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Abstract: Previously, we reported that inorganic–organic hybrid (C6H5CH2CH2NH3)2MnCl4
(Mn-PEA) is antiferromagnetic below 44 K by using magnetic susceptibility and neutron diffraction
measurements. Generally, when an antiferromagnetic system is investigated by the neutron diffraction
method, half-integer forbidden peaks, which indicate an enlargement of the magnetic cell compared
to the chemical cell, should be present. However, in the case of the title compound, integer forbidden
peaks are observed, suggesting that the size of the magnetic cell is the same as that of the chemical
cell. This phenomenon was until now only theoretically predicted. During our former study, using an
irreducible representation method, we suggested that four spin arrangements could be possible
candidates and a magnetic cell and chemical cell should coincide. Recently, a magnetic structure
analysis employing a magnetic space group has been developed. To confirm our former result by
the representation method, in this work we employed a magnetic space group concept, and from
this analysis, we show that the magnetic cell must coincide with the nuclear cell because only the
Black–White 1 group (equi-translation or same translation group) is possible.

Keywords: inorganic–organic hybrid; magnetic space group; neutron diffraction

1. Introduction

Nowadays, inorganic–organic hybrid materials attract special interest because of their versatile
application possibilities, including their use in solar cells, multi-ferroic properties and low-dimensional
magnetism [1–4]. To understand interlayer-length effects on their magnetic behavior, many systems have
been suggested. Although such trials have taken place, results have not been successful, because
inorganic–organic hybrid systems generally show a high insolubility, and it is difficult to obtain a
high-quality crystal suitable for a crystallographic investigation. To overcome this hurdle, we have
conducted many experiments and finally we have been able to synthesize a series of layered
inorganic–organic hybrid perovskite crystals using phenylethylammonium cations. Among others,
the crystal structures of (C6H5CH2CH2NH3)2CoCl4 (Co-PEA), (C6H5CH2CH2NH3)2MnCl4 (Mn-PEA)
and (C6H5CH2CH2NH3)2CuCl4 (Cu-PEA) have been solved by the X-ray single crystal diffraction
technique [5–7]. Co-PEA crystallizes in a monoclinic space group P121/c1 (No. 14), and shows no magnetic
ordering at all at low temperature. Co builds an isolated tetrahedron with Cl and between inorganic and
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organic parts various hydrogen bonds exist. Unlike Co-PEA, Mn-PEA and Cu-PEA show an orthorhombic
space group Pbca (No.61) and magnetic ordering process occurs at TC = 10 K for Cu-PEA and at TN = 44 K
for Mn-PEA. Cu-PEA and Mn-PEA belong to the 2-dimensional layered inorganic–organic K2NiF4

perovskite type of general formula A2MX4, where A = organic cation, M = divalent metal and X = halide.
Perovskite is the mineral name for CaTiO3. However, in general, ABX3 or A2BX4 type compounds
are known as perovskite type. The ABX3 type is 3-dimensional and A2BX4 is a double layered type.
The K2NiF4-type materials are also known as Ruddlesden–Popper-type compounds [8]. Although both of
the abovementioned Cu-PEA and Mn-PEA are of a magnetically ordered phase below a certain temperature,
we prefer Mn-PEA, because Mn-PEA is antiferromagnetic and an antiferromagnetic system is more
suitable for handling with neutron diffraction techniques. Additionally, in general, an antiferromagnetic
system shows forbidden half-integer peaks below a magnetic transition temperature. However, in the case
of Mn-PEA, no half- integer forbidden peaks are observed below the Neel temperature. Instead, integer
forbidden peaks that have originated from the magnetic phase transition are present. Based on a theoretical
study [9], if weak-ferromagnetism or ferrimagnetism by spin canting due to DM (Dzyaloshinsky-Moriya)
interactions is present, the antiferromagnetic cell should be same as the chemical cell. Mn-PEA shows
antiferromagnetic phase transition at around 44 K and, in addition, spin canting due to DM interactions
causes a weak-ferromagnetism or ferrimagnetism [6]. Thus, this compound should be the ideal candidate
material with which the theoretical prediction could be proven. In the previous study, we reported not
only X-ray single-crystal structure, but also magnetic properties using magnetic susceptibility and neutron
diffraction methods combined with irreducible representation techniques. However, a new approach
using a magnetic space group has recently been developed. To check and confirm our previous result
using a representation method, in this study, we used a magnetic space group concept, and from this
analysis, we will show that the magnetic cell in Mn-PEA is the same as a chemical cell.

2. Materials and Methods

Before we begin, we must first understand what the magnetic moment is and the difference
between polar vectors and axial vectors. The magnetic moment of an atom generally refers to spin
and is known as an axial vector. A current loop generates a magnetic moment. Under a symmetry
operation, a current loop behaves unlike polar vectors such as velocity, force and linear momentum.
To describe the axial vector, a new concept of time reversal must be introduced and denoted as 1′.
Under time reversal, the current loop must change its sign and as a result, the spin has to change its
direction (see Figure 1).
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Figure 1. Time reversal effect on the axial vector. The current loop changes its sense under a time-
reversal operation.

Contrary to the axial vector, it is unnecessary to consider the loop for a polar vector. Therefore,
it is relatively easy to understand the consequences due to the symmetry operation in the case of a
polar vector. In Figure 2, the differences between the two vectors under a mirror symmetry operation
are shown.
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According to the previous study [10], if we denote a magnetic group as M and a conventional
crystallographic group as G, all members of G are always a magnetic group. A paramagnetic group is
known as a gray group and is described mathematically as G + G1′. This means that a paramagnetic
group is a simple summation of a crystallographic group and a time reversal applied to crystallographic
group G1′. The group G is a colorless group. Each colorless group G and paramagnetic group or
gray group is composed of 230 groups. The above two groups are trivial. For the magnetic group,
the so-called non-trivial Black–White group is important. The Black–White group can be obtained
by the coset decomposition technique. Generally, through the coset decomposition method we can
obtain many subgroups, but in the case of the magnetic space group, we can only consider subgroups
of index 2. This relation is expressed as M = H + (G – H)1′, where M is a magnetic group, H is a
subgroup of index 2, G is a conventional crystallographic group and 1′ is a time reversal operation.
Using the above relation, we can obtain 1191 Black–White groups. Each group can be divided into
two categories based on the existence of translational symmetry changes. According to International
Tables for Crystallography A [11], if there is no change in the translational symmetry after the phase
transition, the transition is known as translationengleich or t-transition. This means that the lattice
parameters are kept after the phase transition. If there is any change in the translational symmetry,
this corresponds to klassengleich or k-transition. This classical concept is also valid for a magnetic
space group, especially for a Black–White group. If we use this concept, there are 674 subgroups that
fulfill the equi-transition condition. This group is known as first-kind Black–White, or simply BW1.
The subgroup H has the same translation as the parent group G. The last one is a so-called equi-class
group or second Black–White group, BW2. In this case, the translation symmetry is lost but the crystal
class can be kept [10].

3. Results and Discussion

To analyze the magnetic structure using a magnetic space group concept, we first need information
such as space group, lattice parameters and the existence of any phase transitions including structural
and magnetic. Mn-PEA has a space group Pbca with lattice parameters a = 7.207 Å, b = 7.301 Å,
c = 39.413 Å and Z = 4, and shows two structural and one magnetic phase transitions at 367 K,
417 K and 43 K, respectively [6]. The crystal structure is shown in Figure 3. The point group of
the space group Pbca is 2/m2/m2/m. If we look at the maximal subgroups and minimal super-groups
of the point group [11], there are three subgroups with an index 2 of 2/m2/m2/m, namely, 222, mm2
and 2/m. In this case, the crystallographic group G is mmm and we can describe the group G as
Gmmm = {1, i, 2, m, 2x, 2y, mx, my}, where i is inversion symmetry, 2x is a 2-fold symmetry operation along
the x-axis and mx is a mirror-symmetry operation perpendicular to the x-axis. The possible subgroups
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of the mmm point group with index 2 are 222, mm2 and 2/m, as already mentioned above. If we
denote one subgroup as H, the first subgroup can be written for example as H1 = 222 = {1, 2, 2x, 2y}.
Analogously, we can denote H2 = mm2 = {1, mx, my, 2} and H3 = 2/m = {1, i, 2, m}. In the first case,
the magnetic point group Mm’m’m’ can be obtained from {1, 2, 2x, 2y} + {i, m, mx, my}1′ (see Table 1).
This is described as {1, 2, 2x, 2y, i’, m’, m’x, m’y} = 2/m’2/m’2/m’ = m’m’m’ [10]. This magnetic point
group is not compatible with ferromagnetism, because if we look at Table 1, half of the spins have
the same sign and the rest of the spins have an opposite sign. This means an antiferromagnetic
ordering. Thus, ferromagnetic ordering is impossible in this magnetic point group. This argument
is valid for the rest of magnetic point groups. The second one is {1, 2, mx, my} + {i, m, 2x, 2y}1′

= {1, 2, 2′x, 2′y, i, m’, mx, my} = 2′/m2′/m2/m’ = mmm’ (see Table 1). This magnetic point group
is also not compatible with ferromagnetism. In the third case, the corresponding magnetic point
group Mm’m’2 can be obtained from {1, 2, i, m} + {2y, my, mx, 2x}1′ (see Table 1). This can be rewritten as
{1, 2, i, m, 2′y, m’y, m’x, 2′x} = 2′/m2′/m2/m = m’m’2. This point group is compatible with ferromagnetism.
The magnetic point group m’m’2 is similar to the previous two magnetic point groups. However, if we
consider the magnetic moment along the c-axis, all magnetic components along the c-axis show a positive
sign. This means that the ferromagnetic ordering in this point group is only possible along the c-axis.
Along another two directions, namely the a- and b-axes, antiferromagnetic ordering is possible. The above
results are summarized in Table 1. If the determinant value of the matrix of a symmetry operation is +1,
it is known as proper rotation, and if this value is −1, then this is an improper rotation.
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To determine the sign in (x, y, z) form, we have to multiply the determinant of a corresponding
symmetry operation by −1 for a primed operation. A primed operation means a symmetry operation
combined with the time reversal operation 1′ [10].
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Table 1. Magnetic point groups Mm’m’m’, Mmmm’ and Mm’m’2. In (x, y, z) form, the integer +1 means a
proper rotation and −1 means an improper rotation. mx, my and mz denote the magnetic components
along each axis.

Symbol
(Mm’m’m’) (x, y, z) Form Symbol

(Mmmm’) (x, y, z) Form Symbol
(Mm’m’2) (x, y, z) Form

1 x, y, z, +1 1 x, y, z, +1 1 x, y, z, +1

mx, my, mz mx, my, mz mx, my, mz

2x x, −y, −z, +1 2x x, −y, −z, +1 2z −x, −y, z, +1

mx, −my, −mz mx, −my, −mz −mx, −my, mz

2y x, −y, −z, +1 my x, −y, z, +1 −1 −x, −y, −z, +1

mx, −my, −mz −mx, my, −mz mx, my, mz

2z −x, −y, z, +1 mz x, y, −z, +1 mz x, y, −z, +1

−mx, −my, mz −mx, −my, mz −mx, −my, mz

−1′ −x, −y, −z, −1 2y’ −x, −y, −z, −1 2x’ x, −y, −z, −1

−mx, −my, -mz −mx, −my, −mz −mx, my, mz

mx’ −x, y, z, −1 2z’ −x, −y, z, −1 2y’ −x, y, −z, −1

−mx, my, mz mx, my, −mz mx, −my, mz

my’ x, −y, z, −1 −1′ −x, −y, −z, −1 mz’ −x, y, z, −1

mx, −my, mz −mx, −my, −mz −mx, my, mz

mz’ x, y, −z, −1 mx’ −x, y, z, −1 my’ x, −y, z, −1

mx, my, −mz −mx, my, mz mx, −my, mz

Now we will check our neutron diffraction experiment data, to find out the most suitable magnetic
structure. For neutron diffraction, a large enough single crystal of Mn-PEA was measured on a
four-circle diffractometer (Version, Company/Manufacturer, City, State abbrev if USA or Canada,
Country) at HANARO, KAERI, Korea. By using a Ge (311) monochromator, a 1.3 Å wavelength was
obtained [12,13]. The measurement at low temperature was carried out with closed cycle refrigerator
(CCR) (DE-202, ARS, Macungie, PA, USA) and the lowest reachable temperature using CCR was
10 K. In general, the interaction between the neutrons and the nuclei of atoms is isotropic. However,
for magnetic scattering, neutrons interact with the electrons in the incompletely filled shells and the
intensity from the magnetic scattering shows a strong angle dependency. Besides, neutrons can detect
a magnetic moment only if the scattering vector is not parallel to the spin direction. For example,
when a magnetic peak is found during a scan process along the a-axis, this indicates that the spin
direction is not along the a-axis. To search for magnetic peaks, we used a Q-scan and a radial scan.
A propagation vector was obtained through these scans. Down to 10 K, we observed no extra phase
transition except magnetic phase transition at around 43 K, which is consistent with previous results
from magnetic susceptibility measurements [6]. At room temperature, the space group of Mn-PEA
is Pbca and the reflection conditions for Pbca are as follows: 0kl: k = 2n, h0l: l = 2n, hk0: h = 2n,
h00: h = 2n, 0k0: k = 2n, 00l: l = 2n, hkl: h + k, h + l, k + l = 2n and hkl: h + k, h + l, k + l = 2n [11].
This means that above the magnetic phase transition temperature, for example, such as for (1 0 0), (0 1 0)
or (0 0 1), reflections are forbidden. If the forbidden peaks are present and also if the intensities of the
so-called nuclear peaks remain unchanged, the appearance of a new reflection indicates the beginning
of a magnetic phase transition. In addition, if we further cool down the temperature, intensities
of magnetic peaks will increase due to the ordering process of a magnetic moment. As shown in
Figure 4, below 43 K, new forbidden reflections were observed and based on the nuclear cell, the new
reflections were indexed as (−1 0 0), (0 1 0), (1 −2 0) and (3 −3 0) [12]. To check if these peaks were
magnetic in origin, we conducted temperature dependence measurements. As shown in Figure 5,
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(−1 0 0) shows a temperature dependency but the intensity of (2 0 0) is almost constant within an
error. To determine the propagation vector, we examined whether we had any half-integer reflections.
If any half-integer reflections were observed, it obviously indicated an antiferromagnetic ordering.
If not, there are two cases. The first one is a simple ferromagnetic ordering and the second one is an
antiferromagnetic ordering. In the antiferromagnetic case, forbidden peaks have to occur. In the title
compound, the transition metal Mn, which has a magnetic moment, occupies a special position 4a in
the space group Pbca and the former magnetic susceptibility measurement and neutron diffraction
experiment indicate that the magnetic moment should be arranged along the c-axis [6,12]. If we
look at International Tables for Crystallography A [11], there are three different kinds of maximal
non-isomorphic subgroup, namely, I, IIa and IIb, but IIa and IIb are empty. This means that we have to
consider only the subgroups belonging to I. All subgroups in I are of index 2 and are composed of seven
space groups: Pbc21, Pb21a, P21ca, P212121, P1121/a, P121/c1 and P21/b11. Based on the magnetic space
group approach, the magnetic cell must coincide with the nuclear cell, because only the Black–White1
group (type 3, which corresponds to the translationengleich group–maximal non-isomorphic subgroup
I) is possible. This means that the propagation vector should be (0 0 0) and this has already been
observed in our previous neutron diffraction experiment [12]. To denote a magnetic space group,
two notations are used: Opechowski–Guccione (OG) and Belov–Neronova–Smirnova (BNS). The only
difference can be found in the magnetic lattice description and Black–White 2 groups. While BNS
notation does not use the primed element in the group symbol, the primed element can be obtained
from the magnetic lattice type [14]. Based on the parent space group, we can obtain five possible
magnetic space groups: Pbca, Pbca1′, Pb’ca, Pb’c’a and Pb’c’a’. The general positions of each magnetic
space group are shown in Table 2.
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Table 2. Magnetic space groups Pbca, Pbca1′, Pb’ca, Pb’c’a and Pb’c’a’. The integer +1 means a proper
rotation and −1 means an improper rotation. mx, my and mz mean the magnetic component along
each axis [15].

Pbca Pbca1′ Pb’ca Pb’c’a Pb’c’a’
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As already mentioned, the magnetic ion locates on a special position (0 0 0). If we apply all
symmetry operations belonging to the magnetic space group Pbca, the final atomic positions are
described as follows: (0, 0, 0 | mx, my, mz), (1/2, 1/2, 0 | mx, −my, −mz), (0, 1/2, 1/2 | −mx, my, −mz)
and (1/2, 0, 1/2 | −mx, −my, mz). This magnetic group corresponds to antiferromagnetic ordering. This is
shown in Figure 6.

The group Pbca1′in Table 2 is a gray group, which is either paramagnetic or diamagnetic. Therefore,
this magnetic group is excluded. This magnetic space group is represented in Figure 7. Because this is
para- or diamagnetic, no arrows indicating spins are shown.

In Table 2, the symmetry operations of the magnetic space group Pb’ca are shown. The transition-
metal atom Mn locates on 4a, (0 0 0). If we apply the magnetic symmetry operations to the Mn
atom, we can obtain {0, 0, 0 | mx, my, mz}, {1/2, 1/2, 0 | mx, −my, −mz}, {0, 1/2, 1/2 | −mz, my, −mz},
{1/2, 0, 1/2 | −mz, −my, mz}, {0, 0, 0 | −mx, −my, −mz}, {1/2, 1/2, 0 | −mx, my, mz}, {0, 1/2, 1/2 |

mz, −my, mz} and {1/2, 0, 1/2 | mz, my, −mz}. For example, the expressions of {0, 0, 0 | mx, my, mz} and
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{0, 0, 0 | −mx, −my, −mz} must be same, i.e., mx = −mx, my = −my and mz = −mz. This is also valid
for another expression. This means that all magnetic moments must be zero. With this magnetic
space group, it is impossible to describe an antiferromagnetic ordering. In Figure 8, the possible spin
arrangements are shown.Symmetry 2020, 12, x FOR PEER REVIEW 8 of 12 
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Figure 8. Possible spin arrangement in the magnetic space group Pb’ca.

Table 2 shows symmetry operations of the magnetic space group Pb’c’a. Analogous to the above
cases, if we apply all symmetry operations to the Mn atom at (0 0 0), we obtain {0, 0, 0 | mx, my, mz},
{1/2, 0, 1/2 | −mx, −my, mz}, {0, 1/2, 1/2 | mx, −my, mz}, {1/2, 1/2, 0 | −mz, my, mz}, {0, 0, 0 | mx, my, mz},
{1/2, 0, 1/2 | −mx, −my, mz}, {0, 1/2, 1/2 | mx, −my, mz} and {1/2, 1/2, 0 | −mx, my, mz}. Among a total
eight expressions, only four expressions (namely {0, 0, 0 | mx, my, mz}, {1/2, 0, 1/2 | −mx, −my, mz},
{0, 1/2, 1/2 | mx, −my, mz} and {1/2, 1/2, 0 | −mx, my, mz}) are unique. Based on this magnetic space
group, in the xy-plane, an antiferromagnetic ordering is allowed and along the c-axis, a ferromagnetic
ordering is possible. In Figure 9, the spin arrangements of magnetic space group Pb’c’a are shown.

In Table 2, the symmetry operations of the magnetic space group Pb’c’a’ are presented. The transition
metal Mn occupies 4a (0, 0, 0). As already mentioned, if we apply the magnetic symmetry operations in the
magnetic space group Pb’c’a’ to Mn, we obtain {0, 0, 0 | mx, my, mz}, {1/2, 1/2, 0 | mx, my, −mz}, {0, 1/2, 1/2 |

−mx, my,−mz}, {1/2, 0, 1/2 |−mx,−my, mz}, {0, 0, 0 |−mx, −my, −mz}, {1/2, 1/2, 0 |−mx, my, mz}, {0, 1/2, 1/2 |

mx, −my, mz} and {1/2, 0, 1/2 | mx, my, −mz}. For example, the expression {0, 0, 0 | mx, my, mz} must be
equal to {0, 0, 0 | −mx, my, −mz} and this means that mx = −mx, my = −my and mz = −mz. To satisfy these
conditions, mx = my = mz = 0, i.e., no magnetic ordering is possible if an atom occupies a 4a position.
In Figure 10, the magnetic space group of Pb’c’a’ is shown. Among the above five magnetic space groups
derived from the crystallographic space group Pbca, the magnetic ordering is only possible in the two
magnetic space groups Pbca and Pb’c’a. Compared to the parent crystallographic space group Pbca, two
magnetic space groups Pbca and Pb’c’a show the same translational symmetry, i.e., two magnetic space
groups have same lattice parameters of the parent crystallographic space group Pbca. This means that
the propagation vector must be (0 0 0). According to the previous research using magnetic susceptibility
measurements [6], antiferromagnetic ordering is observed along the c-axis. However, as already discussed
in the text, in the case of the magnetic space group Pb’c’a, along the c-axis, only ferromagnetic ordering is
possible. Thus, the magnetic space group Pb’c’a can be ruled out and the only possible magnetic space
group is Pbca.
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4. Conclusions

In our previous works using magnetic susceptibility measurements and neutron diffraction
experiments, we claimed that the antiferromagnetic ordering in Mn-PEA is along the c-axis. It was
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also shown that the magnetic cell should coincide with the chemical cell. Based on magnetic
susceptibility measurements, Mn-PEA has weak-ferromagnetic ordering due to the DM-interaction.
Using a neutron diffraction study, we were unable to observe weak ferromagnetism caused by
DM-interaction. According to a theoretical study [9], if an antiferromagnetically ordered system shows
weak-ferromagnetic ordering due to spin canting, the magnetic and chemical unit cells should be
same. Magnetic susceptibility measurements, neutron diffraction, irreducible representation methods
and the magnetic space group concept strongly support this hypothesis. During the former neutron
diffraction measurements, due to the unexpected defects of the CCR, we were unable to further execute
our experiment. In the near future, we plan to conduct a neutron diffraction investigation on Mn-PEA
to obtain information on the exact magnetic moment value of Mn2+ in the crystal structure, after our
reactor is restarted after its long shut-down period.
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