VAE is to extract the hidden features of data and build a model from hidden
features to the generated targets. The encoder extracts the potential reasonable variables from the
original data, and then constrains the coding results with Gaussian noise so that they are hidden
features that obey the Gaussian distribution. The model constructed by the decoder maps the hidden
features to the reconstructed probability distribution, which should be as similar as possible to the
original distribution.

Figure 3. How VAE works.

The network VAE has two components: the encoder network E with parameter φ and decoder D
with parameter µ. The loss function is as follows:

L (φ, µ, a) = Eqφ(d|a)[log pµ (a|d)]− D
KL

(
qφ (d|a) ||pµ (d)

)
, (9)

where qφ (d|a) represents the encoder from the data space to the hidden space, and pµ (a|d) stands for
the decoder from the hidden space to data space.

The loss function consists of two parts. The first term of Formula (9) is the reconstruction error,
which drives the reconstructed distribution pθ (a|d) closer to the input distribution pu (a). The second
term aims to reduce the KL divergence and drive qφ (d|a) closer to the prior distribution. To achieve
this reconstruction, VAE captures the most important characteristic factors that can represent the
original input data.
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In particular, we experimented with the variant β-VAE of VAE [24]; β-VAE introduces the
understanding of the entanglement prior, assuming that the data are generated based on mutually
independent factors. Thus, these factors can be represented by different independent variables
in the representation. The prior unentanglement can promote the encoder to learn the concise
abstract representation of the data, which can be used in various downstream tasks and improves the
sample efficiency.

L (φ, µ, a) = Eqφ(d|a)[log pµ (a|d)]− βD
KL

(
qφ (d|a) ||pµ (d)

)
. (10)

As shown in Formula (10), β-VAE introduces an adjustable super parameter β, which can control
the balance between the dimension of hidden variables and the reconstruction accuracy. Moreover,
the isotropic property of the Gaussian prior also introduces invisible constraints to the posteriori of
learning. Changes in β can alter the level of learning during training, thus encouraging the learning
of different representations. In the experiment, it is necessary to adjust its value to promote the
characterization after unwrapping.

Bengio et al. [25] proposed that the representation suitable for specific tasks and data domains can
significantly improve the learning success rate and robustness of the training model. Therefore,
we constructed the attention mechanism for the high-level representation of VAE extraction.
The self-attention and human visual attention mechanisms play a similar role, screening some key
information from a considerable amount of information, and focusing on the important information.
Figure 4 illustrates the internal structure of the attention model. This module analyzes the total
characteristics of the input data, captures the dependence between channels, and predicts the
importance of the channels so that it can selectively emphasize certain features.

Figure 4. Network structure of the attention model and its corresponding feature dimensions.

The input of the attention module was constructed according to the hidden feature γ produced by
the pretraining encoder, γ ∈ Rb×h×w×c, where b is the batch size, h and w are the length and width of
the feature map respectively, and c is the number of channels. As indicated in Formulas (11)–(14), Q and
K are new feature graphs obtained by integrating input feature γ through cross-channel information
of a 1× 1 convolution kernel, and the dimensions were transformed into Ra×c, where a = h × w.
Then, matrix multiplication was performed between Q and K transposed, and finally, the Softmax
function was used for normalization to obtain the probability distribution αij of the attention
mechanism with the dimension c × c. The significance of this design is to calculate the influence
weight between each channel number of γ, which can highlight the role of the key feature graph and
reduce the influence of redundant features on the overall classification performance.
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Q = reshape (FCNN (γ; µ1)) , (11)

K = reshape (FCNN (γ; µ2)) , (12)

V = reshape (γ) , (13)

αij =
exp

(
Qi · Kj

)
C
∑

i=1
exp

(
Qi · Kj

) . (14)

Finally, the weight coefficient αij and the original feature were weighted and summed, and then
the scale coefficient β was adjusted to obtain the highly discriminative feature expression Oj, as follows:

Oj = β
c

∑
i=1

(
αij ·Vi

)
+ γj, (15)

where β was initialized to zero, and gradually assigned to a large weight in the learning process.

3.3. Feature-Fusion Module

For the features extracted by the text-feature extraction module and image-feature extraction
module, we designed a cross-feature-fusion module based on the attention mechanism, CFF-ATT,
to fuse them. The details of the feature-fusion module are presented in Figure 5. The output features
of the first two modules were taken as the input of the feature fusion module, one of which is the
main input and the other is the secondary input. The two input modes were fused to generate the
target mode output. Setting the main input as E = {E1, E2, . . . , En} ∈ Rde×n, and secondary input as
G = {G1, G2, . . . , Gl} ∈ Rdt×l , we project the main input E and the secondary input G into the same
shared vector space:

Eembi
= tanh

(
PEemb Ei + CEemb

)
, (16)

Gembi
= tanh

(
PGemb Gi + CGemb

)
, (17)

where PEemb ∈ Rdv×de , PGemb ∈ Rdv×dt , CEemb ∈ Rdv , and CGemb ∈ Rdv in the above formula are the
training parameters, and dv is the dimension of the shared vector space. We used Eemb and Gemb to
calculate the attention matrix M ∈ Rn×l , where Mij represents the correlation between the i-th content
of the main input and the i-th content of the secondary input. The attention matrix can be expressed
as follows:

Mij = Eembi
TGembi

. (18)

To measure the importance of each secondary input to the main input, we used the Softmax
function to quantify M:

Mij =
exp

(
Mij
)

∑l
j=1 exp

(
Mij
) . (19)

Then, we obtained the secondary input J based on the attention mechanism:

J = G ·MT . (20)

Finally, the main input E and the attention-based secondary input J were spliced at the full
connection layer to obtain the fusion feature U = {U1, U2, . . . , Un} :

Ui = tanh (Pu [Ei : Ji] + Cu) , (21)

where Ui ∈ Rde , Pu ∈ Rde×(de+dt).
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Figure 5. Feature fusion module.

3.4. Output Layer

Through the above modules, we obtained the fused features. One part is the feature with the text
as the main feature and the image as the auxiliary feature, and the other part is the feature with the
image as the main feature and the text as the auxiliary feature. Connecting them, we input the final
output layer and used the Softmax classifier for sentiment classification.

4. Experiments and Results

This section discusses the experimental results of our model on two different Twitter datasets and
the comparative experiments with other baseline methods. Finally, we make a visual verification of
the effect of the attention mechanism on image feature extraction.

4.1. Datasets and Setup

In this experiment, we used MVSA-Single and MVSA-Multiple [26], which are two common
multimodal sentiment datasets. The MVSA-Single dataset contains 5129 text-image pairs from Twitter.
An annotator annotated each text and image with one of three sentiments (positive, negative, or neutral).
The MVSA-Multiple dataset contains 19,600 text-image pairs from Twitter. Unlike the previous dataset,
each text–image pair was annotated with one of the three sentiments by three different annotators.
Each annotator’s judgment on the text or image was not affected by that of the others.

As for the MVSA-multiple dataset, because each text or image has three sentimental tags,
these three sentimental tags may be the same or different, which can affect our judgment of the
sentimental polarity of the text or image. Thus, we think that the text or image is meaningful and can
only be used if two or more of the three sentimental tags of text or image are the same. In addition,
when the two sentimental polarities of a text–image pair reflected by the sentimental tag are the
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same, it is easy to classify the sentiment. However, in some tweets from these two datasets, the text
sentiment polarity and image sentiment polarity were inconsistent, which affected our subsequent
sentiment classification task. To obtain more accurate data, we deleted those tweets with one polarity
of positive sentiment and another polarity of negative sentiment. For tweets with one polarity of
neutral sentiment and one positive (or negative) sentiment, we considered the sentimental polarity to
be positive (or negative), that is, we ignored the neutral sentimental label. After processing the dataset
using the above method, we obtained the MVSA-Single dataset with 4511 text–image pairs and the
MVSA-Multiple dataset with 17,024 text–image pairs. We randomly divided the dataset into training
(80%), verification (10%) and testing sets (80%) according to the ratio of 8:1:1.

4.2. Experimental Parameter Setting

We scaled each image in the dataset to 224 × 224 pixels. The improved variational auto-encoder
learns from the original pretraining dataset. In the β-VAE training phase, the Adam optimizer was
used, and the fixed learning rate was 0.001. The encoder model uses the CNN. Each image outputs
2048 10 × 10 area feature maps. The decoder comprises a deconvolutional neural network. The loss
function measures the reconstruction error of the image through cross-entropy, whereas it measures
the difference between the distribution of hidden variables and the unit Gaussian distribution through
KL divergence. According to the convergence property of the loss function, to obtain randomness
and avoid falling into local optimization, the batch size selected in this paper was 128. In the training
process, to avoid model overfitting, we also used dropout and early-stopping techniques. We set the
shared space size of the feature-fusion module to 100, and its dropout rate was 0.3.

4.3. Baselines

We compared our model with the baseline approaches below on two MVSA datasets.

1. SentiBank + SentiStrength [11] extracted 1200 adjective–noun pairs to analyze the features of the
image and calculate the sentimental score of the text part.

2. CBOW + DA + LR [15] used the skip-gram and denoising autoencoder to learn the internal
features of the text and image in an unsupervised and semi-supervised way and then connected
them for sentiment classification.

3. CNN-Multi [20] used two independent CNNs to extract text and image features, and input these
features into another CNN for sentimental classification.

4. DNN-LR [19] trained the neural network for text and image, and then extracted their respective
features, connectting and inputting them into a logistic regression for sentiment classification.

5. MultiSentiNet [8] extracted the deep semantic features of the image, including the visual,
object and scene information, and proposed a visual feature-guided attention LSTM model
to absorb these text words that are important to sentiment analysis.

6. CoMn [9] used the relationship between the image and text and proposed a stacked co-memory
network to represent the interaction between the visual and text information iteratively to conduct
sentimental analysis.

4.4. Experimental Results

We chose the accuracy rate and F1-score as our experimental evaluation indicators, and the
calculation is as follows: 

Precision = TP
TP+FP

Recall = TP
TP+FN

F1− score = 2∗Precision∗Recall
Precision+Recall

Accuracy = TP+TN
TP+FN+TN+FP

, (22)
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where TP is the number of samples correctly marked as positive, FP is the number of samples incorrectly
marked as positive but actually negative, TN is the number of samples correctly marked as negative,
and FN is the number of samples incorrectly marked as negative but actually positive.

Table 1 presents the results of comparing our model with other baseline methods on the two
MVSA datasets. The experimental results of the baseline method in Table 1 were retrieved from
published papers. CoMN(6) represents CoMN with six memory jumps. This is a CoMN model with
the best classification effect known in the relevant paper.

As listed in Table 1, the performance of SentiBank + SentiStrength is the worst. This model only
used the traditional statistical features to represent the sentimental information of text and images,
and failed to extract the most useful internal features of the text and images. Thus, it cannot accurately
determine the sentimental polarity of tweets.

Next, CBOW + DA + LR used a denoising autoencoder to generate images. By reducing the
image error, CBOW + DA + LR can extract more accurate image features, and combine them with
word embedding to complete the sentiment classification task. Therefore, the effect is better than that
of SentiBank + SentiStrength.

Moreover, CNN-Multi and DNN-LR used the deep learning neural network to extract text
and image features. When the data volume was small, such as in the MVSA-single dataset, their
performance was worse than that of CBOW + DA + LR; however, when the data volume was relatively
large, such as in the MVSA-multiple dataset, the performance was better than that of CBOW + DA +
LR. This demonstrates that these two deep learning models require more training to improve their
learning effect.

Table 1. Experimental results of baseline method and our model on two MVSA datasets.

Model
MVSA-Single MVSA-Muliiple

ACC F1 ACC F1

Baselines

SentiBank + SentiStrength 0.5205 0.5008 0.6562 0.5536

CBOW + DA + LR 0.6386 0.6352 0.6422 0.6373

CNN-Multi 0.6120 0.5837 0.6630 0.6419

DNN-LR 0.6142 0.6103 0.6786 0.6633

MultiSentiNet 0.6984 0.6963 0.6886 0.6811

CoMN(6) 0.7051 0.7001 0.6892 0.6883

Proposed Model 0.7144 0.7106 0.6962 0.6935

When processing text and images, MultiSentiNet considered the semantic information of the
visual features and highlighted the influence of the image information on the text information. Thus it
obtained good experimental results.

In addition, CoMN considered the mutual influence and interactive promotion of text information
and image informatio; thus, its experimental results were better than those of MultiSentiNet, which only
focuses on the influence of the image information on the text information. However, the attention
mechanism in CoMN used a single attention vector to participate in multiple content types, which may
lead to information loss.

Our model eliminated noise interference in the textual data and extracted the more important
image features. We used the feature-fusion module based on a fine-grained attention mechanism to
learn the modal fusion features of the image and text information interactively. Therefore, we obtained
better experimental results than CoMN.
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4.5. Attention Visualization

In this section, we visualize the effect of the attention mechanism on image feature extraction.
In the experiment, we used the t-SNE algorithm [27] to reduce the dimensionality of the eigenvalues
output of the network and projected it into a two-dimensional space. Figure 6 is the feature
visualization diagram of part of the testing set in the MVSA-Single dataset experiment. Figure 6a
is the early feature of the image feature before it enters the attention module, and Figure 6b is the
image feature after it is enhanced by the attention mechanism. To make the image expression clearer,
three kinds of images, positive, neutral and negative, were sampled in the t-SNE experiment, and the
dimensions of the three kinds of images were reduced. The three marking symbols in Figure 6 represent
three different categories. Among them, class1 represents positive sentiment samples, class2 represents
negative sentiment samples, and class3 represents neutral sentiment samples. After the improvement
of the features of the attention module, the distribution difference between different image categories
is more obvious. The standard deviation of intra class distance is reduced, and the standard deviation
of class spacing is increased. The experimental results reveal that the attention mechanism can
capture key features in advanced features, which is helpful to improve the accuracy of the sentiment
classification task.

Figure 6. Visualization results of image features projected to two-dimensional space by t-SNE. (a) The
early feature of the image feature before it enters the attention module. (b) The image feature after it is
enhanced by the attention mechanism.

5. Conclusions and Future Work

Multimodal sentiment analysis of social media is a challenging task. This paper proposes a
multimodal sentiment analysis model based on the attention mechanism. This model can effectively
eliminate noise interference in the textual data of social media and obtain more accurate text features.
Combined with the attention mechanism, the image features that are more important to sentiment
classification are extracted. In terms of feature fusion, the attention mechanism is introduced again to
fuse features in different modes effectively, which learns the interactive information between text and
images. The model used modal internal information and modal interaction information to effectively
obtain the sentimental feature representation of multimodal data, accurately judged the sentimental
polarity of users’ tweets, better revealed users’ real feelings, and helped us understand people’s
attitudes and views towards certain events on social media. The experimental results on two open
datasets demonstrate the feasibility and superiority of our proposed model.

In future work, we aim to improve the existing models and methods and study more modalities,
including audio, video, and so on. We intend to find more effective methods of feature extraction and
feature fusion to provide more effective information for sentiment analysis.
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