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Abstract: For linear time-invariant Metzlerian systems, this paper proposes an original approach
reflecting specific structural system constraints and positiveness in solving the problem of PID
control. Refining parameter constraints and introducing enhanced equivalent system descriptions,
the reformulated design task is consistent with the control law representation and is formulated as a
linear matrix inequality feasibility problem. Taking into account structural restriction of Metzlerian
positive systems, a characterization of PID control law parameters is permitted, to highlight dynamical
properties of the closed-loop system solutions and the significant structural influence of derivative
gain value of the control law parameters in design.

Keywords: linear Metzlerian systems; positive linear systems; diagonal stabilization; linear matrix
inequalities; PID control

1. Introduction

Evolved from different considerations and exploiting positive properties of the system state and
variables [1], positive systems represent a specific class of technical processes. Since their positiveness
is conditioned through nonnegative parameters in achieving satisfactory performances, to reveal the
connections with Metzler structure of system matrices, a rather common notation of them is Metzlerian
systems. Serviceable publications to systems control design are focused on methods for stabilization,
investigating memoryless controllers even at the cost that necessary sophisticated techniques are
applied for positivity and constraints representation [2,3]. To achieve the closed-loop system state
positivity with respect to parameter boundaries, semi-definite programming [4], implementation
of non-symmetrical bounds [5], and combined linear programming method [6] are used, but not
solving in general the specific problems concerned with solver interactions and parameter constraints.
The main area of applicability are switched systems [7] and multi agent systems [8].

Many studies exist concerning PID control, where of interest are stabilizing tasks, formulated
with inclusion of additional performance requirements and constraints. The resulting closed-loop
system possesses stable system responses, and, if design is covered by adequate matrix formulation,
it establishes computational efficiency and variable constraints [9], as well as effective computational
design schemes by LMI-based formulations, directly connected with stability and robustness [10].
Unfortunately, most results related to those above mentioned for general linear systems are not directly
applicable to linear Metzlerian systems [11].

Because control algorithms for Metzlerian linear positive systems are static, and consequently a
static error remains in the closed circuit when used, one of the motivating factors for this paper is a
formulation of control law based on a dynamic PID controller. In this context, the paper proposes a new
methodological way in design of PID control for single input, single output (SISO) linear Mezlerian
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continuous-time systems. To find out what restrictions must be placed on parameters of PID control
law as well as on the convergence analysis to turn them into a Metzler and Hurwitz closed-loop system
matrix structure, a more general design task is analyzed and formulated.

Concerning only with asymptotically stable solutions, as is often the case, the article is a follow-up
of the authors’ previous paper [12], which introduces a representation of a Metzlerian system parameter
constraints using linear matrix inequalities (LMI) and diagonal principle in stabilization is exploited.
Such formulation is mathematically represented through state–space models with a strictly Metzler
system matrix and supported by a minimal number of LMIs, defining structural constraints. As a
result, it is documented that a solution for Metzler or purely Metzler system matrices may not exist
(compare [5]) because of other structural constraints defined by the number and structure of zero
elements in these matrices, and in dependence on elements of the input system matrix.

Then, reflecting these specific conditions, an adaptation presented in this paper for PID control
design of linear Mezlerian SISO systems is original and primary. Since the D-part of PID is always
bandwidth limited, such part of control law can refine system matrix parameter constraints in design
task. This is accomplished by assuming that a suitable equivalent system exists and the resulting PI
design bilinear task can be tackled using LMIs and linear matrix equality (LME) approach.

The remaining part of this paper is organized as follows. To present the reasoning path, brief
comments on SISO linear Mezlerian systems are given in Section 2. The proposed LMI technique,
enforcing conditions on the PID control law design, with the main theorem characterizing the system’s
behavior, is stated in Section 3, focusing on parametric features in PID control design for SISO
Metzlerian systems, basic constitutive relations concerning the D-part of control law and a suitable
way to translate synthesis into a feasibility problem that involves system parametric constraints and
turning this approach into LMI based design formulation, conditioned by one LME. Conforming these
results, Section 4 follows with an illustrative numerical example. Finally, Section 5 discuss the results
and their interpretation, to set a straightforward manner point of view for the conclusions in Section 6.

Throughout the paper, the following notations are used: xT, XT denotes the transpose of the vector
x, and the matrix X, respectively, the indication XhT means transpose of the h-th power of a square
matrix X, the notation X ⊗ Y represents Kronecker product (tensor product) of two real matrices X, Y ,
diag[ · ] outlines a diagonal form, ρ(X) identifies set of related matrix eigenvalues, labeling of matrix
X � 0 means its positive definiteness, In ∈ Rn×n is unit matrix, a ∈ R+ is nonnegative real scalar,
(Rn×r

+ ), Rn×r refers to the set of n× r (nonnegative) real matrices andMn×n
−+ means the set of (strictly)

Metzler square matrices, respectively.

2. Problem Formulation and Preliminary

Continuous-time, time-invariant linear Metzlerian SISO systems admit the description

q̇(t) = Aq(t) + bu(t) , (1)

y(t) = cTq(t) , (2)

where q(t) ∈ Rn
+, u(t) ∈ R, and y(t) ∈ R+ are the system state vector, control input, and measurable

output, respectively.
To efficiently introduce the proposed methodology, some definitions and lemmas, borrowed from

the properties of Metzlerian systems, are presented first.

Definition 1 ([13]). A square matrix A ∈ Rn×n
−+ is pure Metzler if its diagonal elements are negative and its

off-diagonal elements are nonnegative. A square matrix A is called strictly Metzler if its diagonal elements are
negative and its off-diagonal elements are positive. A Metzler matrix is stable if it is Hurwitz.
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Remark 1. A strictly Metzler matrix A ∈ Rn×n
−+ implies n2 structural constraints

aii < 0 ∀ i = 1, . . . n, aij,i 6=j > 0 ∀ i, j = 1, . . . n . (3)

If the vectors b ∈ Rn
+, c ∈ Rn

+ are nonnegative in control synthesis or in observer design, negative
feedback reduces (nonnegative or positive) off-diagonal elements of the Metler matrix A ∈ Rn×n

−+ , and
the analogous structural constraints resulting from Metzler matrix structure must be included in
synthesis conditions to keep the resulting structure Metzler. Moreover, since a square matrix X and
its inverse have nonnegative structure, if X is positively definite diagonal, to implement structural
constraints through linear matrix inequalities [12], the LMI based design conditions for Metzlerian
systems are formulated using positive definite diagonal matrix variables and the term “diagonal
stability” is used [14]. If A ∈ Rn×n

−+ is only pure Metzler, the synthesis conditions has to reflect further
structural constraints, includable in design by related structured diagonal matrix variables [15].

Proposition 1 ([1]). A solution q(t) of (1) for t ≥ 0 is asymptotically stable and positive if A ∈ Rn×n
−+ is a

stable Metzler matrix; b ∈ Rn
+ is nonnegative matrix and the state vector q(t) ∈ Rn

+ for given u(t) ∈ R+

and q(0) ∈ R+. The linear system in (1) and (2) is asymptotically stable and positive if A ∈ Rn×n
−+ is a stable

Metzler matrix, b ∈ Rn
+ and c ∈ Rn

+ are nonnegative matrices, and the output vector y(t) ∈ R+ for all
u(t) ∈ R+ and q(0) ∈ R+.

Definition 2 ([16]). A matrix L ∈ Rn×n is a permutation matrix if exactly one item in each column and row
is equal to 1 and all other elements are equal to 0.

Remark 2. Considering Definition 2 and pondering a diagonal Y ∈ Rn×n such that

Y = diag
[
y1 y2 · · · yn

]
, (4)

yields
LTY L = diag

[
y2 · · · yn y1

]
, (5)

if LT ∈ Rn×n takes the circulant form

LT =

[
0 In−1

1 0

]
. (6)

Lemma 1 (adapted from [12]). Letting a matrix A ∈ Mn×n
−+ be strictly Metzler, then it is Hurwitz if and

only if there exists a positive definite diagonal matrix P ∈ Rn×n
+ such that the following set of linear matrix

inequalities is feasible for i = 1, 2, . . . n and h = 1, 2, . . . n− 1,

P � 0 , (7)

A(i, i)(1↔n)/nP ≺ 0 , (8)

Lh A(i, i + h)(1↔n)/nLhTP � 0 , (9)

PAT + AP ≺ 0 , (10)

where, computing with the circulant L ∈ Rn×n
+ and sequentially fixing of h ∈ 〈1, n− 1〉,

A(i, i + h)(1↔n)/n = diag
[

a1,1+h · · · an−h,n an−h+1,1 · · · an,h

]
. (11)

Note that LMI (8) reflects structural constraints for elements on the main diagonal of strictly
Metzler A ∈Mn×n

−+ , the set of LMIs (9) reflects structural constraints for off-diagonal elements of strictly
Metzler A ∈Mn×n

−+ , and (10) guaranties that A ∈Mn×n
−+ is also Hurwitz.
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The notation ∆ = (1↔ n)/n symbolically expresses that the indexing of the elements in the set
of diagonal matrices (11) is bound to the sum of modulo n for given h. Interested readers are referred
for further details to [12].

Lemma 2 (adapted from [17]). Let a square real n× n matrix Λ be partitioned as

Λ = A− BDC , (12)

where A ∈ Mn×n
−+ , B ∈ Rn×m

+ , C ∈ Rm×n
+ , and D ∈ Rm×m

+ , while A is strictly Metzler. Then, Λ is strictly
Metzler if, equivalently,

(i)
aii − bT

i Dci < 0 for all i = 1, . . . , n , aij − bT
i Kcj > 0 for all i, j = 1, . . . n, i 6= j . (13)

(ii)
A(i, i)(1↔n)/n − BdDdCd ≺ 0 , A(i, i + h)(1↔n)/n − BdDdCdh � 0 , (14)

where
BT =

[
b1 · · · bn

]
, Bd = diag

[
bT

1 · · · bT
n

]
, Dd = In ⊗ K , (15)

C =
[
c1 · · · cn

]
, Cd = diag

[
c1 · · · cn

]
, Cdh = ShTCdLh, S = L⊗ Im . (16)

Moreover,

Λ =
n−1

∑
h=0

(A(i, i + h)(1↔n)/n − BdDdCdh)LhT . (17)

Lemma 3 ([18] Lyapunov inequality). Considering the autonomous subsystem

q̇(t) = Aq(t) , (18)

the following statements are equivalent from the point of asymptotic stability:

(i) (18) is asymptotically stable.
(ii) A ∈ Rn×n is Hurwitz.
(iii) There exists a symmetric positive definite matrix P ∈ Rn×n satisfying

P = PT � 0 , AP + PAT ≺ 0 . (19)

Lemma 4 ([19]). A square matrix A ∈ Rn×n is called a Hurwitz matrix (a stable matrix) if every eigenvalue
of A has a strictly negative real part. Then, the autonomous system (18) is asymptotically stable. Denoting that

P(s) = det(sIn − A) (20)

is characteristic polynomial of the transfer function related to (18), the eigenvalue spectrum ρ(A) is the set of
roots of the characteristic equation P(s) = 0.

Definition 3 ([13]). Letting U ∈ Rm×m, V ∈ Rn×n, then the (mn)-dimensional matrix, called the Kronecker
product of U and V , is constructed as

U ⊗ V =
[{

uijV
}m

i,j=1

]
, U =

[{
uij
}m

i,j=1

]
. (21)

It is convenient at this point to underline that it prioritizes the following Kronecker product properties [20]

(In ⊗U)(V ⊗ Im) = (V ⊗ Im)(In ⊗U) , (22)
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(U ⊗ V)−1 = U−1 ⊗ V−1, (23)

(U ⊗ V)T = UT ⊗ VT. (24)

Since the positivity of the systems is defined by a nonnegative system state, nonnegative system
input and output parameters, and a Metzler system matrix structure, it is necessary to proceed from
this fact and take into account the above-stated structural constraints also in the synthesis of the PID
controller to preserve the system positive properties. Because this introduces added limitations in the
synthesis conditions with addition to the parametric redundancy, the aim is to propose a methodology
that would be sufficiently general with respect to the structure of the measured system state variables
but also effective in terms of closed-loop positivity.

3. Main Results

To develop a constructive method for synthesis of PID controllers for given system class, it is
necessary to establish a direct consequence of control parameters and Metzler matrix parametric
constraints on asymptotic stability and system trajectories. This is the role of this section.

3.1. Parametric features in PID Control Design for SISO Metzlerian Systems

If the Metzlerian system in (1) and (2) is operating under PID control, then, respecting the
positiveness of Metzlerian system variables, the continuous-time control algorithm can be considered as

u(t) = kPer(t) + kI

∫ t

0
cT

pq(τ)dτ − kD ėr(t) , (25)

where wr ∈ Rr
+ is a constant positive reference signal, er(t) ∈ R is the tracking error defined as

er(t) = wr − y(t) , (26)

and kP, kI , kD ∈ R+ are parameters of the PID controller. If there is further assumed

wr(t) = cTw, e(t) = w− q(t), er(t) = cTe(t) , (27)

it is not difficult to verify that in dependence to (27)

u(t) = kPcTe(t) + kI p(t)− kDcTė(t)

= −kPcTq(t) + kI p(t) + kDcTq̇(t) + kPcTw ,
(28)

while the input to the integrator ṗ(t) ∈ R is

ṗ(t) = cT
pq(t) , (29)

and for implementation of (25) discrete-time realizations of PID controller law can be used.
Note that, in general, cT

p = cT can be set, which means to append to the integrator input all
state variables involved in the system output projection. If this is not the case, cT

p reflects projection
(a measurable subset) of the system state variables.

Since PID synthesis theory for standard linear systems cannot be used in PID parameter synthesis
for Metzlerian systems, the role of constraints in design is analyzed and given at first. Thus,
a consequence of certainty equivalence is the assembled system structure[

In − bkDcT 0
0T 1

] [
q̇(t)
ṗ(t)

]
=

[
bkP 0
0T 1

] [
wr

p(t)

]
+

[
A− bkPcT bkI

cT
p −1

] [
q(t)
p(t)

]
, (30)
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[
y(t)
p(t)

]
=

[
cT 0
0T 1

] [
q(t)
p(t)

]
, (31)

and introducing the composite variables and matrix parameters

q◦(t) =

[
q(t)
p(t)

]
, w◦(t) =

[
wr

p(t)

]
, y◦(t) =

[
y(t)
p(t)

]
, (32)

A� =

[
A− bkPcT bkI

cT
p −1

]
, B� =

[
bkP 0
0T 1

]
, E� =

[
In − bkDcT 0

0T 1

]
, C◦ =

[
cT 0
0T 1

]
, (33)

the corresponding closed loop system description is

E�q̇◦(t) = A�q◦(t) + B�w◦(t) , (34)

y◦(t) = C◦q◦(t) . (35)

Since B�, C◦ are nonnegative, to obtain Metzlerian structures in control if A, b, c are bound with a
Metzler system and kP, kI , kD are positive, then A� is Metzler if (A− bkPcT) is (strictly) Metzler and
(In − bkDcT) is regular.

The control problem can be formulated considering structure of the static output control by the
parameterizations

A� =

[
A 0
cT

p −1

]
−
[

b 0
0 1

] [
kP −kI
0 0

] [
cT 0
0T 1

]
, (36)

E� =

[
In 0
0T 0

]
+

[
b 0
0 1

] [
−kD 0

0 1

] [
cT 0
0T 1

]
. (37)

It is then possible to write in a straightforward manner that

(I◦ + B◦K◦DC◦)q̇◦(t) = (A◦ − B◦K◦PIC
◦)q◦(t) + B�w◦, (38)

where

A◦ =

[
A 0
cT

p −1

]
, B◦ =

[
b 0
0 1

]
, C◦ =

[
cT 0
0T 1

]
, (39)

I◦ =

[
In 0
0T 0

]
, K◦PI =

[
kP −kI
0 0

]
, K◦D =

[
−kD 0

0 1

]
. (40)

This is the basic feature formulation in order to convexify the considered synthesis problem.

3.2. Basic Constitutive Relations

Consider a sub-class of linear SISO Metzlerian systems, where

cT =
[
1 0 · · · 0

]
, bT =

[
b1 b2 · · · bn

]
, (41)

and b ∈ Rn
+ is nonnegative vector. Then, using the Sherman–Morrison–Woodbury formula [21],

(37) implies
(I◦ + B◦K◦DC◦)−1 = I◦ − B◦(K◦−1

D + C◦B◦)−1C◦, (42)

with SISO system parameter representation

C◦B◦ =

[
cT 0
0T 1

] [
b 0
0 1

]
=

[
cTb 0

0 1

]
=

[
b1 0
0 1

]
, (43)
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K◦−1
D =

[
−k−1

D 0
0 1

]
, K◦−1

D + C◦B◦ =

[
b1 − k−1

D 0
0 1

]
. (44)

Considering that k−1
D > b1, then with −λ−1 = −k−1

D + b1 < 0 it yields

E◦−1 =

[
In + λbcT 0

0 1

]
=


(1 + λb1) 0 · · · 0 0

λb2 1 0 0
...

. . .
λbn 0 1 0

0 0 0 1

 , (45)

and, because
det(sI◦ − E◦−1) = (s− (1 + λb1))(s− 1)n, (46)

E◦−1 is positive definite if 1 + λb1 > 0.
Prompted by the observation inversion of positive definite matrices [16], it implies that in this

case E◦ is also positive definite. Thus, for positive kD > 0, b1 > 0, the relation

1 + λb1 = 1 +
b1

k−1
D − b1

=
k−1

D

k−1
D − b1

> 0 (47)

implies k−1
D > b1.

If for example it is considered that

cT =
[
1 1 0 · · · 0

]
, (48)

then, analogously,

K◦−1
D + C◦B◦ =

[
b1 + b2 − k−1

D 0
0 1

]
, (49)

and with
− λ−1 = −k−1

D + b1 + b2 < 0 , (50)

then

E◦−1 =



(1 + λb1) λb1 0 · · · 0 0
λb2 (1 + λb2) 0 0 0
λb3 λb3 1 0 0

...
...

. . .
λbn λbn 0 1 0

0 0 0 · · · 0 1


. (51)

Then, using the property of the block matrix determinant with

Y(λ) =

[
(1 + λb1) λb1

λb2 (1 + λb2)

]
(52)

yields
det(sI◦ − E◦−1) = det(sI2 − Y(λ))(s− 1)n−1, (53)

where
det(sI2 − Y(λ)) = (s− 1)2 − (s− 1)λ(b1 + b2) , (54)

and, consequently,
det(sI◦ − E◦−1) = (s− (1 + λ(b1 + b2)))(s− 1)n. (55)
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Thus, E◦−1 is positive definite if with respect to (50)

1 + λ(b1 + b2) = 1 +
b1 + b2

k−1
D − (b1 + b2)

=
k−1

D

k−1
D − (b1 + b2)

> 0 . (56)

It can be generalized that, if

1 + λ
n

∑
h=1

bhch =
k−1

D

k−1
D −

n
∑

h=1
bhch

=
k−1

D

k−1
D − cTb

> 0 , (57)

− λ−1 = −k−1
D + cTb < 0 , (58)

then

PD(s) = det(sI◦ − E◦−1) =
(

s−
k−1

D

k−1
D − cTb

)
(s− 1)n, (59)

E◦−1 =

[
In + λbcT 0

0 1

]
. (60)

Analyzing the matrix product E�−1B◦, yields, in general,

E�−1B◦ =

[
In + λbcT 0

0 1

] [
b 0
0 1

]
=

[
(In + λbcT)b 0

0 1

]
=

[
b•1 0
0 1

]
= B•, (61)

and, since b is nonnegative, b• as well as B•v are nonnegative.
Analogously, it yields

E�−1B� =

[
In + λbcT 0

0 1

] [
bkP 0
0T 1

]
=

[
(In + λbcT)bkP 0

0 1

]
=

[
b•kP 0

0 1

]
= B•w, (62)

and, since b• is nonnegative, B•w is nonnegative.
The structure of the matrix product E�−1 A◦ is

E�−1 A◦ =

[
In + λbcT 0

0 1

] [
A 0
cT

p −1

]

=

[
(In + λbcT)A 0

cT
p −1

]

=

[
A + λb

[
cTa1 · · · cTan

]
0

cT
p −1

]
,

(63)

that is

E�−1 A◦ =

[
A•1 0
cT

p −1

]
= A• , (64)

where
A•1 = A + λb

[
cTa1 · · · cTan

]
. (65)

Thus, the descriptor form (38) for SISO systems can be transformed to the following regular form

q̇◦(t) = (A• − B•K◦PIC
◦)q◦(t) + B•ww◦(t) = A•c q◦(t) + B•ww◦(t) , (66)

underlining that such system description is of a bilinear structure.



Symmetry 2020, 12, 1979 9 of 14

Remark 3. It can be remarked that (57) implies the sufficient constraint on the gain kD in synthesis of PID
control for SISO Metzlerian systems, guaranteeing that resulting B• and B•w are nonnegative. This in turn
means that, for a positive kD thus limited, it is sufficient to include in the synthesis only the parametric
constraints resulting from the Metzler structure of A•c = A• − B•K◦PIC

◦ with relation to given Lemma 1.
From the relation (65), it can be concluded to the limit case when all elements of the vector cT are equal to

one, all elements of b are positive, and pure (strictly) Metzler matrix A is diagonally dominant. In such a case,
a negative value will be added to each element of the matrix A, which may destroy the Metzler structure of A•1 ,
leading to juncture where a nonnegative synthesis solution does not exist. This results in it being extremely
important in choosing the measured system state, i.e., the structure of nonnegative vector cT, as well as to
application of a structure of cT

p , different from cT.
To provide constraint limitations, constraint structures need to reflect linear matrix inequality forms,

but the structure of A•c is essentially bilinear. In the following, this bilinear limitation is eliminated applying
one way of linearization, where structural LMIs are conditioned by one linear matrix equality (see, e.g., [17]).
This principle is explicated at the point of application in the following subsection.

3.3. PID Control Design

Exploiting diagonal stabilization in accession to control of linear strictly Metzlerian structures [12],
the following matrix parameter expressions need to be applied, considering the suitable fixing λ > 0
in such a way that A• ∈M(n+1)×(n+1)

−+ , B• ∈ R(n+1)×2
+ , and C◦ ∈ R2×(n+1)

+ . These are represented in
coincidence with Lemmas 1 and 2 as follows:

A• =


−a•11 a•12 · · · a•1n 0
a•21 −a•22 · · · a•2n 0
...

. . .
a•n1 a•n2 · · · −a•nn 0
cp1 cp2 · · · cpn −1

 =


−a•11 a•12 · · · a•1n a•1,n+1
a•21 −a•22 · · · a•2n a•2,n+1
...

. . .
a•n1 a•n2 · · · −a•nn a•n,n+1

a•n+1,1 a•n+1,2 · · · a•n+1,1 −a•n+1,n+1

 , (67)

A•(i, i)∆ = diag
[
−a•1,1 · · · −a•nn −a•n+1,n+1

]
, (68)

A•(i, i + h)∆ = diag
[

a•1,1+h · · · a•n−h,n+1 a•n−h+1,1 · · · a•n+1,h

]
, (69)

where ∆ = (1↔ (n + 1))/(n + 1), h = 1, 2, . . . , n,

B• =



[
b•11 0

]
...[

b•1n 0
][

0 1
]

 =


b•T1

...
b•Tn

b•Tn+1

 , B•d = diag
[
b•T1 · · · b•Tn b•Tn+1

]
, (70)

C◦ =

[
cT 0
0T 1

]
=
[
c◦1 · · · c◦n c◦n+1

]
, C•d = diag

[
c◦1 · · · c◦n c◦n+1

]
. (71)

The supported matrix structure are constructed as

L =

[
0T 1
In 0

]
, S = L⊗ I2 , JT =

[
I2 · · · I2

]
, C•dh = ShTC•d Lh, (72)

and the expected performance of the gain matrix is

K◦ =

[
kP −kI
0 0

]
, K•d = diag

[
K◦ · · · K◦ K◦

]
= In+1 ⊗ K◦. (73)
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Theorem 1. The closed-loop built on (1), (2) under PID control (25) is stable if, for a given positive scalar
λ ∈ R+, the matrix A• ∈ M(n+1)×(n+1)

−+ is Metzler, B•, B•w ∈ R
(n+1)×2
+ are nonnegative, and there exist

positive definite diagonal matrices P ∈ R(n+1)×(n+1)
+ and H ∈ R2×2

+ and a nonnegative matrix R ∈ R2×2
+

such that for h = 1, 2, . . . n,
P = PT � 0 , H = HT � 0 , (74)

A(i, i)∆P− B•dR•dC•d ≺ 0 , (75)

LhA(i, i+h)∆LhTP− LhB•dShTR•dC•d � 0 , (76)

A•P+PA•T − B•R•d J JTC•d − C•Td J JTR•Td B•T ≺ 0 , (77)

C•dP = HdC•d , (78)

where
Rd = In+1 ⊗ R , Hd = In+1 ⊗ H , (79)

and the specific causal relations are pre-considered in (67)–(72).
Within a feasible solution with λ fixing kD, the gain K◦ ∈ Rr×n

+ representing not fixed design parameters is

K◦ =

[
kP −kI
0 0

]
= RH−1. (80)

Proof of Theorem 1. For a stable realization of A•c , it yields according to Lyapunov inequality (19)
and relation (17)

A•c P + PA•Tc =

=
n

∑
h=0

(A•(i, i + h)∆LhT − B•dK•dC•dhLhT)P +
n

∑
h=0

P(A•(i, i + h)∆LhT − B•dK•dC•dhLhT)T ≺ 0 .
(81)

Then, using (22), it can proceed that

B•dK•dC•dhLhT = B•dK•dShTC•d LhLhT

= B•d(In+1 ⊗ K◦)(LhT ⊗ I2)C•d
= B•d(LhT ⊗ I2)(In+1 ⊗ K◦)C•d
= B•dShTK•dC•d ,

(82)

and the product K•dC•d can be written as follows

K•dC•d =

K◦

. . .
K◦


c◦1

. . .
c◦n+1



=

K◦H
. . .

K◦H


H−1

. . .
H−1

C•d

= RdH−1
d C•d ,

(83)

where
R = K◦H . (84)
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Thus, (14) can be reflected as

A•(i, i)∆P− B•dK•d Hd H−1
d C•dP ≺ 0 , (85)

A•(i, i + h)∆LhTP− B•dShTK•d Hd H−1
d C•dP � 0 , (86)

and prescribing that
H−1

d C•d = C•dP−1, (87)

then (85) and (86) imply (75), (76), and (87) give (78), while the left multiplication (86) by Lh retains the
set of diagonal LMIs.

To avoid the need to introduce additional structured variables into the design conditions [15],
realization of (10) is required to be relaxed as

A•c P + PA•Tc = (A• − B•K◦C◦)P + P(A• − B•K◦C◦)T

= A•P + PA•T − B•RC◦ − C◦TRB•T

= A•P + PA•T − B•Rd J JTC•d − C•d J JTRdB•

≺ 0 ,

(88)

where it is considered that (78) implies C◦P = HC◦. Thus, (88) leads to inequality (77), verifying
system stability. This ends the proof.

Going on in this direction, additional constraints can be introduced to be able to solve the given
set of LMIs if A•1 is pure Metzler. However, such a situation can be avoided by another pre-setting of
the related parameter λ.

4. Illustrative Numerical Example

The unstable Metzlerian linear system in (1) and (2) is considered with the following
matrix parameters

A =


−3.380 2.208 4.715 2.676

1.881 −4.290 2.050 0.675
2.067 4.273 −6.654 2.893
1.148 2.273 1.343 −2.104

 , b =


0.0189
0.0203
0.0315
0.0170

 ,

cT =
[
1 1 1 0

]
, cT

p =
[
1 0 0 0

]
, cTb = 0.0706 .

Fixing by kD = 2 the tuning parameter −λ = −0.4294, then ∆ = (1↔ 5)/5,

E◦−1 =


1.0081 0.0081 0.0081 0 0
0.0087 1.0087 0.0087 0 0
0.0135 0.0135 1.0135 0 0
0.0073 0.0073 0.0073 1 0

0 0 0 0 1

 , A• =


−3.3754 2.2258 4.7159 2.7266 0

1.8860 −4.2709 2.0510 0.7294 0
2.0747 4.3026 −6.6525 2.9773 0
1.1521 2.2890 1.3438 −2.0584 0
1.0000 0.0000 0.0000 0.0000 −1

 ,

B• =


0.0189 0
0.0203 0
0.0315 0
0.0170 0

0 1

 =


b•T1
b•T2
b•T3
b•T4
b•T5

 , B•d = diag
[
b•T1 b•T2 b•T3 b•T4 b•T5

]
, C•d = diag

[
1 1 1 0 0
0 0 0 0 1

]
,

A(i, i)∆ = −diag
[
3.3754 4.2709 6.6525 2.0584 1

]
,
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A(i, i + 1)∆ = diag
[
2.2258 2.0510 2.9773 0 1

]
,

A(i, i + 2)∆ = diag
[
4.7159 0.7294 0 1.1521 0

]
,

A(i, i + 3)∆ = diag
[
2.7266 0 2.0747 2.2890 0

]
,

A(i, i + 4)∆ = diag
[
0 1.8860 4.3026 1.3438 0

]
.

Defining

L =

[
0T 1
I4 0

]
, S = L⊗ I2, JT =

[
I2 I2 I2 I2 I2

]
,

the solution of (74)–(78), obtained using SeDuMi package for Matlab [22], is represented by the set of
matrix variables

P = diag
[
0.1125 0.1125 0.1125 0.0688 0.7296

]
,

R =

[
6.3210 −2.2280

0 0

]
, H =

[
0.1125 0

0 0.7296

]
,

which implies

K◦ =

[
kP −kI
0 0

]
=

[
56.1789 −3.0536

0 0

]
, kP = 56.1789, kI = 3.0536, kD = 2 .

Analyzing the final result, the closed-loop system matrix A•c takes the structure

A•c =


−4.4682 1.1329 3.6231 2.7266 0.0594

0.7109 −5.4459 0.8759 0.7294 0.0639
0.2537 2.4816 −8.4735 2.9773 0.0990
0.1676 1.3044 0.3592 −2.0584 0.0535
1.0000 0.0000 0.0000 0.0000 −1.0000

 .

It is pure Metzler and Hurwitz with the stable eigenvalue spectrum

ρ(A•vc) =
{
−0.6213 −1.2802 −4.4730 −6.1352 −8.9363

}
.

Although the matrix A•c is not diagonally dominant, its structure and eigenvalues guarantee that,
with these PID controller parameters, the nonnegative closed-loop state performance are achieved.
The purpose of the example is primarily to illustrate the desired design procedure.

Purely real negative eigenvalues are conditional on the use of positive systems because they
guarantee aperiodic positive trajectories of state variables with a nonnegative initial state of the system.
However, they do not guarantee an overshoot during their evolutions, which sometimes needs to be
suppressed. Unfortunately, standard methods for tuning PID controller parameters [23,24] for these
structures cannot be used. Methods based on the principle of D-stability circle region [25,26] come
into consideration but, due to the bilinear structure of the synthesis conditions, it is not possible to
guarantee an optimal overshoot suppression using this approach as well. This sub-area of synthesis
will therefore be preferred in authors’ future research.

5. Discussion

Using the control law (28), the D-part so defined PID control law supports Metzlerian structure,
as can be seen by comparing A• and A. The analysis shows that, with this PID controller structure,
a closed-loop with a Metzler structure of the dynamics matrix can be expected.
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Both in general and in Metzler systems, such a synthesis task has many degrees of freedom in
defining structures of the cT and cT

p matrices. For the given system, the cT structure considered has
proved to be advantageous. Comparable results can be obtained constructing others by permuting its
non-zero elements. The structure of the matrix cT

p is chosen to demonstrate solutions with minimal
impact of I-part, where the I-part can be enhanced by using a matrix cT

p with several non-zero
components. Note that the strictly Metzler structure of A•c is potentially obtained if the vector cT is
positive.

To the best of authors’ knowledge, no comparable results are available for design of PID control
of SISO Metzlerian linear systems. In the authors’ opinion, the proposed method is one which gives
through constraint limits in conditions for a class of switched positive systems. Exposing the principle
details the approach can be adapt to study PI control of SISO strictly Metzlerian linear systems, where
similar results can be expected.

6. Conclusions

This paper completes a design method for synthesis of PID control for SISO Metzlerian
continuous-time linear systems. The equivalent Metzler structure is proposed for representing an
unstable Metzlerian system, exploiting a fixed D-part gain. The newly formulated exposition of the
problem treatments the existing freedom, provided by measurement assignment through output vector
structure to find a solvable matrix representation. Maintaining system parametric constraints by the set
of LMIs, the design conditions are completed by Lyapunov matrix inequality, guaranteeing closed-loop
asymptotic stability within a feasible solution.

Since the analysis is linear, one can see evidently the dependence of the resulting PID gains on
Metzler parameters of the system. The proposed approach lends itself to algorithm formalization
through LMIs and, even given structural constraints, it can be expected that the proposed design
conditions are applicable to a wide variety of Metzlerian systems. The theory yields results that have
otherwise not been derived for these systems’ PID control. The development of an approach for
Metzlerian systems with extended set parametric constraints is a topic of future research.

Author Contributions: A.F. elaborated the principles of attenuation of the closed-loop in control law parameter
synthesis and implemented their numerical validation. D.K. addressed constraint principle assembling into
set of linear matrix inequalities in PID control parameter design for Metzlerian continuous-time linear systems.
Both authors have read and agreed to the published version of the manuscript.

Funding: The research covering the he work field presented in this paper was founded by VEGA, the Grant
Agency of the Ministry of Education and Academy of Science of Slovak Republic, under Grant No. 1/0608/17.
This support is very gratefully acknowledged.

Conflicts of Interest: The authors declare that there is no conflict of interest regarding the publication of this paper.

Abbreviations

The following abbreviations are used in this manuscript:

LME Linear Matrix Equality
LMI Linear Matrix Inequality
PID controller Proportional-Integral-Derivative controller
SISO system Single-Input Single-Output system

References

1. Farina, L.; Rinaldi, S. Positive Linear Systems. Theory and Applications; John Wiley & Sons: New York, NY,
USA, 2000.

2. De Leenheer, P.; Aeyels, D. Stabilization of positive linear systems. Syst. Control. Lett. 2001, 44, 259–271.
[CrossRef]

3. Shen, J.; Lam, J. On static output-feedback stabilization for multi-input multi-output positive systems. Int. J.
Robust Nonlinear Control. 2015, 25, 3154–3162. [CrossRef]

http://dx.doi.org/10.1016/S0167-6911(01)00146-3
http://dx.doi.org/10.1002/rnc.3256


Symmetry 2020, 12, 1979 14 of 14

4. Ebihara, Y. H2 state-feedback synthesis under positivity constraint. Upper and lower bounds computation
of the achievable performance. In Proceedings of the 16th European Control Conference ECC 2018, Limassol,
Cyprus, 12–15 June 2018; pp. 2867–2872.

5. Ait Rami, M.; Tadeo, F. Linear programming approach to impose positiveness in closed-loop and estimated
states. In Proceedings of the 16th International Symposium on Mathematical Theory of Networks and
Systems, Kyoto, Japan, 24–28 July 2006; pp. 2470–2477.

6. Shafai, B.; Oghbaee, A. Positive quadratic stabilization of uncertain linear system. In Proceedings of the
2014 IEEE Multi-Conference on Systems and Control, Antibes, France, 8–10 October 2014; pp. 1412–1417.

7. Blanchini, F.; Colaneri, P.; Vlacher, M.E. Switched positive linear systems. Found. Trends Syst. Control. 2015,
2, 101–273. [CrossRef]

8. Bussmann, S.; Jennings, N.R.; Wooldridge, M.J. Multiagent Systems for Manufacturing Control. A Design Methodology;
Springer: Berlin, Germany, 2004.

9. Wang, Q.G.; Ye, Z.; Cai, W.J.; Hang, C.C. PID Control for Multivariable Processes; Springer: Berlin, Germany, 2008.
10. Zheng, F.; Wang, Q.G.; Lee, T.H. On the design of multivariable PID controllers via LMI approach. Automatica

2002, 38, 517–526. [CrossRef]
11. Gouzé, J.L.; Rapaport, A.; Hadj-Sadok, M.Z. Interval observers for uncertain biological systems. Ecol. Model.

2000, 133, 45–56. [CrossRef]
12. Krokavec, D.; Filasová, A. LMI based principles in strictly Metzlerian systems control design. Math. Probl. Eng.

2018, 2018, 1–14. [CrossRef]
13. Bellman, R. Introduction to Matrix Analysis; McGraw-Hill: New York, NY, USA, 1970.
14. Berman, A.; Hershkowitz, D. Matrix diagonal stability and its implications. SIAM J. Algebr. Discret. Methods

1983, 4, 377–382. [CrossRef]
15. Krokavec, D.; Filasová, A. H∞ norm principle in residual filter design for discrete-time linear positive

systems. Eur. J. Control. 2019, 45, 17–29. [CrossRef]
16. Horn, R.A.; Johnson, C.R. Matrix Analysis; Cambridge University Press: New York, NY, USA, 1995.
17. Krokavec, D.; Filasová, A. Control design for linear strictly Metzlerian descriptor systems, In Proceedings of

the 18th European Control Conference ECC 2020, Saint Petersburg, Russia, 12–15 May 2020; pp. 2092–2097.
18. Skelton, R.E.; Iwasaki, T.; Grigoriadis, K.M. A Unified Algebraic Approach to Control Design; Taylor & Francis:

London, UK, 1998.
19. Michel, A.N.; Hou, L.; Liu, D. Stability of Dynamical Systems. Continuous, Discontinuous, and Discrete Systems;

Birkhäuser: Boston, MA, USA, 2008.
20. Brewer, J.W. Kronecker products and matrix calculus in system theory. IEEE Trans. Circuits Syst. 1978, 25,

772–781. [CrossRef]
21. Golub, G.H.; Van Loan, C.F. Matrix Computations; Johns Hopkins University Press: Baltimore, MA, USA, 1996.
22. Peaucelle, D.; Henrion, D.; Labit, Y.; Taitz, K. User’s Guide for SeDuMi Interface 1.04; LAAS-CNRS: Toulouse,

France, 2002.
23. Tsavnin, A.; Efimov, S.; Zamyatin, S. Overshoot elimination for control systems with parametric uncertainty

via a PID controller. Symmetry 2020, 12, 1092. [CrossRef]
24. Zhang, W.; Cui, Y.; Ding, X. An improved analytical tuning rule of a robust PID controller for integrating

systems with time delay based on the multiple dominant pole-placement method. Symmetry 2020, 12, 1449.
[CrossRef]

25. Krokavec, D.; Filasová, A. Quadratic control of linear discrete-time positive systems. In Proceedings of the
16th European Control Conference ECC 2018, Limassol, Cyprus, 12–15 June 2018; pp. 2879–2884.

26. Berman, A.; Neumann, M.; Stern, R. Nonnegative Matrices in Dynamic Systems; John Wiley & Sons: New York,
NY, USA, 1989.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1561/2600000005
http://dx.doi.org/10.1016/S0005-1098(01)00237-0
http://dx.doi.org/10.1016/S0304-3800(00)00279-9
http://dx.doi.org/10.1155/2018/9590253
http://dx.doi.org/10.1137/0604038
http://dx.doi.org/10.1016/j.ejcon.2018.10.001
http://dx.doi.org/10.1109/TCS.1978.1084534
http://dx.doi.org/10.3390/sym12071092
http://dx.doi.org/10.3390/sym12091449
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Problem Formulation and Preliminary
	Main Results
	Parametric features in PID Control Design for SISO Metzlerian Systems
	Basic Constitutive Relations
	PID Control Design

	Illustrative Numerical Example
	Discussion
	Conclusions
	References

