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Abstract: This paper is concerned with multiple solutions for a class of nonlinear fourth-order
boundary value problems with parameters. By constructing a special cone and applying fixed point
index theory, the multiple solutions for the considered systems are obtained under some suitable
assumptions. The main feature of obtained solutions (u(t), v(t)) is that the solution u(t) is positive,
and the other solution v(t) may change sign. Finally, two examples with continuous function f1 being
positive and f2 being semipositone are worked out to illustrate the main results.

Keywords: multiple solutions; fixed point theory; boundary value problems

1. Introduction

It is well known that the subject of the existence of solutions to numerous boundary value
problems (BVP) for differential equations such as second-order [1–3], fourth-order [4–6], even fractional
order BVP [7–11] has gained considerable attention and popularity. A growing number of outstanding
progress has been made in the theory of such BVP in the last decades due mainly to their extensive
applications in the fields of hydrodynamics, nuclear physics, biomathematics, chemistry, and control
theory. For further details, please see References [12–29] and references therein.

It is noted that fourth-order boundary value problems have an important application in practical
problems, that is, they can be used to describe the deformation of elastic beam, see References [30–33]
and references therein. For example, in Reference [32], by means of the theory of fixed point
index on cone, Y. Li investigated the following boundary value problems of fourth-order ordinary
differential equation {

u(4)(t) + βu′′(t)− αu(t) = f (t, u), 0 < t < 1;
u(0) = u(1) = u′′(0) = u′′(1) = 0,

where f ∈ C([0, 1] × R+,R+), α, β ∈ R and satisfy β < 2π2, α ≥ −β4/4, α/π4 + β/π2 < 1.
By constructing a special cone, the existence of at least one positive solution was obtained under
some suitable assumptions.

Recently, in Reference [33], Q. Wang and L. Yang studied the following boundary value problems
u(4)(t) + β1u′′(t)− α1u(t) = f1(t, u(t), v(t)), 0 < t < 1;
v(4)(t) + β2v′′(t)− α2v(t) = f2(t, u(t), v(t)), 0 < t < 1;
u(0) = u(1) = u′′(0) = u′′(1) = 0;
v(0) = v(1) = v′′(0) = v′′(1) = 0,

(1)
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where f1, f2 ∈ C([0, 1]×R+ ×R+,R+), and βi, αi ∈ R(i = 1, 2) satisfy the following conditions:

βi < 2π2, − βi/4 ≤ αi, αi/π4 + βi/π2 < 1. (2)

These conditions involve a two-parameter non-resonance condition. By constructing two classes
of cones and using the fixed point theory, the existence of at least one positive solution was obtained.
It is remarkable that the premise of this establishment of the result in Reference [33] is that the nonlinear
term f2 must be positive.

We point out that there are some limitations in those existing results of fourth-order boundary
value problems. All solutions obtained in the above references are positive, and moreover, the
corresponding conclusions in them are not valid when the nonlinear term is allowed to be non-positive.
Considering that two variables u and v in the nonlinear term usually have some connections in many
practical problems, there is no description of the relationship between them in the aforementioned
papers. It is an interesting problem to seek such solutions for BVP (1) that one variable is positive
and the other may be non-positive under the assumptions that nonlinearity may be semipositoned,
and some connection will be added between these two variables. As far as we know, there is no paper
considering such problem for BVP (1). The purpose of the present paper is to fill this gap.

This paper, motivated by all the above mentioned discussions, investigates the multiple solutions
for BVP (1) under the more different conditions compared with Reference [33]. By constructing a very
special cone and using the fixed point index theory, the existence and multiplicity results of solutions
to (1) are obtained when βi, αi ∈ R (i = 1, 2) satisfy the conditions (2), f1 ∈ C([0, 1]×R+ ×R,R+),
and f2 ∈ C([0, 1]×R+ ×R,R).

The nonlinear term f2 is allowed to change sign by contrast, f2 ∈ C([0, 1] × R+ × R,R).
A relationship is imposed between two variables u, v in nonlinear terms, which is that the variable
v is controlled by u. In obtained solution (u, v), the component u is positive, but the component v is
allowed to be negative in comparison with Reference [33].

The rest of this paper is organized as follows—Section 2 contains some background materials
and preliminaries. The main results will be given and proved in Section 3. Finally, in Section 4, two
examples are given to support our results.

2. Background Materials and Preliminaries

The basic space used in this paper is E := C[0, 1]× C[0, 1]. It is a Banach space endowed with the
norm ‖(u, v)‖ = max{‖u‖, ‖v‖} for (u, v) ∈ E, where ‖u‖ = max

t∈[0,1]
|u(t)|, ‖v‖ = max

t∈[0,1]
|v(t)|. Under

the condition (2), as in Reference [32], let

ξi,1 =
−βi +

√
β2

i + 4αi

2
, ξi,2 =

−βi −
√

β2
i + 4αi

2
, (i = 1, 2),

and let Gi,j(t, s)(i, j = 1, 2) be the Green’s function of the linear boundary value problem{
−u′′i (t) + ξi,jui(t) = 0, 0 < t < 1;
ui(0) = ui(1) = 0, i, j = 1, 2.

Then for hi ∈ C[0, 1], the solution of the following nonlinear boundary value problem{
u(4)

i (t) + βiu′′i (t)− αiui = hi(t), 0 < t < 1;
ui(0) = ui(1) = u′′i (0) = u′′i (1) = 0, i, j = 1, 2



Symmetry 2020, 12, 1989 3 of 13

can be expressed as

ui(t) =
∫ 1

0

∫ 1

0
Gi,1(t, τ)Gi,2(τ, s)hi(s)dsdτ, t ∈ [0, 1].

Lemma 1. The function Gi,j(t, s)(i = 1, 2) has the following properties:
(1) Gi,j(t, s) > 0 for t, s ∈ (0, 1);
(2) Gi,j(t, s) ≤ Ci,jGi,j(s, s) for t, s ∈ [0, 1], where Ci,j > 0 is a constant;
(3) Gi,j(t, s) ≥ δi,jGi,j(t, t)Gi,j(s, s) for t, s ∈ [0, 1], where δi,j > 0 is a constant;
(4) G2,j(t, s) ≤ NjG1,j(t, s) for t, s ∈ [0, 1], where Nj > 0 is a constant.

Proof of Lemma 1. (1)–(3) can be seen from Reference [32]. In addition, by careful calculation and

Lemma 2.1 in Reference [32], it is not difficult to prove that Nj := sup
0<t,s<1

G2,j(t,s)
G1,j(t,s)

< +∞. Immediately,

(4) is derived.

The main tool used here is the following fixed-point index theory.

Lemma 2 ([34]). Let E1 be a Banach space and P be a cone in E1. Denote Pr = {u ∈ P : ‖u‖ < r} and
∂Pr = {u ∈ P : ‖u‖ = r} (∀r > 0). Let T : P → P be a complete continuous mapping, then the following
conclusions are valid.

(1) If µTu 6= u for u ∈ ∂Pr and µ ∈ (0, 1], then i(T, Pr, P) = 1;
(2) If inf

u∈∂Pr
‖Tu‖ > 0 and µTu 6= u for u ∈ ∂Pr and µ ≥ 1, then i(T, Pr, P) = 0.

3. Main Results

In this section, we shall establish the existence and multiplicity results, which is based on the fixed
point index theory. For this matter, first we define the mappings T1, T2 : E→ C[0, 1], and T : E→ E by

T1(u, v)(t) =
∫ 1

0

∫ 1

0
G1,1(t, τ)G1,2(τ, s) f1(s, u(s), v(s))dsdτ,

T2(u, v)(t) =
∫ 1

0

∫ 1

0
G2,1(t, τ)G2,2(τ, s) f2(s, u(s), v(s))dsdτ,

T(u, v)(t) = (T1(u, v)(t), T2(u, v)(t)), ∀(u, v) ∈ E.

Then, BVP (1) in operator forms becomes

(u, v) = T(u, v). (3)

By (3), one can easily see that the existence of solutions for BVP (1) is equivalent to the existence
of nontrivial fixed point of T. Therefore, we need to find only the nontrivial fixed point of T in the
following work.

Subsequently, for simplicity and convenience, set

Mi,j = max
t∈[0,1]

Gi,j(t, t), Ci =
∫ 1

0
Gi,1(τ, τ)Gi,2(τ, τ)dτ, and λi = π4 − βiπ

2 − αi.

Then, Mi,j, Ci, and λi(i, j = 1, 2) are positive numbers.
Now let us list the following assumptions satisfied throughout the paper.
(H1) f1 ∈ C([0, 1]×R+ ×R,R+), f2 ∈ C([0, 1]×R+ ×R,R), and there exists N3 > 0 such that

| f2(t, u, v)| ≤ N3 f1(t, u, v) for (t, u, v) ∈ [0, 1]×R+ ×R.
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(H2) lim
|v|≤Nu
u→0+

sup max
t∈[0,1]

f1(t,u,v)
u < λ1 < lim

|v|≤Nu
u→+∞

inf min
t∈[0,1]

f1(t,u,v)
u .

(H3) lim
|v|≤Nu
u→0+

inf min
t∈[0,1]

f1(t,u,v)
u > λ1 > lim

|v|≤Nu
u→+∞

sup max
t∈[0,1]

f1(t,u,v)
u .

In addition, for the sake of obtaining the nontrivial fixed point of operator T, let

P = {(u, v) ∈ E : u(t) ≥ σ(t)‖u‖ and |v(t)| ≤ Nu(t), ∀t ∈ [0, 1]},

where σ(t) =
δ1,1δ1,2C1

C1,1C1,2M1,1
G1,1(t, t) and N = N1N2N3. N1, N2, and N3 are defined in Lemma 1 and

(H1), respectively.
Obviously, P is a nonempty, convex, and closed subset of E. Furthermore, one can prove that P is

a cone of Banach space E.
For convenience, set

ΛΥ = {(u, v) ∈ R+ ×R : u ∈ Υ ⊂ R+, |v| ≤ Nu},

Pr = {(u, v) ∈ P : ‖u‖ < r},

∂Pr = {(u, v) ∈ P : ‖u‖ = r},

P̄r = {(u, v) ∈ P : ‖u‖ ≤ r}.

It is not difficult to see that Pr is a relatively open and bounded set of P for each r > 0.

Lemma 3. To calculate the fixed point index of T in Pr, we first need to prove the following result. Assume that
(H1) hold. Then T : P→ P is completely continuous, and T(P) ⊂ P.

Proof of Lemma 3. For (u, v) ∈ P, by virtue of Lemma 1, one can easily obtain that

T1(u, v)(t) =
∫ 1

0

∫ 1

0
G1,1(t, τ)G1,2(τ, s) f1(s, u(s), v(s))dsdτ

≥ δ1,1δ1,2C1

C1,1C1,2M1,1
G1,1(t, t)‖T1(u, v)‖ = σ(t)‖T1(u, v)‖, ∀t ∈ [0, 1].

Moreover, (H1) together with Lemma 1 guarantees that

|T2(u, v)(t)| = |
∫ 1

0

∫ 1

0
G2,1(t, τ)G2,2(τ, s) f2(s, u(s), v(s))dsdτ|

≤ N3

∫ 1

0

∫ 1

0
G2,1(t, τ)G2,2(τ, s) f1(s, u(s), v(s))dsdτ

≤ N1N2N3

∫ 1

0

∫ 1

0
G1,1(t, τ)G1,2(τ, s) f1(s, u(s), v(s))dsdτ

= N|T1(u, v)(t)|.

Therefore, T(u, v) ∈ P, namely, T(P) ⊂ P. In addition, since f1, f2, and Gi,j are continuous,
one can deduce that T is completely continuous by using normal methods such as Arscoli-Arzela
theorem, and so forth.

Now we are in a position to prove our main results in the following.

Theorem 1. Under the assumptions (H1) and (H2), the BVP (1) admits at least one nontrivial solution.
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Proof of Theorem 1. To obtain the nontrivial solution for BVP (1), we will choose a bounded open set
PR1 \ P̄r1 in cone P and calculate the fixed point index i(T, PR1 \ Pr1 , P). For this, the proof of Theorem 1
will be carried out in three steps.

First, notice that by (H2), there exist ε ∈ (0, 1) and r1 > 0 such that

f1(t, u, v) ≤ (1− ε)λ1u ∀t ∈ [0, 1], (u, v) ∈ Λ[0,r1]
. (4)

We claim that
µT(u, v) 6= (u, v), ∀µ ∈ (0, 1], (u, v) ∈ ∂Pr1 . (5)

To this end, suppose on the contrary that there exist µ0 ∈ (0, 1] and (u0, v0) ∈ ∂Pr1 such that

µ0T(u0, v0) = (u0, v0).

Therefore, (u0, v0) satisfies the following differential equation{
u(4)

0 (t) + β1u′′0 (t)− α1u0(t) = f1(t, u(t), v(t)), 0 < t < 1;
u0(0) = u0(1) = u′′0 (0) = u′′0 (1) = 0;

(6)

It follows from (4) and (6) that

u(4)
0 (t) + β1u′′0 (t)− α1u0(t) ≤ f1(t, u0(t), v0(t)) ≤ (1− ε)λ1u0(t).

Multiplying the above inequality by sin(πt) and then integrating from 0 to 1, one can easily get

∫ 1

0
λ1u0(t) sin(πt)dt ≤ (1− ε)

∫ 1

0
λ1u0(t) sin(πt)dt.

Noticing that
∫ 1

0
λ1u0(t) sin(πt)dt > 0, we obtain a contradiction.

Second, from (H2), there exist ε > 0 and m > 0 such that

f1(t, u, v) ≥ (1 + ε)λ1u ∀t ∈ [0, 1], (u, v) ∈ Λ[m,+∞). (7)

Set C := max
t∈[0,1]

(u,v)∈Λ[0,m]

| f1(t, u, v)− (1 + ε)λ1u|+ 1. Then one can easily find that

f1(t, u, v) ≥ (1 + ε)λ1u− C, ∀t ∈ [0, 1], (u, v) ∈ ΛR+ . (8)

Now, we will show that there exists R1 > r1 such that

inf
(u,v)∈∂PR1

‖T(u, v)‖ > 0 and µT(u, v) 6= (u, v), ∀µ ≥ 1, (u, v) ∈ ∂PR1 . (9)

Suppose, on the contrary, that there exist µ0 ≥ 1 and (u0, v0) ∈ ∂PR1 such that µ0T(u0, v0) =

(u0, v0). Combining (6) with (8), we immediately get

u(4)
0 (t) + β1u′′0 (t)− α1u0(t) ≥ f1(t, u0(t), v0(t)) ≥ (1 + ε)λ1u0(t)− C.

Hence, ∫ 1

0
λ1u0(t) sin(πt)dt ≥ (1 + ε)

∫ 1

0
λ1u0(t) sin(πt)dt− 2C

π
,

which yields ∫ 1

0
λ1u0(t) sin(πt)dt ≤ 2C

πελ1
.
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On the other hand, in view of the definition of cone P, one can easily obtain that

‖u0‖
∫ 1

0
σ(t) sin(πt)dt ≤

∫ 1

0
u0(t) sin(πt)dt ≤ 2C

πελ1
,

which means
‖u0‖ ≤

2C

πελ1
∫ 1

0 σ(t) sin(πt)dt
:= R∗1 . (10)

Therefore, if R1 > R∗1 , immediately, one can get µT(u, v) 6= (u, v) for µ ≥ 1 and (u, v) ∈ ∂PR1 .

In addition, if R1 >
m

min
t∈[ 1

4 , 3
4 ]

σ(t)
:=

m
σ∗

, then by the definition of cone P, one can get that for any

t ∈ [ 1
4 , 3

4 ] and (u, v) ∈ ∂PR1 ,
u(t) ≥ min

t∈[ 1
4 , 3

4 ]
u(t) ≥ σ∗R1 > m. (11)

So, by (7), (11), and Lemma 1, one can get that for all (u, v) ∈ ∂PR1 ,

‖T(u, v)‖ ≥ T1(u, v)(
1
2
)

=
∫ 1

0

∫ 1

0
G1,1(

1
2

, τ)G1,2(τ, s) f1(s, u(s), v(s))dsdτ

≥ δ1,1δ1,2G1,2(
1
2

,
1
2
)C1

∫ 1

0
G1,2(s, s) f1(s, u(s), v(s))ds

≥ δ1,1δ1,2G1,2(
1
2

,
1
2
)C1(1 + ε)λ1

∫ 3
4

1
4

G1,2(s, s)u(s)ds

≥ δ1,1δ1,2G1,2(
1
2

,
1
2
)C1(1 + ε)λ1R1σ∗

∫ 3
4

1
4

G1,2(s, s)ds

≥ δ1,1δ1,2G1,2(
1
2

,
1
2
)C1(1 + ε)λ1m

∫ 3
4

1
4

G1,2(s, s)ds > 0.

That is, inf
(u,v)∈∂PR1

‖T(u, v)‖ > 0. So, we can ultimately choose R1 > max{R∗1 , r1, m
σ∗ } such that

(9) holds.
Based on (5), (9), Lemma 2, and Lemma 3, we have

i(T, PR1 \ P̄r1 , P) = i(T, PR1 , P)− i(T, Pr1 , P) = 0− 1 = −1.

As a result, the conclusion of this theorem follows.

Theorem 2. Assume that (H1) and (H3) hold. Then the BVP (1) has at least one nontrivial solution.

Proof of Theorem 2. In the following, we divide the proof of Theorem 2 into three steps.
Step 1. From condition (H3), there exist ε > 0 and r2 > 0 such that

f1(t, u, v) ≥ (1 + ε)λ1u, ∀t ∈ [0, 1], (u, v) ∈ Λ[0,r2]
. (12)

Subsequently, we claim that

inf
(u,v)∈∂Pr2

‖T(u, v)‖ > 0 and µT(u, v) 6= (u, v), ∀µ ≥ 1, (u, v) ∈ ∂Pr2 . (13)
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In fact, if there exist µ0 ≥ 1 and (u0, v0) ∈ ∂Pr2 such that µ0T(u0, v0) = (u0, v0), then by (6) and
(12), one can obtain immediately

u(4)
0 (t) + β1u′′0 (t)− α1u0(t) ≥ f1(t, u0(t), v0(t)) ≥ (1 + ε)λ1u0(t).

Hence, ∫ 1

0
λ1u0(t) sin(πt)dt ≥ (1 + ε)

∫ 1

0
λ1u0(t) sin(πt)dt.

Noticing that
∫ 1

0
λ1u0(t) sin(πt)dt > 0, we get a contradiction.

In addition, it follows from Lemma 1 and (12) that for (u, v) ∈ ∂Pr2 ,

‖T(u, v)‖ ≥ T1(u, v)(
1
2
)

=
∫ 1

0

∫ 1

0
G1,1(

1
2

, τ)G1,2(τ, s) f1(s, u(s), v(s))dsdτ

≥ δ1,1δ1,2G1,2(
1
2

,
1
2
)C1

∫ 1

0
G1,2(s, s) f1(s, u(s), v(s))ds

≥ δ1,1δ1,2G1,2(
1
2

,
1
2
)C1(1 + ε)λ1

∫ 1

0
G1,2(s, s)u(s)ds

≥ δ1,1δ1,2G1,2(
1
2

,
1
2
)C1(1 + ε)λ1r2

∫ 1

0
G1,2(s, s)σ(s)ds > 0,

which yields inf
(u,v)∈∂Pr2

‖T(u, v)‖ > 0.

Step 2. The assumption (H3) implies that there exist ε ∈ (0, 1) and m > 0 such that

f1(t, u, v) ≤ (1− ε)λ1u, ∀t ∈ [0, 1], (u, v) ∈ Λ[m,+∞). (14)

Moreover, by the continuity of f1 and f2, there exists C∗ > 0 such that

f1(t, u, v) ≤ (1− ε)λ1u + C∗, ∀t ∈ [0, 1], (u, v) ∈ ΛR+ . (15)

We claim that there exists a large enough R2 > r2 such that

µT(u, v) 6= (u, v), ∀µ ∈ (0, 1], (u, v) ∈ ∂PR2 . (16)

Suppose, on the contrary, there exist µ0 ∈ (0, 1] and (u0, v0) ∈ ∂PR2 such that µ0T(u0, v0) =

(u0, v0). Then (6) together with (15) guarantees

u(4)
0 (t) + β1u′′0 (t)− α1u0(t) ≤ f1(t, u0(t), v0(t)) ≤ (1− ε)λ1u0(t) + C∗.

Consequently,

∫ 1

0
λ1u0(t) sin(πt)dt ≤ (1− ε)

∫ 1

0
λ1u0(t) sin(πt)dt +

2C∗

π
,

namely, ∫ 1

0
u0(t) sin(πt)dt ≤ 2C∗

πελ1
.

Moreover, based on the definition of cone P, we can immediately get

‖u0‖
∫ 1

0
σ(t) sin(πt)dt ≤

∫ 1

0
u0(t) sin(πt)dt ≤ 2C∗

πελ1
,
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which means
‖u0‖ ≤

2C∗

πελ1
∫ 1

0 σ(t) sin(πt)dt
:= R∗2 . (17)

So, one can choose R2 > max{R∗2 , r2} such that (16) holds.
Step 3. From (13), (16), Lemma 2, and Lemma 3, we deduce that

i(T, PR2 \ P̄r2 , P) = i(T, PR2 , P)− i(T, Pr2 , P) = 1− 0 = 1.

As a result, BVP(1) has at least one nontrivial solution.

Up to now, some existence results of BVP(1) have been obtained by applying the fixed point index
theory. In the following, the multiple solutions will be considered for BVP (1).

Theorem 3. Assume that (H1) holds. In addition, suppose that
(1) lim

|v|≤Nu
u→0+

sup max
t∈[0,1]

f1(t,u,v)
u < λ1, lim

|v|≤Nu
u→+∞

sup max
t∈[0,1]

f1(t,u,v)
u < λ1;

(2) There exists r > 0 and a continuous nonnegative function Φr such that

f1(t, u, v) ≥ Φr(t), ∀(t, u, v) ∈ [0, 1]× (σ(t)r, r)× [−Nr, Nr]

and

max
t∈[0,1]

∫ 1

0

∫ 1

0
G1,1(t, τ)G1,2(τ, s)Φr(s)dsdτ > r.

Then the BVP (1) has at least two nontrivial solutions.

Proof of Theorem 3. In order to obtain this conclusion, we firstly claim that

inf
(u,v)∈∂Pr

‖T(u, v)‖ > 0 and µT(u, v) 6= (u, v), ∀ µ ≥ 1, (u, v) ∈ ∂Pr. (18)

Suppose, on the contrary, there exist µ0 ≥ 1 and (u0, v0) ∈ ∂Pr such that µ0T(u0, v0) = (u0, v0).
Then,

‖u0‖ ≥ ‖T(u0, v0)‖ ≥ T1(u0, v0)(t)

=
∫ 1

0

∫ 1

0
G1,1(t, τ)G1,2(τ, s) f1(s, u(s), v(s))dsdτ

≥
∫ 1

0

∫ 1

0
G1,1(t, τ)G1,2(τ, s)Φr(s)dsdτ.

(19)

Taking the maximum for both sides of the above inequality in t ∈ [0, 1], we get that

‖u0‖ ≥ max
t∈[0,1]

∫ 1

0

∫ 1

0
G1,1(t, τ)G1,2(τ, s)Φr(s)dsdτ > r. (20)

This means (u0, v0)∈ ∂Pr, which is a contradiction. Moreover, one can easily see that
inf

(u,v)∈∂Pr
‖T(u, v)‖ > 0 holds from (19) and (20).

Next, similar to the process of proving (5) and (16), there exist r1 ∈ (0, r) and R2 ≥ max{R∗2 , r2, r}
such that

µT(u, v) 6= (u, v), ∀µ ∈ (0, 1], ∀(u, v) ∈ ∂Pr1 , (21)

µT(u, v) 6= (u, v), ∀µ ∈ (0, 1], ∀(u, v) ∈ ∂PR2 . (22)

Thus, by (18), (21), (22), Lemma 2, and Lemma 3, one can immediately obtain that

i(T, PR2 \ P̄r, P) = i(T, PR2 , P)− i(T, Pr, P) = 1− 0 = 1,
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i(T, Pr \ P̄r1 , P) = i(T, Pr, P)− i(T, Pr1 , P) = 0− 1 = −1.

Namely, there exist (u1, v1) ∈ Pr \ P̄r1 and (u2, v2) ∈ PR2 \ P̄r satisfying T(ui, vi) = (ui, vi)(i =
1, 2), that is, (ui, vi)(i = 1, 2) is the solution of BVP(1).

Finally, we show (u1, v1) 6= (u2, v2). To see this we need only to prove BVP(1) has no solution on
∂Pr. Suppose on the contrary, there exists (u∗, v∗) ∈ ∂Pr being a solution of BVP(1). Then T(u∗, v∗) =
(u∗, v∗). By a similar process of obtaining (20), one can get ‖u∗‖ = ‖T1(u∗, v∗)‖ > r, which is a
contradiction. To sum up, Theorem 3 is proved.

From a process similar to the above, the following conclusion can be obtained.

Theorem 4. Suppose that (H1) holds. In addition, suppose that
(1) lim

|v|≤Nu
u→0+

inf min
t∈[0,1]

f1(t,u,v)
u > λ1, lim

|v|≤Nu
u→+∞

inf min
t∈[0,1]

f1(t,u,v)
λ1u > λ1;

(2) There exists R > 0, and a continuous nonnegative function ΨR such that

f1(t, u, v) ≤ ΨR(t), ∀(t, u, v) ∈ [0, 1]× [σ(t)R, R]× [−NR, NR]

and

max
t∈[0,1]

∫ 1

0

∫ 1

0
G1,1(t, τ)G1,2(τ, s)ΨR(s)dsdτ < R.

Then the BVP (1) has at least two nontrivial solutions.

Proof of Theorem 4. We firstly prove that

µT(u, v) 6= (u, v), ∀µ ∈ (0, 1], (u, v) ∈ ∂PR. (23)

To this end, suppose on the contrary that there exist µ0 ∈ (0, 1] and (u0, v0) ∈ ∂PR such that
µ0T(u0, v0) = (u0, v0). Hence, we get u0 = µ0T1(u0, v0), that is

u0(t) ≤ T1(u0, v0)(t) ≤
∫ 1

0

∫ 1

0
G1,1(t, τ)G1,2(τ, s)ΨR(s)dsdτ < R. (24)

Noticing that (u0, v0) ∈ ∂PR, this is a contradiction.
Next, from a process similar to (9) and (13), there exist R1 > max{R, R∗1 , r1, m

σ∗ } and r2 ∈ (0, R)
such that

inf
(u,v)∈∂PR1

‖T(u, v)‖ > 0 and µT(u, v) 6= (u, v), ∀µ ≥ 1, (u, v) ∈ ∂PR1 , (25)

inf
(u,v)∈∂Pr2

‖T(u, v)‖ > 0 and µT(u, v) 6= (u, v), ∀µ ≥ 1, (u, v) ∈ ∂Pr2 . (26)

So, by (23)–(26), Lemma 2, and Lemma 3, one can get

i(T, PR1 \ P̄R, P) = i(T, PR1 , P)− i(T, PR, P) = 0− 1 = −1,

i(T, PR \ P̄r2 , P) = i(T, PR, P)− i(T, Pr2 , P) = 1− 0 = 1.

Finally, from a process similar to the end of proof of Theorem 3, BVP(1) has at least two nontrivial
solutions. As a result, the conclusion of this theorem follows.

4. Examples

In this section, two illustrative examples are worked out to show the effectiveness of the
obtained results.
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Example 1. Consider the following BVP of fourth-order ordinary differential systems



u(4)(t) + u′′(t)− π2u(t) = f1(t, u, v), 0 < t < 1;

v(4)(t) +
1
2

v′′(t)− π2

2
v(t) = f2(t, u, v), 0 < t < 1;

u(0) = u(1) = u′′(0) = u′′(1) = 0;

v(0) = v(1) = v′′(0) = v′′(1) = 0,

(27)

where

f1(t, u, v) =


(π4 − 2π2)(1 + sin(πt))uv

1
4 if 0 < u < 1, |v| < u;

(π4 − 2π2)(1 + sin(πt))v
1
4 if u = 1, |v| < u;

(π4 − 2π2)(1 + sin(πt))u
1
4 v

1
4 if u > 1, |v| < u,

f2(t, u, v) =


(π4 − 2π2)(1 + cos(πt))uv

1
4 if 0 < u < 1, |v| < u;

(π4 − 2π2)(1 + cos(πt))v
1
4 if u = 1, |v| < u;

(π4 − 2π2)(1 + cos(πt))u
1
4 v

1
4 if u > 1, |v| < u,

Then, BVP (27) has at least two nontrivial solutions.

Proof of Example 1 . BVP (27) can be regarded as a BVP of the form (1). Choosing α1 = π2, β1 = 1,
and λ1 = π4 − 2π2 > 0, then we have

ξ1,1 =
−β1 +

√
β2

1 + 4α1

2
=
−1 +

√
1 + 4π2

2
, ξ1,2 =

−β1 −
√

β2
1 + 4α1

2
=
−1−

√
1 + 4π2

2
.

Clearly, α1 and β1 satisfy the condition (2). Moreover, by careful calculation and Lemma 2.1 in
Reference [32], one can obtain that

G1,1(t, s) =


sinh w1,1t sinh w1,1(1− s)

w1,1 sinh w1,1
0 ≤ t ≤ s ≤ 1;

sinh w1,1s sinh w1,1(1− t)
w1,1 sinh w1,1

0 ≤ s ≤ t ≤ 1,

G1,2(t, s) =


sin w1,2t sin w1,2(1− s)

w1,2 sin w1,2
0 ≤ t ≤ s ≤ 1;

sin w1,2s sin w1,2(1− t)
w1,2 sin w1,2

0 ≤ s ≤ t ≤ 1,

where w1,i =
√
|ξ1,i|(i = 1, 2).

Now, |v| ≤ 2u, | f2(t, u, v)| ≤ 2| f1(t, u, v)|, and N = N1N2N3. Thus, one can easily get that (H1)

holds by choosing N3 ≥ max{2,
2

N1N2
}, where Nj = sup

0<t,s<1

G2,j(t,s)
G1,j(t,s)

, j = 1, 2.

In addition, by calculation, we get that

lim
|v|≤Nu
u→0+

sup max
t∈[0,1]

f1(t, u, v)
u

= lim
|v|≤Nu
u→0+

sup max
t∈[0,1]

(π4 − 2π2)(1 + sin(πt))uv
1
4

u
= 0 < λ1,

lim
|v|≤Nu

u→+∞

sup max
t∈[0,1]

f1(t, u, v)
u

= lim
|v|≤Nu

u→+∞

sup max
t∈[0,1]

(π4 − 2π2)(1 + sin(πt))u
1
4 v

1
4

u
= 0 < λ1.
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Choose

r = min{1, [δ1,1δ1,2

∫ 1

0

√
σ(t) sin(πt)dt min

t∈[ 1
4 , 3

4 ]
(G1,1(t, t)G1,2(t, t))2]2} > 0

and
Φr(t) =

√
rσ(t) sin(πt).

Then, it is not difficult to obtain that the condition (2) in Theorem 3 holds. Hence, our conclusion
follows from Theorem 3.

Example 2. Consider the following BVP of fourth-order ordinary differential systems



u(4)(t) + u′′(t)− π2u(t) = f1(t, u, v), 0 < t < 1;

v(4)(t) +
1
2

v′′(t)− π2

2
v(t) = f2(t, u, v), 0 < t < 1;

u(0) = u(1) = u′′(0) = u′′(1) = 0;

v(0) = v(1) = v′′(0) = v′′(1) = 0.

(28)

where

f1(t, u, v) =


(π4 − 2π2)(2 + t)u

1
2 v

1
3 if 0 < u < 1, 0 < v < 1;

(π4 − 2π2)(2 + t)v
1
3 if u = 1, 0 < v < 1;

(π4 − 2π2)(2 + t)u2v
1
3 if u > 1, 0 < v < 1,

f2(t, u, v) =


(π4 − 2π2)(1 + cos(πt))u

1
2 v

1
3 if 0 < u < 1, 0 < v < 1;

(π4 − 2π2)(1 + cos(πt))v
1
3 if u = 1, 0 < v < 1;

(π4 − 2π2)(1 + cos(πt))u2v
1
3 if u > 1, 0 < v < 1,

Then, BVP (28) has at least two nontrivial solutions.

Proof of Example 2 . BVP (28) can be regarded as a BVP of the form (1). Using a similar process of the
proof of Example 1, one can easily obtain that

lim
|v|≤Nu
u→0+

inf min
t∈[0,1]

f1(t, u, v)
u

= lim
|v|≤Nu
u→0+

inf min
t∈[0,1]

(π4 − 2π2)(2 + t)u
1
2 v

1
3

u
= +∞ > π4 − 2π2 = λ1,

lim
|v|≤Nu

u→+∞

inf min
t∈[0,1]

f1(t, u, v)
u

= lim
|v|≤Nu

u→+∞

inf min
t∈[0,1]

(π4 − 2π2)(2 + t)u2v
1
3

u
+ ∞ > π4 − 2π2 = λ1.

In addition, it is obvious that (H1) holds by choosing N3 = 2. In the following, set

R = max{1,
2

5π2C1,1C1,2 max
t∈[0,1]

[G1,1(t, t)G1,2(t, t)]
} > 0

and
ΨR(t) = π4R2(2 + t).

Then, it is trivial to verify that assumption (2) of Theorem 3 is true.
As a result, by Theorem 4, system (28) has at least two nontrivial solutions.
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5. Conclusions

In this paper, we have obtained some appropriate results corresponding to multiple solutions for
a class of nonlinear fourth-order boundary value problems with parameters. The multiple solutions
for the considered systems are obtained under some suitable assumptions via fixed point index
theory. The whole theoretical results has been demonstrated by providing two interesting examples.
Hence, we claim that fixed point index theory can be used as a strong technique to study nonlinear
fourth-order boundary value problems with parameters.
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