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Abstract: Let (A, ∆) be a weak multiplier Hopf algebra. It is a pair of a non-degenerate algebra
A, with or without identity, and a coproduct ∆ : A −→ M(A⊗ A), satisfying certain properties.
In this paper , we continue the study of these objects and construct new examples. A symmetric
pair of the source and target maps εs and εt are studied, and their symmetric pair of images,
the source algebra and the target algebra εs(A) and εt(A), are also investigated. We show that
the canonical idempotent E (which is eventually ∆(1)) belongs to the multiplier algebra M(B⊗ C),
where (B = εs(A), C = εt(A)) is the symmetric pair of source algebra and target algebra, and also
that E is a separability idempotent (as studied). If the weak multiplier Hopf algebra is regular, then
also E is a regular separability idempotent. We also see how, for any weak multiplier Hopf algebra
(A, ∆), it is possible to make C⊗ B (with B and C as above) into a new weak multiplier Hopf algebra.
In a sense, it forgets the ’Hopf algebra part’ of the original weak multiplier Hopf algebra and only
remembers symmetric pair of the source and target algebras. It is in turn generalized to the case of any
symmetric pair of non-degenerate algebras B and C with a separability idempotent E ∈ M(B⊗ C).
We get another example using this theory associated to any discrete quantum group. Finally, we also
consider the well-known ’quantization’ of the groupoid that comes from an action of a group on a set.
All these constructions provide interesting new examples of weak multiplier Hopf algebras (that are
not weak Hopf algebras introduced).
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1. Introduction

For an associative algebra A with a non-degenerate product, we say that λ ∈ Hom(A, A) is
a left multiplier of A if λ(ab) = λ(a)b for all a, b ∈ A. We denote the space of left multipliers by
L(A). Symmetrically, we call ρ ∈ Hom(A, A) a right multiplier of A if ρ(ab) = aρ(b) for all a, b ∈ A.
We denote the space of right multipliers by R(A). We have two natural symmetric linear maps
L : A −→ L(A), L(a)(b) = λa(b) = ab and R : A −→ R(A), R(a)(b) = ρa(b) = ba.

The multiplier algebra M(A) of A is the space of all symmetric pairs (λ, ρ) where λ ∈ L(A) and
ρ ∈ R(A) such that aλ(b) = ρ(a)b for all a, b ∈ A. The unit of M(A) is denoted by 1 (see [1–4]).

Weak Hopf algebras were introduced by Bohm, Nill and Szlachanyi [5] in 1999, and they
have been of great interest in quantum algebra and mathematical physics. In previous work in [6]
(see also [7]), we defined weak multiplier Hopf algebras, by extending the class of weak Hopf algebras.
It is a pair of a non-degenerate algebra A, with or without identity, and a coproduct ∆ : A −→
M(A⊗ A), satisfying certain properties. If the algebra has an identity and the coproduct is unital, then
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we have a Hopf algebra (see [8,9]). If the algebra has no identity, but the coproduct is non-degenerate
(which is the equivalent of being unital if the algebra has an identity), then (A, ∆) would be a multiplier
Hopf algebra (see [1,2,10]). If the algebra has an identity, but the coproduct is not unital, we have a
weak Hopf algebra (see [5,11]). In the general case, we neither assume A to have an identity nor assume
∆ to be non-degenerate and so we work with a genuine weak multiplier Hopf algebra (see [6,7,12,13])
(see also [14,15]). It is called regular if its antipode is a bijective map from A to itself.

The first fundamental example of a weak multiplier Hopf algebra is the algebra A = K(G) of
complex functions on G with finite support and pointwise product, where G is a groupoid. Here,
the coproduct map ∆ is not necessarily non-degenerate, while the existence of a certain canonical
idempotent element E ∈ M(A⊗ A) is assumed, which coincides with ∆(1) in the unital case.

Symmetrically, for the second example, we take the algebra B, defined as the groupoid algebra CG
of G. If we use p 7→ λp for the canonical embedding of G in CG, then if p, q ∈ G, we have λpλq = λpq

if pq is defined and 0 otherwise. Here, the canonical idempotent E is given by ∑ λe ⊗ λe where the
sum is only taken over the units e of G. The antipode is given by S(λp) = λp−1 for all p ∈ G.

These two examples are dual ( symmetric) to each other. The duality is given by 〈 f , λp〉 = f (p)
whenever f ∈ K(G) and p ∈ G. We gave more details (about this duality) in [13] where we treated
duality for regular weak multiplier Hopf algebras with integrals.

In this paper, we continue the study of these objects and construct new examples. If A is a
weak multiplier Hopf algebra, a symmetric pair of the source and target maps are studied, and their
symmetric pair of images, the source algebra and the target algebra, are also investigated. We show
that the canonical idempotent E belongs to the multiplier algebra M(B ⊗ C), where (B, C) is the
symmetric pair of source algebra and target algebra, and also that E is a separability idempotent.
Several interesting new examples of weak multiplier Hopf algebras are constructed. Some of them are
not weak Hopf algebras.

1.1. Content of the Paper

In Section 2, we recall some of the basic notions and results on weak multiplier Hopf algebras
as studied in our first papers on the subject [6,7]. In particular, we explain some of the covering
properties as this will be important for the rest of the paper. We note that, in the definition of a weak
multiplier Hopf algebra, there are four symmetry concepts: (a) multiplier algebra as explained in the
Introduction; (b) full; (c) the properties of the counit and the separability idempotent; and (d) the
source and the target maps (algebras).

In the earlier papers on the subject, we briefly looked already at symmetric pair of the source and
target maps εs and εt and their symmetric pair of images, the source and target algebras. In Section 3,
we investigate these objects further. We recall the definitions and some of the basic properties that are
found already in [6]. Notice that we make a change in terminology. We now call the image εs(A) of
the source map the source algebra and the image εt(A) of the target map the target algebra. In [12],
we used these terms for the multiplier algebras that can be characterized nicely in the regular case.
Because now we are also studying the non-regular case, these multiplier algebras no longer seem to
have the same characterization and this is what motivated us to change this terminology. We comment
more on this in Section 3.

Indeed, in the regular case, we show that the multiplier algebras M(εs(A)) and M(εt(A)) of
the images εs(A) and εt(A) of the source and target maps can be nicely characterized as certain
subalgebras of the multiplier algebra M(A).

In the general case, we show that the canonical idempotent E has all the properties of a separability
idempotent (as studied in [4]). It turns out to be a regular one if the weak Hopf algebra is regular.
Finally, we use the various results to show that the underlying algebra A of any weak multiplier Hopf
algebra (A, ∆) has local units. Recall that, in [6], we could only show this in the regular case.

In Section 4, we study special cases and examples. We start again with the two examples
associated with a groupoid. We are very short here as we include this mainly for completeness.
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These examples have been considered in earlier papers (see, e.g., [6]). Then, we consider any weak
multiplier Hopf algebra (A, ∆) and we associate a new weak multiplier Hopf algebra (P, ∆P) where
the underlying algebra P is εt(A)⊗ εs(A) and the coproduct is given by the formula

∆P(c⊗ b) = c⊗ E⊗ b

for b ∈ εs(A) and c ∈ εt(A) and where E is the canonical multiplier in M(A⊗ A). We also use this
example further as a model for the construction of an abstract version of this case. Then, we take any
symmetric pair of non-degenerate algebras B and C and start with a so-called separability idempotent
E in the multiplier algebra M(B⊗ C). We take P = C⊗ B and ∆P as above. These two examples are
’quantizations’ of the trivial groupoid G constructed from a set X by taking G = X× X with product
(z, y)(y, x) = (z, x) when x, y, z ∈ X.

This groupoid in turn is related with the case of a groupoid G constructed from a (left) action of a
group H on a set X. Now, G consists of triples (y, h, x) where x, y ∈ X and h ∈ H and y = h . x and
where . is used to denote the action. The product is given by (z, k, y)(y, h, x) = (z, kh, x). Finally, this
groupoid is also quantized (at least in a certain sense to be explained in this section).

The starting point is again a symmetric pair of non-degenerate algebras B and C with a separability
idempotent E in the multiplier algebra M(B⊗C). Moreover, there is a (regular) multiplier Hopf algebra
Q that acts from the right on B and from the left on C in such a way that B is a right Q-module algebra
and C a left Q-module algebra. These objects are related with the requirement that the right action of Q
on C induces via E the left action of Q on B (see Section 4 for a more precise statement). The two-sided
smash product P is defined as the algebra generated by B, C and Q with B and C commuting and the
commutation rules between B and Q determined by the left action of Q on B and the ones between C
and Q determined by the right action of Q on C. It carries a natural coproduct making P into a weak
multiplier Hopf algebra.

Finally, in Section 5, we draw some conclusions and discuss possible further research on this subject.
In [13], the study of weak multiplier Hopf algebras is continued with the investigation of integrals

and duality. The results obtained in the present paper are of great importance for the treatment of
integrals and duality, as it is done in [13].

The material studied in this paper is closely related with the theory of (regular) multiplier Hopf
algebroids, as developed in [16], where the theory of weak multiplier Hopf algebras is treated within an
algebroid framework (see also [17] for the relation between the two concepts).

We also refer to the paper on weak multiplier bialgebras by Böhm, Gómez-Torecillas and
López-Centella (see [14]) where the notion of a weak multiplier bialgebra is developed. In this
theory, the symmetric pair of source and target maps, as well as the symmetric pair of source and
target algebras, play a crucial role. See also [18] where a Larson–Sweedler type theorem is proven for
these weak multiplier bialgebras.

Finally, we also notice that many other interesting works (see [15–24]) were motivated by the
notion of weak multiplier Hopf algebras introduced in [7] (for an earlier background of this paper,
see [25]).

1.2. Conventions and Notations

We only work with algebras A over C (although we believe that this is not essential and that it is
possible to obtain the same results for algebras over other, more general fields). We do not assume that
they are unital but we need that the product is non-degenerate. We also assume our algebras to be
idempotent (i.e., A2 = A). In fact, it turns out that the algebras we encounter in this theory always
have local units. We have seen this already in [6], in the regular case. Then, of course, the product is
automatically non-degenerate and also the algebra is idempotent.

When A is such an algebra, we use M(A) for the multiplier algebra of A. When m is in M(A), then
by definition we can define am and mb in A for all a, b ∈ A and we have (am)b = a(mb). The algebra
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A sits in M(A) as an essential two-sided ideal and M(A) is the largest algebra with identity having
this property.

Recall that a homomorphism γ : A → M(B), where A and B are non-degenerate algebras, is
called non-degenerate if γ(A)B = B and Bγ(A) = B. In that case, there is a unique extension of
γ, still denoted by γ, to a unital homomorphism from M(A) to M(B). There is a similar result for
non-degenerate anti-homomorphisms.

We consider A⊗ A, the tensor product of A with itself. It is again an idempotent, non-degenerate
algebra and we can consider the multiplier algebra M(A⊗ A). The same is true for a multiple tensor
product. We use ζ for the flip map on A⊗ A, as well as for its natural extension to M(A⊗ A).

We use 1 for the identity in any of these multiplier algebras. On the other hand, we mostly
use ι for the identity map on A (or other spaces), although, sometimes, we also write 1 for this map.
The identity element in a group is denoted by e. If G is a groupoid, we also use e for units. Units are
considered as being elements of the groupoid and we use s and t for the source and target maps from
G to the set of units.

When A is an algebra, we denote by Aop the algebra obtained from A by reversing the product.
When ∆ is a coproduct on A, we denote by ∆cop the coproduct on A obtained by composing ∆ with
the flip map ζ.

For a coproduct ∆, as we define in Definition 1.1 of [6], we assume that ∆(a)(1⊗ b) and (a⊗ 1)∆(b)
are in A⊗ A for all a, b ∈ A. This allows us to make use of the Sweedler notation for the coproduct.
The Sweedler notation is first explained in [26], but only for the case of regular coproducts. In [2],
an approach is developed in the case where the underlying algebras have local units. In the more recent
paper [27], this condition is not assumed. However, it should be mentioned that the Sweedler notation
is essentially just what is says, a notation. It is a way to denote formulas in a more transparent way.
This point of view is explained in [27] and the reader is advised to look at that note for understanding
the use of the Sweedler notation for weak multiplier Hopf algebras as in this paper.

1.3. Basic References

For the theory of Hopf algebras, we refer to the standard works of Abe [8] and Sweedler [9].
For multiplier Hopf algebras and integrals on multiplier Hopf algebras, we refer to [1,10]. Weak Hopf
algebras are studied in [5,11] and more results are found in [28,29]. Various other references on the
subject can be found in [30]. In particular, we refer to the work of [31] because we use notations and
conventions from this paper when dealing with weak Hopf algebras.

For the theory of groupoids, we refer to [32–35].

2. Preliminaries on Weak Multiplier Hopf Algebras

Let (A, ∆) be a weak multiplier Hopf algebra as in Definition 1.14 of [6]. In general, we do not
assume that it is regular. On the other hand, we also recall some of the results that are only true in the
regular case.

A is an algebra over C, with or without identity but with a product that is non-degenerate (as a
bilinear map). The algebra is also idempotent in the sense that A = A2 (meaning that any element in
A is a sum of products of elements of A). In Proposition 4.9 of [6], we showed that, in the regular case,
the underlying algebra automatically has local units. In fact, the result turns out to be true also in the
non-regular case. We will obtain a proof in this paper (see Proposition 11 in Section 3). Note that, for
an algebra with local units, the product is automatically non-degenerate and the algebra is idempotent.

There is a coproduct ∆ on A. It is a homomorphism from A to the multiplier algebra M(A⊗ A)

of the tensor product A⊗ A of A with itself. It is not assumed that it is non-degenerate (see further).
The canonical maps T1, T2, T3 and T4 are linear maps defined on A⊗ A by

T1(a⊗ b) = ∆(a)(1⊗ b) T2(c⊗ a) = (c⊗ 1)∆(a)

T3(a⊗ b) = (1⊗ b)∆(a) T4(c⊗ a) = ∆(a)(c⊗ 1).
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In general, it is assumed that T1 and T2 have range in A⊗ A. If T3 and T4 also map into A⊗ A,
then the coproduct is called regular.

The coproduct is assumed to be full. This means that the smallest subspaces V and W of A
satisfying symmetric properties:

∆(a)(1⊗ b) ∈ V ⊗ A and (c⊗ 1)∆(a) ∈ A⊗W

for all a, b ∈ A are A itself. If the coproduct is regular, then a similar property will also be true for the
maps T3 and T4 and so both the flipped coproduct ∆cop on A and the original coproduct on Aop will
also be full coproducts.

Fullness of the coproduct implies that any element in A is a linear span of elements of the form
(ι⊗ ω)(∆(a)(1⊗ b)) where a, b ∈ A and ω is a linear functional on A, and similarly for the span of
elements (ω ⊗ ι)((c⊗ 1)∆(a)) with a, c ∈ A and a linear functional ω on A. In fact, this property is
equivalent with fullness of the coproduct. We have a result of the same type for fullness of a regular
coproduct (see, e.g., Proposition 1.6 in [36] and also Lemma 1.11 in [7]).

Furthermore, it is assumed that there is a counit. This is a linear map ε : A → C satisfying the
following symmetric properties:

(ε⊗ ι)(∆(a)(1⊗ b)) = ab and (ι⊗ ε)((c⊗ 1)∆(a)) = ca

for all a, b, c in A. Similar formulas will be true for the other canonical maps in the case of a
regular coproduct.

Because the coproduct is assumed to be full, this counit is unique in the following sense. Assume
that ε and ε′ are linear maps such that

(ε⊗ ι)(∆(a)(1⊗ b)) = ab and (ι⊗ ε′)((c⊗ 1)∆(a)) = ca

for all a, b, c in A. Then, already ε = ε′. This is proven by applying ι⊗ ε⊗ ι on the right hand side and
ι⊗ ε′ ⊗ ι on the left hand side of the equation that expresses coassociativity of the coproduct

(c⊗ 1⊗ 1)(∆⊗ ι)(∆(a)(1⊗ b)) = (ι⊗ ∆)((c⊗ 1)∆(a))(1⊗ 1⊗ b).

In the two cases we get the same result, namely (c⊗ 1)∆(a)(1⊗ b). This is true for all a, b, c ∈ A
and from the fullness of the coproduct, it follows that ε = ε′.

It is not clear if there is a uniqueness result without the assumption that the coproduct is full. It is
also not clear if the existence of a counit, in the non-unital case, implies fullness of the coproduct. Note
that, in general, the counit is not a homomorphism in the case of weak multiplier Hopf algebras.

It seems not possible to construct a counit, even given that the coproduct is full. Therefore,
the existence of the counit is part of the axioms for weak multiplier Hopf algebras.

There is an idempotent element E in M(A⊗ A), called the canonical idempotent, giving the ranges
of the canonical maps T1 and T2 as the following symmetric properties:

∆(A)(1⊗ A) = E(A⊗ A) and (A⊗ 1)∆(A) = (A⊗ A)E.

If the weak multiplier Hopf algebra is regular, we also have these properties for the ranges of the
canonical maps T3 and T4. Thus, in that case, we also have the following symmetric properties:

∆(A)(A⊗ 1) = E(A⊗ A) and (1⊗ A)∆(A) = (A⊗ A)E

with the same idempotent. This element is uniquely determined and it satisfies

∆(a)E = ∆(a) = E∆(a)
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for all a ∈ A.
We see that the coproduct is degenerate if E is strictly smaller than 1. However, the coproduct can

still be extended in a unique way to a homomorphism from M(A) to M(A⊗ A) (again denoted by ∆)
provided we assume ∆(1) = E. Similarly, the homomorphisms ∆⊗ ι and ι⊗ ∆ have unique extension
to M(A⊗ A) such that, again using the same symbols for these extensions, we have the following
symmetric properties:

(∆⊗ ι)(1) = E⊗ 1 and (ι⊗ ∆)(1) = 1⊗ E.

We use 1 for the identity, both in M(A) and in M(A⊗ A). We have (∆⊗ ι)(E) = (ι⊗ ∆)(E). It is
further assumed that

(∆⊗ ι)(E) = (E⊗ 1)(1⊗ E) = (1⊗ E)(E⊗ 1).

The last equality means, in a sense that can be made precise, that the left and the right legs of
E commute.

The left and the right legs of E are also big enough in the following sense.

Lemma 1. If a ∈ A and if E(1⊗ a) = 0, then a = 0. Similarly, a = 0, if (1⊗ a)E = 0, (a⊗ 1)E = 0 or if
E((a⊗ 1) = 0.

Proof. Assume a ∈ A. If E(1⊗ a) = 0, then ∆(b)(1⊗ a) = 0 for all b ∈ A. If we apply the counit
ε on the first leg of this equality, we find ba = 0 for all b and so a = 0. If E(a ⊗ 1) = 0 we get
(c⊗ 1)∆(b)(a⊗ 1) = 0 for all b, c ∈ A. Now, we apply the counit on the second leg and we find cba = 0
for all b, c ∈ A. Again, this implies a = 0. A similar argument works for the two other cases.

There is a unique antipode S. It is a linear map from A to the multiplier algebra M(A). It is an
anti-algebra map in the sense that S(ab) = S(b)S(a) for all a, b ∈ A and it is an anti-coalgebra map
meaning that ∆(S(a)) = ζ(S⊗ S)∆(a) for all a ∈ A (in an appropriate sense—see, e.g., Proposition 15
and more comments in [6] for a correct formulation). Recall that we use ζ for the flip map. Moreover,
the antipode satisfies the following symmetric formulas between S and ι:

∑
(a)

a(1)S(a(2))a(3) = a and ∑
(a)

S(a(1))a(2)S(a(3)) = S(a)

for all a in A. One has to multiply with an element of A, left or right, in order to be able to use the
Sweedler notation, and so strictly speaking, the formulas hold in M(A) (see also Remark 1).

We have the equalities

E(a⊗ 1) = ∑
(a)

∆(a(1))(1⊗ S(a(2))) (1)

(1⊗ a)E = ∑
(a)

(S(a(1))⊗ 1)∆(a(2)) (2)

for all a. These equations are equivalent with

∆(c)(a⊗ 1) = ∑
(a)

∆(ca(1))(1⊗ S(a(2))) (3)

(1⊗ a)∆(b) = ∑
(a)

(S(a(1))⊗ 1)∆(a(2)b) (4)

for all a, b, c. Observe that using the Sweedler notation in these formulas is just a matter of notation and
nothing more. Indeed, Formula (3) is a shorthand for the formula ∆(c)(a⊗ 1) = ∑i ∆(pi)(1⊗ S(qi))

where ∑i pi ⊗ qi = (c⊗ 1)∆(a). This is true for all the formulas with the Sweedler notation we have
here in this preliminary section. It illustrates a remark already made in the Introduction.
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In the regular case, we have that the antipode maps A to itself and is bijective. In fact, this property
of the antipode characterizes the regular weak multiplier Hopf algebras.

In that case, we have the following counterparts of Formulas (1) and (2). We have

E(1⊗ a) = ∑
(a)

∆(a(2))(S
−1(a(1))⊗ 1) (5)

(a⊗ 1)E = ∑
(a)

(1⊗ S−1(a(2)))∆(a(1)) (6)

for all a. Again, these formulas can also be written as

∆(b)(1⊗ a) = ∑
(a)

∆(ba(2))(S
−1(a(1))⊗ 1) (7)

(a⊗ 1)∆(c) = ∑
(a)

(1⊗ S−1(a(2)))∆(a(1)c) (8)

for all a, b, c.
Observe the following peculiarity in these formulas. Formulas (3) and (4) are true in the

non-regular case but the expressions need not be in A⊗ A. On the other hand, Formulas (7) and (8)
only make sense in the regular case (as the inverse of S is involved), while now the expressions are
true in A⊗ A.

We now make an important remark about the covering of the previous formulas.

Remark 1.

(i) First, rewrite the (images of the) canonical maps T1 and T2, and of T3 and T4 in the regular case, using the
Sweedler notation, as

∆(a)(1⊗ b) = ∑
(a)

a(1) ⊗ a(2)b (c⊗ 1)∆(a) = ∑
(a)

ca(1) ⊗ a(2) (9)

(1⊗ b)∆(a) = ∑
(a)

a(1) ⊗ ba(2) ∆(a)(c⊗ 1) = ∑
(a)

a(1)c⊗ a(2) (10)

where a, b, c ∈ A. In all four expressions, a(1) is covered by c and/or a(2) by b. This is by the assumption
put on the coproduct, requiring that the canonical maps have range in A⊗ A.

(ii) Next, consider the expressions

∑
(a)

a(1) ⊗ S(a(2))b and ∑
(a)

cS(a(1))⊗ a(2) (11)

∑
(a)

a(1) ⊗ bS(a(2)) and ∑
(a)

S(a(1))c⊗ a(2) (12)

where a, b, c ∈ A. In the first two of Formula (11), we have a covering by the assumption that the
generalized inverses R1 and R2 of the canonical maps exist as maps on A ⊗ A with range in A ⊗ A
(see [6])). In the second pair of Formula (12), we have a good covering only in the regular case. It follows by
considering the expressions in (9) and using that S is a bijective anti-algebra map from A to itself. In the
regular case, we can also consider the above expressions with S replaced by S−1.
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(iii) If, on the one hand, we first apply S in the first or the second factor of the expressions in (9) and multiply and
if, on the other hand, we simply apply multiplication on the expressions in (11), we get the four elements

∑
(a)

S(a(1))a(2)b and ∑
(a)

ca(1)S(a(2)) (13)

∑
(a)

a(1)S(a(2))b and ∑
(a)

cS(a(1))a(2) (14)

in A for all a, b, c ∈ A. This is used to define the source and target maps in the next section (see Definition 1
in the next section).

(iv) Now, we combine the coverings obtained in (i) and (ii). Consider, e.g., the two expressions

∑
(a)

∆(a(1))(1⊗ S(a(2))b) (15)

∑
(a)

(cS(a(1))⊗ 1)∆(a(2)) (16)

where a, b, c ∈ A. The first expression (13) is obtained by applying the canonical map T1 to the first of
the two expressions in (11). Thus, this gives an element in A⊗ A and we know that it is E(a⊗ b) as we
can see from Formula (1). Similarly, the second expression (14) is obtained by applying the canonical map
T2 to the second of the two expressions in (11). We know that this is (b⊗ a)E, as shown in Formula (2).
Note that E(a⊗ b) and (b⊗ a)E belong to A⊗ A because by assumption E ∈ M(A⊗ A), but that, on
the other hand, it is not obvious (as we see from the above arguments) that the expressions that we obtain
for these elements belong to A⊗ A.

(v) Finally, as a consequence of the above statements, also the four expressions

∑
(a)

S(a(1))a(2)S(a(3))b and ∑
(a)

ca(1)S(a(2))a(3) (17)

∑
(a)

cS(a(1))a(2)S(a(3)) and ∑
(a)

a(1)S(a(2))a(3)b (18)

are well-defined in A for all a, b, c ∈ A (also in the non-regular case as S : A→ M(A)). This justifies a
statement made earlier about the properties of the antipode.

Once again, in all these cases, the Sweedler notation is just used as a more transparent way to
denote expressions. We refer to the coverings just to indicate how the formulas with the Sweedler
notation can be rewritten without the use of it.

In the regular case, we also have many other nice formulas (see Section 4 in [6]. One of them is
(S⊗ S)E = ζE (as expected because E = ∆(1)). Other formulas that we use are recalled below. In any
case, they are all found in [6] and we refer to this paper for details.

3. The Symmetric Pair of Source and Target Algebras

As in the previous section, we consider a weak multiplier Hopf algebra (A, ∆). In general, we do
not assume that it is regular. In the regular case, nicer results can be obtained, but we try to push the
theory as far as possible in the general case.

We first recall the definition of the symmetric pair of source and target maps εs : A→ M(A) and
εt : A → M(A) and prove the first properties. We show among other things that the images are
non-degenerate subalgebras of M(A), sitting nicely in M(A) so that also their multiplier algebras can
be considered as subalgebras of M(A).

The symmetric pair of source and target maps, together with their images, have already been
considered in [6] and a few properties were proven, mainly for the purpose of studying the antipode.
In this paper, we will continue this study.
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Note that, in this paper, as mentioned in the Introduction, we define the symmetric pair of source and
target algebras as the symmetric pair of images of the source and target maps (see Notation 2). We explain
below why we do this.

We also study the behavior of the antipode S on the source and target algebras. Recall that S
is an anti-homomorphism from A to M(A). It is non-degenerate in the sense that S(A)A = A and
AS(A) = A (see Proposition 3.6 in [6]). Therefore, as a consequence of a general property mentioned in
the Introduction (see also the Appendix of [1]), it has a unique extension to a unital anti-homomorphism
from M(A) to itself.

We consider the canonical idempotent E in M(A⊗ A) as reviewed in the previous section and we
use that the coproduct ∆ can be extended to the multiplier algebra, as mentioned above. We show that
E is a separability idempotent as studied in [4].

3.1. The Source and Target Algebras B and C

We first consider the symmetric pair of source and target maps εs : A→ M(A) and εt : A→ M(A).
Recall Definition 3.1 from [6].

Definition 1. For a ∈ A, we define

εs(a) = ∑
(a)

S(a(1))a(2) and εt(a) = ∑
(a)

a(1)S(a(2))

where S is the antipode. The map εs is called the source map and the map εt is the target map.

We show in Remark 1 (iii) that these maps have well-defined values in the multiplier
algebra M(A).

We show that the images of the source and target maps are subalgebras of M(A). Before we can
do this, we need some elementary properties, also important for the further study of these subalgebras.

First, we have that the range of εs coincides with the left leg of E and that the range of εt is the
right leg of E. These statements are made precise in the following proposition.

Proposition 1. The range εs(A) of the source map is spanned by elements of the form (ι⊗ω(a · b))E where
a, b ∈ A and ω is a linear functional on A. Symmetrically, the range εt(A) of the target map is spanned by
elements of the form (ω(c · a)⊗ ι)E where a, c ∈ A and with ω a linear functional on A.

Proof. By Formula (2) in Section 2, we get for a, b ∈ A that

(1⊗ a)E(1⊗ b) = ∑
(a)

S(a(1))a(2) ⊗ a(3)b

and this belongs to εs(A)⊗ A. We can apply a linear functional ω on the second leg and we see that
(ι⊗ω(a · b))E is well-defined and belongs to εs(A). The fullness of ∆ guarantees that any element of
A is a sum of elements of the form

(ι⊗ω)(∆(a)(1⊗ b))

where a, b ∈ A and where ω is a linear functional (see Section 2). Hence, it follows that εs(A) is
spanned by elements as in the formulation of the proposition, and similarly for the range εt(A) of the
target map.

Because E⊗ 1 and 1⊗ E commute, it follows that εs(a) and εt(b) will commute in M(A) for all
a, b ∈ A.

In addition, the following is an easy consequence of the previous result. The formulas in the
proposition make sense in the multiplier algebra M(A⊗ A).
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Proposition 2. We have the following symmetric properties:

∆(x) = (x⊗ 1)E = E(x⊗ 1) and ∆(y) = E(1⊗ y) = (1⊗ y)E

for x ∈ εt(A) and y ∈ εs(A).

Proof. Simply apply the appropriate linear functionals on the first and third factors, respectively, of
the equations

(ι⊗ ∆)E = (E⊗ 1)(1⊗ E) = (1⊗ E)(E⊗ 1) (19)

(∆⊗ ι)E = (E⊗ 1)(1⊗ E) = (1⊗ E)(E⊗ 1). (20)

This completes the proof.

The result above is the motivation for the following lemma.

Lemma 2. For an element x ∈ M(A), the following are equivalent:

(i) ∆(x) = (x⊗ 1)E; and
(ii) ∆(x) = E(x⊗ 1).

Similarly, for an element y ∈ M(A), the following are equivalent:

(i) ∆(y) = E(1⊗ y); and
(ii) ∆(y) = (1⊗ y)E.

Proof. First, let x ∈ M(A) and assume that ∆(x) = (x⊗ 1)E. Take any y ∈ εs(A). Then,

∆(xy) = ∆(x)∆(y) = (x⊗ 1)E∆(y) = (x⊗ 1)∆(y) = (x⊗ y)E.

We use that ∆(y) = (1⊗ y)E, proven in the previous proposition for elements y in εs(A). On the
other hand,

∆(yx) = ∆(y)∆(x) = (1⊗ y)E∆(x) = (1⊗ y)∆(x) = (x⊗ y)E

and we see that ∆(xy) = ∆(yx). Multiply with ∆(a) for any a ∈ A and apply the counit. This will give
xya = yxa and, because this is true for all a, we have xy = yx.

Because this result is true for all elements y in the left leg of E, as a consequence, we find that
(x⊗ 1)E = E(x⊗ 1) and hence also ∆(x) = E(x⊗ 1).

Similarly, if ∆(x) = E(x⊗ 1), then ∆(x) = (x⊗ 1)E will also be true. This proves the equivalence
of (i) and (ii) in the first part of the lemma.

The second part is proven in a completely similar way.

We arrive at the following notation.

Notation 1. We denote by As the set of elements y ∈ M(A) satisfying ∆(y) = E(1⊗ y) and by At the set of
elements x ∈ M(A) satisfying ∆(x) = (x⊗ 1)E.

The following is an immediate consequence of the lemma.

Proposition 3. The sets As and At are commuting subalgebras of M(A).

Proof. It is immediately clear from the definitions that these sets are subalgebras of M(A). Moreover,
if x ∈ At and y ∈ As, we have as in the first part of the proof of the lemma

∆(xy) = ∆(x)∆(y) = (x⊗ y)E ∆(yx) = ∆(y)∆(x) = (x⊗ y)E
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where we use the two equivalences of (i) and (ii) in the lemma. Hence, ∆(xy) = ∆(yx) and, as before,
xy = yx.

From Proposition 2, we know that εs(A) ⊆ As and εt(A) ⊆ At. However, we can now prove more.

Proposition 4. Assume that x ∈ At. Then, for all a ∈ A, we have εt(xa) = xεt(a) and εs(ax) = S(x)εs(a).
Symmetrically, if y ∈ As we have εs(ay) = εs(a)y and εt(ya) = εt(a)S(y) for all a ∈ A.

Proof. Take x ∈ M(A) and assume that ∆(x) = (x⊗ 1)E. Let a ∈ A. Then, ∆(xa) = (x⊗ 1)∆(a), and,
if we apply m(ι⊗ S) where m is multiplication, we find εt(xa) = xεt(a). By Lemma 2, we know that
also ∆(ax) = ∆(a)(x⊗ 1) and now we apply m(S⊗ ι) to find εs(ax) = S(x)εs(a). This proves the first
part of the proposition.

The second part is proven in a completely similar way.

Using techniques as above, we find other formulas of this type but we do not need these.
The result above has a few obvious but important consequences.

Proposition 5.

(i) The sets εs(A) and εt(A) are subalgebras.
(ii) The algebra εs(A) is a right ideal of As and εt(A) is a left ideal of At.

Note that the algebras As and At contain the identity of M(A). This is not the case in general for
the subalgebras εs(A) and εt(A). It is also not clear if, again in general, εs(A) is also a left ideal of As

and if εt(A) is also a right ideal of At. All of this is related with the behavior of the antipode on these
algebras (as we can see already from formulas in Proposition 4). In a subsequent item, we investigate
this further.

First, we look at the multiplier algebras of the images of the source and the target maps.
The multiplier algebras of the source and target algebras
We introduce the following notation and terminology. As mentioned in the Introduction,

the terminology is different from the one originally used in [6] (see below).

Notation 2. In what follows, we denote the algebra εs(A) by B and εt(A) by C. We will call (B, C) the
symmetric pair of source algebra and target algebra.

Recall that we do not expect these algebras to be unital. We are interested in their multiplier
algebras, if they exist.

We begin with some module properties giving more information about these algebras B and C
and how they sit in M(A).

Proposition 6. We have

A = AB and A = CA (21)

A = BA and A = AC. (22)

Proof. We know that
ba = ∑

(a)
ba(1)S(a(2))a(3) = ∑

(a)
ba(1)εs(a(2))
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for all a, b. The right hand side is in Aεs(A) and because A2 = A we find that A = Aεs(A). Similarly,
from the formula

ab = ∑
(a)

a(1)S(a(2))a(3)b = ∑
(a)

εt(a(1))a(2)b

for all a, b, we get A = εt(A)A.
If, on the other hand, we start with the formula

bS(a) = ∑
(a)

bS(a(1))a(2)S(a(3)) = ∑
(a)

bS(a(1))εt(a(2))

for all a, b, we find that AS(A) is contained in Aεt(A) (recall Remark 1 (ii) in Section 2). Now, in
Proposition 3.6 of [6], we showed that AS(A) = A and so we get also A = Aεt(A). Similarly,
A = εs(A)A.

The results above say that A as a B-bimodule and as a C-bimodule is unital. If we combine the
above result with the property in Proposition 4, we get the following.

Corollary 1. The algebras B and C are idempotent.

Indeed, for all a, b, we have, e.g., εs(aεs(b)) = εs(a)εs(b), and similarly for εt(A).
Below, we show that the algebras B and C have local units. This implies that the bimodules are

also non-degenerate. In fact, this already follows by a more general argument, which is part of the
following, also more general result.

Lemma 3. Let R be a subalgebra of M(A). Multiplication makes A into a R-bimodule. Assume that this
module is unital. Then, it is also a non-degenerate bimodule. The algebra R is a non-degenerate algebra and
the embedding of R in M(A) extends uniquely to an embedding of the multiplier algebra M(R) of R in M(A).
Moreover, we have, considering M(R) as sitting inside M(A),

M(R) = {x ∈ M(A) | xr ∈ R and rx ∈ R for all r ∈ R}. (23)

Proof. We first show that the module is non-degenerate. Take any a ∈ A and assume that ra = 0 for
all r ∈ R. Then, a′ra = 0 for all a′ ∈ A and r ∈ R. Because we assume that AR = A, it follows that also
a′a = 0 for all a′ ∈ A. Then, a = 0, and similarly on the other side. We get in that A is a non-degenerate
R-bimodule.

We also claim that R is a non-degenerate subalgebra of M(A). To show this assume that r ∈ R
and that rs = 0 for all s ∈ R. Multiply with an element a ∈ A from the right and use that RA = A.
This implies that ra = 0 for all a ∈ A. Then, r = 0, and similarly on the other side. Thus, the algebra R
is non-degenerate and we can consider its multiplier algebra M(R).

As A is assumed to be a unital R-bimodule, we have RA = A and AR = A. Thus, the embedding
j : R → M(A) is a non-degenerate homomorphism and a standard result implies that it extends
uniquely to a unital homomorphism j : M(R) → M(A). It is not hard to show that in this case,
this extension is still an embedding. Because obviously for any x ∈ M(R) we have xr ∈ R and rx ∈ R
for all r ∈ R, we find one inclusion of the statement (19). The other inclusion is proven by using again
that the R-bimodule A is unital.

We can apply this lemma and we obtain the following. Recall that we use B to denote the algebra
εs(A) and C for εt(A) (cf. Notation 2).
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Theorem 1. The algebras B and C are non-degenerate and idempotent. Their multiplier algebras M(B) and
M(C) embed in M(A). An element x ∈ M(C) still satisfies

∆(x) = (x⊗ 1)E = E(x⊗ 1)

while
∆(y) = E(1⊗ y) = (1⊗ y)E

is still true for elements y of M(B). Thus, M(B) ⊆ As and M(C) ⊆ At.

Proof. The conditions in Lemma 3 are fulfilled for the subalgebras B and C, as shown in Proposition 6.
Therefore, B and C are non-degenerate algebras and they sit in M(A) in such a way that the embeddings
B ⊆ M(A) and C ⊆ M(A) extend to embedding of their multiplier algebras M(B) and M(C).

As explained above, the algebras B and C are idempotent. There are various ways to prove
that we still have the embeddings M(B) ⊆ As and M(C) ⊆ At. Take, e.g., m ∈ M(C), x ∈ C and
a ∈ A. Then,

∆(mxa) = (mx⊗ 1)∆(a) = (m⊗ 1)∆(xa).

As CA = A, it follows that ∆(ma) = (m⊗ 1)∆(a) for all a ∈ A and hence ∆(m) = (m⊗ 1)E.
Similar arguments are used for the other equations.

In the next item of this section, we study the behavior of the antipode on the algebras B and C.

3.2. The Antipode on the Source and Target Algebras

We begin with the following result about the symmetric pair of subalgebras As and At of M(A).
Recall that we can extend the antipode S to a unital anti-homomorphism from M(A) to itself.

Proposition 7.

(i) If x, y ∈ M(A) and (1⊗ x)E = (y⊗ 1)E, then x ∈ At and y ∈ As.
(ii) If x, y ∈ M(A) and E(1⊗ x) = E(y⊗ 1), then x ∈ At and y ∈ As.
(iii) If x ∈ At, then S(x) ∈ As and (1⊗ x)E = (S(x)⊗ 1)E.
(iv) If y ∈ As, then S(y) ∈ At and E(y⊗ 1) = E(1⊗ S(y)).

Proof.

(i) Assume x, y ∈ M(A) and that (1⊗ x)E = (y⊗ 1)E. If we apply ι⊗ ∆ to this equation, we find

(1⊗ ∆(x))(E⊗ 1) = (y⊗ 1⊗ 1)(E⊗ 1)(1⊗ E)

= (1⊗ x⊗ 1)(E⊗ 1)(1⊗ E)

= (1⊗ x⊗ 1)(1⊗ E)(E⊗ 1).

Now, we use the property that (1⊗ a)E = 0 implies that a = 0 (see Lemma 1 in Section 2).
This will eventually give ∆(x) = (x⊗ 1)E. This proves that x ∈ At. If we apply ∆⊗ ι instead,
we obtain that y ∈ As.

(ii) The second property is proven in completely the same way.
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(iii) Let x ∈ At so that ∆(x) = E(x⊗ 1). Then, for all a ∈ A, we have ∆(ax) = ∆(a)(x⊗ 1) and so

(1⊗ ax)E = ∑
(ax)

(S((ax)(1))⊗ 1)∆((ax)(2))

= ∑
(a)

(S(a(1)x)⊗ 1)∆(a(2))

= ∑
(a)

(S(x)S(a(1))⊗ 1)∆(a(2))

= (S(x)⊗ a)E

This implies (1⊗ x)E = (S(x)⊗ 1)E. It follows from (i) that S(x) ∈ As.
(iv) Similarly, we get S(y) ∈ At when y ∈ As and E(y⊗ 1) = E(1⊗ S(y)).

Note that it follows that S is injective on As and on At. However, it does not imply that these
maps are surjective in the general case.

We now investigate the maps SB : B→ M(A) and SC : C → M(A) that we obtain by restricting
(the extension of) the antipode to the subalgebras B and C of M(A). As a special case of the equations
above, we have

(1⊗ x)E = (SC(x)⊗ 1)E and E(y⊗ 1) = E(1⊗ SB(y))

for x ∈ B and y ∈ C. In particular, we know already that SB : B → At and SC : C → As. In the next
proposition, we get a stronger result.

Proposition 8. The map SB is a non-degenerate anti-homomorphism from B to M(C) and the map SC is a
non-degenerate anti-homomorphism from C to M(B). Both maps are injective.

Proof.

(i) Take x ∈ C. Then, x ∈ At and from Proposition 4 we know that εs(ax) = S(x)εs(a) for all
a. Because now also εs(aS(x)) = εs(a)S(x) for all a, we see that S(x) ∈ M(B). Similarly,
S(y) ∈ M(C) when y ∈ B. It follows that SC is an anti-homomorphism from C to M(B) and that
SB is an anti-homomorphism of B to M(C).

(ii) As BA = A and εt(ya) = εt(a)S(y) for y ∈ B, we see that CS(B) = C. On the other hand,
we have

A = S(A)A = S(AB)A = S(B)S(A)A = S(B)A

and because εt(S(y)a) = S(y)εt(a) for y ∈ B we see that also S(B)C = C.

Hence, SB : B→ M(C) and SC : C → M(B) are non-degenerate anti-homomorphisms.

From the general theory, we know that SB and SC have unique extensions to unital
anti-homomorphism from M(B) to M(C) and from M(C) to M(B), respectively. These extensions are
still the restrictions of the antipode S to the multiplier algebras M(B) and M(C), respectively.

In the regular case, we have the following stronger results.

Theorem 2. In the case of a regular weak multiplier Hopf algebra, we have that SB is an anti-isomorphism from
B to C and SC is an anti-isomorphism from C to B. The multiplier algebras M(B) and M(C) are, respectively,
equal to the algebras As and At as defined in Notation 1.

Proof. We can use, e.g., that (S⊗ S)E = ζE in the case of a regular weak multiplier Hopf algebra
(see Proposition 4.4 in [6]). As B is the left leg of E and C is the right leg of E, we find that S maps B to
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C and C to B. It also follows that these maps are surjective. As we know already that they are also
injective, we find the first statement of the proposition.

The equation (S⊗ S)E = ζE also implies that S maps As to At and vice versa. In Proposition 4,
we show that

εs(ay) = εs(a)y and εs(ax) = S(x)εs(a)

for y ∈ As and x ∈ At. It follows that the algebra B, the image εs(A), is a two-sided ideal of As.
Because we know already that the M(B) ⊆ As, it follows that M(B) = As.

Similarly, we have M(C) = At.

It is not completely clear what the situation is in the non-regular case. We have Proposition 8
saying that SB embeds B in M(C) and Theorem 1 saying that M(C) is a subalgebra of At. Symmetrically,
SC embeds C in M(B) and M(B) is a subalgebra of As.

For this reason, we have changed our terminology and are now calling the algebras B and C,
the images of the source and target maps, respectively, the source and target algebras. In an earlier
version of this paper [12], we used these terms for As and At instead. This was motivated by the fact
that, in the regular case, they can be identified with the multiplier algebras of B and C, respectively.
However, this is not sure in the non-regular case that we are investigating in greater detail in this
version of the paper.

3.3. The Canonical Idempotent E as a Separability Idempotent in M(B⊗ C)

We have the algebras B and C. They are non-degenerate and idempotent. The algebra B is the left
leg of E and the algebra C is the right leg of E, in an appropriate sense (see Proposition 1). Because E is
a multiplier of A⊗ A, we can expect that it is also a multiplier of B⊗ C. This turns out to be the case.
Moreover, it is a separability idempotent as defined and studied in [4]. This is what we show next.

The first step is the following result.

Lemma 4. We have the following symmetric properties:

E(1⊗ a) ∈ B⊗ A and (a⊗ 1)E ∈ A⊗ C

for all a ∈ A.

Proof. For all a in A, we can define a left multiplier ε′s(a) of A by the formula

ε′s(a)b = (ι⊗ ε)(E(b⊗ a))

where b is in A. We show below why we use this notation.
Fix two elements a, a′ in A. Write

∑
(a)

ε′s(a(1))⊗ a(2)a
′ = ∑

i
ti ⊗ qi

where ti is a left multiplier of A and qi ∈ A. Assume that the (qi) are linearly independent.
For all b in A, we find

∑
(a)

ε′s(a(1))b⊗ a(2)a
′ = ∑

(a)
(ι⊗ ε⊗ ι)((E⊗ 1)(b⊗ a(1) ⊗ a(2)a

′))

= (ι⊗ ε⊗ ι)((E⊗ 1)(1⊗ E)(b⊗ ∆(a)(1⊗ a′)))

= (ι⊗ ε⊗ ι)((ι⊗ ∆)(E(b⊗ a))(1⊗ 1⊗ a′))

= E(b⊗ a)(1⊗ a′) = E(b⊗ aa′).
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Therefore, E(b⊗ aa′) = ∑i tib⊗ qi for all b ∈ A.
On the other hand, for all c ∈ A, we also have

(1⊗ c)E(1⊗ aa′) = ∑
(c)

S(c(1))c(2) ⊗ c(3)aa′

= ∑
(c)

εs(c(1))⊗ c(2)aa′

and this belongs to B⊗ A.
If we combine this with the previous formulas, we find ∑i ti ⊗ cqi ∈ B⊗ A for all c ∈ A. Now,

let ω be a linear functional on the space L(B) of left multipliers of A that vanishes on elements in B.
We find ∑i ω(ti)cqi = 0 for all c in A. By non-degeneracy of the product in A and because the elements
(qi) are linearly independent, it follows that ω(ti) = 0 for all i. Hence, ti is in B for all i and we find
that E(1⊗ aa′) ∈ B⊗ A. Because A is idempotent, we get E(1⊗ A) ⊆ B⊗ A.

In a completely similar way, we can prove that also (A⊗ 1)E ∈ A⊗C. This proves the lemma.

From the proof we see that ∑(a) ε′s(a(1))⊗ a(2)a′ ∈ B⊗ A and from the fullness of the coproduct,
it follows that ε′(a) ∈ B for all a ∈ A. This of course also in turn follows from the property that
E(1⊗ A) ⊆ B⊗ A.

We give more comments on this result below. First, we use the lemma to prove the following
main result.

Theorem 3. The canonical idempotent of a weak multiplier Hopf algebra is a separability idempotent in
M(B⊗ C) where (B, C) is the symmetric pair of source and target algebras.

Proof.

(i) By the lemma, we find that E(1⊗ a) belongs to B⊗ A. We therefore can apply εt on the second leg
of this expression. We know that the second leg of E belongs to εt(A) and this is a subalgebra of
At. In Proposition 4, we show that εt(xa) = xεt(a) for all x ∈ At. Therefore, (ι⊗ εt)(E(1⊗ a)) =
E(1⊗ εt(a)). We conclude that E(1⊗ εt(a)) ∈ B⊗ C for all a and so E(1⊗ C) ⊆ B⊗ C.

In a completely similar way, we find that (B⊗ 1)E ⊆ B⊗C. It follows not only that E ∈ M(B⊗C),
but also that it satisfies the first requirements for a separability idempotent (see Section 1 of [4]).

(ii) We now show that E is full in the sense of Definition 1.1 of [4]. For this, assume that V is a
subspace of B so that E(1⊗ x) ⊆ V ⊗ C for all x ∈ C. Then, (1⊗ b)E(1⊗ xa) ∈ V ⊗ A for all
a, b ∈ A and x ∈ C. In Proposition 6, we show that CA = A and in Proposition 1 that B is
spanned by elements of the form (ι⊗ω(a · b))E where a, b ∈ A and ω is a linear functional on
A. Then, we must have V = B proving that the left leg of E (as an idempotent in M(B⊗ C)) is
still all of B, and similarly for the right leg. Hence, E is full.

(iii) Finally, we know already from Proposition 8 that the antipode is a non-degenerate
anti-homomorphism from B to M(C) as well as a non-degenerate anti-homomorphism from C to
M(B). As in Proposition 7 , they satisfy

(1⊗ x)E = (S(x)⊗ 1)E and E(y⊗ 1) = E(1⊗ S(y))

when x ∈ C and y ∈ B. This is the final requirement in Definition 1.4 of [4] and shows that E is a
separability idempotent in M(B⊗ C). This completes the proof.

Note that, in Item (iii) of the proof above, we find E(y⊗ 1) = E(1⊗ S(y)) for all y ∈ B. Then,
E(1⊗ S(y)x) = E(y⊗ x) for all x ∈ C and y ∈ B. From the fact that E ∈ M(B⊗ C) and that S is a
non-degenerate anti-homomorphism from B to M(C), it would also follow that E(1⊗ C) ⊆ B⊗ C.
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In the regular case, we have the following expected result.

Proposition 9. If the weak multiplier Hopf algebra is regular, then E is a regular separability idempotent.

Proof. There are different ways to prove this. If we start with the definition of regularity for a weak
multiplier Hopf algebra (as, e.g., in Definition 4.1 of [6]), then we assume that (A, ∆cop) also satisfies
the axioms of a weak multiplier Hopf algebra. The canonical idempotent now is ζE where E is the
canonical idempotent of the original weak multiplier Hopf algebra. Remember that ζ is the flip map
on A⊗ A and extended to M(A⊗ A).

Because B and C are the left and the right legs of E, we get that C and B are the left and the right
legs of ζE. Applying Theorem 3 to the new weak multiplier Hopf algebra (A, ∆cop), we obtain that ζE
is a separability idempotent in M(C⊗ B). Then, E is indeed a regular separability idempotent by the
very definition of regularity for a separability idempotent (see Definition 2.4 of [4]).

In an earlier version of this paper [12], we only considered regular weak multiplier Hopf algebras
and this result was obtained already (see Section 2 in [12]).

Let us now consider some of the results we have proven for general and regular separability
idempotents in [4] and see what they give in the case of the canonical idempotent of a weak multiplier
Hopf algebra. Recall the distinguished linear functionals ϕB and ϕC on B and C, respectively, defined
and characterized by the formulas

(ϕB ⊗ ι)E = 1 and (ι⊗ ϕC)E = 1;

see Proposition 1.9 in [4].

Proposition 10. The distinguished linear functionals ϕB and ϕC, obtained for the separability idempotent E,
satisfy the following symmetric properties:

ϕB(εs(a)) = ε(a) and ϕC(εt(a)) = ε(a)

for all a ∈ A.

Proof. We have the formula

(1⊗ a)E(1⊗ b) = ∑
(a)

εs(a(1))⊗ a(2)b

for all a, b ∈ A (see, e.g., in the proof of Lemma 4). If we apply ϕB on the first factor, we obtain

ϕB(εs(a(1)))a(2)b = ab.

If we apply a linear functional ω, we find ϕB(εs(a′)) = ω(ab) with

a′ = (ι⊗ω)(∆(a)(1⊗ b).

Because ε(a′) = ω(ab), we see that ϕB(εs(a′)) = ε(a′). By the fullness of the coproduct, any
element of A is of the form (ι ⊗ ω)(∆(a)(1⊗ b). This proves the first formula of this proposition.
The other one is proven in a similar way.

3.4. Existence of Local Units

From the general theory of (possibly non-regular) separability idempotents, we know that there
exist local units (cf. Proposition 1.10 in [4]). As a consequence, we get the following result.
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Proposition 11. The algebra A has local units.

Proof. Let a ∈ A and assume that ω is a linear functional on A so that ω(ba) = 0 for all b ∈ A. Then,

(ι⊗ω)((1⊗ b)(ι⊗ S)((c⊗ 1)∆(p))(1⊗ a)) = 0

for all b, c, p ∈ A. We use that (c⊗ 1)∆(p) ∈ A⊗ A. We know that ((ι⊗ S)∆(p))(1⊗ a) belongs to
A⊗ A. Therefore, we can cancel c in the above equation and get

(ι⊗ω)((1⊗ b)((ι⊗ S)∆(p))(1⊗ a)) = 0.

Write ((ι⊗ S)∆(p))(1⊗ a) as ∑i pi⊗ qi and assume that the elements (pi) are linearly independent.
We find ω(bqi) = 0 for all i and all b ∈ A. Replace b by pi and take the sum over i. Because
∑ piqi = εt(p)a, we get ω(εt(p)a) = 0 for all p ∈ A. This means that ω(xa) = 0 for all x ∈ C.

We know that A = CA and because we have left local units in C, there exists an element x ∈ C
so that xa = a. Then, we see that ω(a) = 0. This means that a ∈ Aa and we know that this implies
that A has left local units. In a similar way, we find that A also has right local units. This completes
the proof.

We see in the proof that we only need that B has right local units and that C has left local units.
These results have a more easy proof in [4].

Recall also that, in earlier work on weak multiplier Hopf algebras, the existence of local units was
only obtained in the case of a regular weak multiplier Hopf algebra, see Proposition 4.9 in [6].

We finish this section with a couple of remarks.

Remark 2.

(i) As we see from the proof of Lemma 4 and from earlier arguments, we find that (ι⊗ ε)((1⊗ a)E) = εs(a)
when a ∈ A. The formula makes sense as an equality of left multipliers of A. Note that we do not expect
(1⊗ a)E to belong to B⊗ A. Similarly, we find (ε⊗ ι)(E(a⊗ 1)) = εt(a) for a in A, now as right
multipliers of A. Again, we do not expect E(A⊗ 1) ⊆ A⊗ C.

(ii) On the other hand, we do have E(1⊗ A) ⊆ B⊗ A and (A⊗ 1)E ⊆ A⊗ C, as shown in the lemma.
As shown above, if we apply ε on the second leg in the first case and on the first leg in the second case,
we get

(ι⊗ ε)(E(1⊗ a)) = ε′s(a) and (ε⊗ ι)((a⊗ 1)E) = ε′t(a)

where ε′s : A→ B and ε′t : A→ C.
(iii) From the proof of the lemma, we see that the range of ε′s is the same as the range of εs, namely B. Indeed,

we have

∑
(c)

εs(c(1))⊗ c(2)aa′ = ∑
(a)

ε′s(a(1))b⊗ a(2)a
′

and using the fullness of the coproduct, we see that the range of εs is contained in the range of ε′s. Similarly,
we can define ε′t by ε′t(a) = (ε⊗ ι)((a⊗ 1)E) and also ε′t and εt have the same range, namely C.

(iv) In the regular case, we get

ε′s(a) = ∑
(a)

a(2)S
−1(a(1)) and ε′t(a) = ∑

(a)
S−1(a(2))a(1)

for a ∈ A. We see that then

S(ε′t(a)) = εt(a) and S(ε′t(a))εs(a)

for all a.
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It is somewhat remarkable that, in general, the maps ε′s and ε′t exist and have the same range as
the maps εs and εt, respectively, while it is not expected that the inverse of S exists. We make more
comments on this peculiarity in Section 4, where we discuss further possible research.

These four counital maps have also been considered previously (see, e.g., [14]), but the notations
are different. For the convenience of the reader, in [18], an Appendix with a dictionary is included.
It includes the following formulas relating our notation with the ones used in [14]:

εs(a) = uR(a), ε′s(a) = uR(a), (24)

εt(a) = uL(a), ε′t(a) = uL(a). (25)

4. Examples and Special Cases

In this section, we treat some examples and special cases. The main purpose is to illustrate results
in Section 3 about the source and target algebras. However, we also use some of the examples for the
illustration of the general theory of weak multiplier Hopf algebras because this has not yet been done
in the earlier papers we wrote on the subject.

4.1. The Groupoid Examples

For completeness, we begin with a very brief review of the two basic motivating examples
associated with a groupoid. We do not give details as they can be found in our earlier papers on the
subject (see [6,7]). On the other hand, we use these examples to illustrate some of the statements we
made earlier in this paper, as well as for some other examples further in this section.

Example 1.

(i) Consider a groupoid G. First, there is the algebra A, defined as the space K(G) of complex functions on G
with finite support and pointwise product. Recall that the coproduct ∆ on K(G) is defined by

∆( f )(p, q) =

{
f (pq) if pq is defined,
0 otherwise.

The pair (A, ∆) is a regular weak multiplier Hopf algebra (in the sense of Definitions 1.14 and 4.1 in [6]).
The canonical idempotent E in M(A⊗ A) is given by the function on pairs (p, q) in G× G that is 1 if
pq is defined and 0 if this is not the case. The antipode S is defined by (S( f ))(p) = f (p−1) whenever
f ∈ K(G) and p ∈ G.

In this example, the algebra As is the algebra of all complex functions on G so that f (p) = f (q) whenever
p, q ∈ G satisfy s(p) = s(q). It is naturally identified with the algebra of all complex functions on the
set G0 of units in G. The source map εs from A to As is defined by (εs( f ))(p) = f (p−1 p) whenever
p ∈ G and f ∈ K(G). The image of the source map εs(A), what we called in this paper the source
algebra, is identified with the algebra of complex functions with finite support on the units. Symmetrically,
the algebra At consists of functions f on G so that f (p) = f (q) if t(p) = t(q) for p, q ∈ G. It is also
identified with the space of all complex functions on the units. The target map εt from A to At is defined
by (εt( f ))(p) = f (pp−1) for all p and f ∈ K(G). The target algebra, i.e., the image εt(A) of the target
map, is again identified with the space of functions with finite support on the units. Recall that these two
algebras are subalgebras of the multiplier algebra M(A) (here, the algebra of all complex functions on G).
Observe also that the source and target algebras, εs(A) and εt(A), can be strictly smaller than the algebras
As and At, respectively. This happens when the set of units is infinite. In that case, we see that As is
indeed the multiplier algebra M(εs(A)) of εs(A) and similarly for the target map.

(ii) For the second case, we take the groupoid algebra CG of G. If we use p 7→ λp for the canonical embedding
of G in CG, then, if p, q ∈ G, we have λpλq = λpq if pq is defined and 0 otherwise. The coproduct on CG
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is given by ∆(λp) = λp ⊗ λp for all p ∈ G. The idempotent E is ∑ λe ⊗ λe where the sum is only taken
over the units e of G. The antipode is given by S(λp) = λp−1 for all p ∈ G.

The symmetric pair of source and target maps is given by εs(λp) = λe where e = s(p) and εt(λp) = λe

where now e = t(p) for p ∈ G. Here, the source and target algebras coincide and it is the algebra of the
span of elements of the form λe where e is a unit of G. In addition, here the source and target algebras need
not be unital and so can be strictly smaller then their multiplier algebras.

Recall that these two cases are dual (symmetric) to each other. The duality is given by 〈 f , λp〉 =
f (p) whenever f ∈ K(G) and p ∈ G. We give more details (about this duality) in [13] where we treat
duality for (regular) weak multiplier Hopf algebras with integrals.

4.2. Examples Associated with Separability Idempotents

For the next example, we start with any separability idempotent. Later, we consider two special
cases of this. The most important one will be constructed from the separability idempotent that is the
canonical idempotent of a given weak multiplier Hopf algebra. In some sense, we isolate the source
and target algebras with what remains of the original coproduct.

These examples illustrate very well the use of different properties of the source and target algebras,
obtained in the previous section.

Recall from [4] that a separability idempotent is an idempotent in the multiplier algebra M(B⊗ C)
of the tensor product of two non-degenerate algebras B and C with certain properties. In particular,
there exist non-degenerate anti-homomorphisms SB : B→ M(C) and SC : C → M(B) characterized
by the formulas

E(b⊗ 1) = E(1⊗ SB(b)) and (1⊗ c)E = (SC(c)⊗ 1)E

whenever b ∈ B and c ∈ C. There are also the unique linear functionals ϕB and ϕC on B and C,
respectively, characterized by

(ϕB ⊗ ι)(E(1⊗ c)) = c and (ι⊗ ϕC)((b⊗ 1)E) = b

for all b ∈ B and c ∈ C. We refer to [4] for details.
We now construct a weak multiplier Hopf algebra from a separability idempotent in the

next proposition.

Theorem 4. Let (B, C) be a symmetric pair of non-degenerate algebras and assume that E is a separability
idempotent in M(B⊗ C). Let P = C⊗ B. There is a coproduct ∆P on P defined by

∆P(c⊗ b) = c⊗ E⊗ b

for c ∈ C and b ∈ B. The pair (P, ∆P) is a weak multiplier Hopf algebra. The counit εP is given by
εP(c⊗ b) = ϕB(SC(c)b). We also have εP(c⊗ b) = ϕC(cSB(b)). The canonical idempotent EP of (P, ∆P) is
1⊗ E⊗ 1. The antipode SP is given by SP(c⊗ b) = SB(b)⊗ SC(c) when b ∈ B and c ∈ C. The source and
target algebras are 1⊗ B and C⊗ 1, respectively, and the source and target maps are

εP
s (c⊗ b) = 1⊗ SC(c)b and εP

t (c⊗ b) = cSB(b)⊗ 1

for all b ∈ B and c ∈ C. In these formulas, 1 is the identity in M(C) and M(B), respectively.

Proof. We systematically use ιP, 1P, etc. for objects related with P. For the objects related with the
original algebras, we use no index.

(i) The algebra P is non-degenerate and idempotent because this is true for its components B and C.
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(ii) Because E ∈ M(B ⊗ C), we have that ∆P(c ⊗ b), defined as c ⊗ E ⊗ b, belongs to M(P ⊗ P).
Because E2 = E, it is clear that ∆P is a homomorphism. By assumption, we have that E(1⊗ C)
and (B⊗ 1)E are subsets of B⊗ C. Therefore,

∆P(P)(1P ⊗ P) ⊆ P⊗ P and (P⊗ 1P)∆P(P) ⊆ P⊗ P.

The coproduct ∆P is coassociative and (∆P⊗ ιP)∆P(c⊗ b) = c⊗ E⊗ E⊗ b for all b ∈ B and c ∈ C.
This coproduct is full because E is assumed to be full (as in Definition 1.1 of [4]).

(iii) Now, we prove that there is a counit εP on (P, ∆P). First, define εP(c⊗ b) = ϕC(cSB(b)). For all
b ∈ B and c ∈ C, we have that

(ιP ⊗ εP)∆P(c⊗ b) = (ιP ⊗ εP)(c⊗ E⊗ b)

= (ιP ⊗ ϕC)(c⊗ E(1⊗ SB(b)))

= (ιP ⊗ ϕC)(c⊗ E(b⊗ 1)) = c⊗ b.

On the other hand, if we define ε′P(c⊗ b) = ϕB(SC(c)b), we find similarly

(ε′P ⊗ ι)∆P(c⊗ b) = c⊗ b

for all b ∈ B and c ∈ C. Then, from the general theory, we know that εP and ε′P must be the
same (see, e.g., the argument we give in the preliminary section 2 of this paper). In the regular
case we treat below, we give another argument for this fact (see the paragraph after the proof of
Theorem 5 made in the new version). This proves the existence of the counit.

(iv) Take any elements b, b′ ∈ B and c, c′ ∈ C. Then,

∆P(c⊗ b)(1⊗ 1⊗ c′ ⊗ b′) = (1⊗ E⊗ 1)(c⊗ 1⊗ c′ ⊗ bb′).

If we replace c′ by elements of the form SB(b′′)c′′, the right hand side will be

(1⊗ E⊗ 1)(c⊗ b′′ ⊗ c′′ ⊗ bb′).

Next, we use that B is idempotent and that the map SB is non-degenerate. Then, we can
conclude from this that ∆P(P)(1P ⊗ P) = EP(P⊗ P) with EP = 1⊗ E⊗ 1. Similarly, we find
(P⊗ 1P)∆P(P) = (P⊗ P)EP and it follows that EP is the canonical idempotent for (P, ∆P).

It is straightforward to verify that the legs of EP commute. Moreover,

(ιP ⊗ ∆P)(EP) = 1⊗ E⊗ E⊗ 1

and this is clearly (1P ⊗ EP)(EP ⊗ 1P).
(v) We now define SP(c⊗ b) = SB(b)⊗ SC(c) for all b and c and we show that all the conditions of

Theorem 2.9 of [6] are fulfilled. This will complete the proof.

We consider the candidate for the generalized inverse R1 of the canonical map T1 using this
expression for SP. We get, using formally E(1) ⊗ E(2) for E, that

R1(c⊗ b⊗ c′ ⊗ b′) = ((ιP ⊗ SP)(c⊗ E⊗ b))(1⊗ 1⊗ c′ ⊗ b′)

= c⊗ E(1) ⊗ SB(b)c′ ⊗ SC(E(2))b
′.

That this maps P⊗ P to itself is a consequence of the property, obtained in Proposition 1.9 of [4],
saying that E(1) ⊗ SC(E(2))b′ is in B⊗ B.
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Using this candidate for the antipode, we can calculate the candidates for the source and target
maps εP

s and εP
t . We find

εP
t (c⊗ b) = (c⊗ E(1))(SB(b)⊗ SC(E(2))) = cSB(b)⊗ 1

εP
s (c⊗ b) = (SB(E(1))⊗ SC(c))(E(2) ⊗ b) = 1⊗ SC(c)b

for all b ∈ B and c ∈ C. We have again used the Sweedler type notation for E and that
E(1)SC(E(2)) = 1 and SB(E(1))E(2) = 1 (see Proposition 1.6 in [4]).

Finally, we have to show that

∑
(a)

εP
t (a(1))a(2) = a and ∑

(a)
εP

s (a(1))SP(a(2)) = SP(a)

for all a = c⊗ b. We find

εP
t (c⊗ E(1))(E(2) ⊗ b) = cSB(E(1))E(2) ⊗ b = c⊗ b

proving the first equation. Furthermore,

εP
s (c⊗ E(1))SP(E(2) ⊗ b) = (1⊗ SC(c)E(1))(SB(b)⊗ SC(E2)) = SB(b)⊗ SC(c).

Finally, we have to show that T1R1(p⊗ p′) = EP(p⊗ p′ for all p, p′ ∈ P where T1 is the canonical
map p ⊗ p′ 7→ ∆P(p)(1 ⊗ p′) and where R1 it its generalized inverse constructed with the
antipode SP as above. With p = c⊗ b and p′ = c′ ⊗ b′ we find

T1R1(p⊗ p′) = (c⊗ E(1) ⊗ E(2)SB(b)⊗ 1)(1⊗ 1⊗ c′ ⊗ b′)

= (c⊗ E(1)b⊗ E(2) ⊗ 1)(1⊗ 1⊗ c′ ⊗ b′)

= (1⊗ E⊗ 1)(c⊗ b⊗ c′ ⊗ b′)

and this is what we need because EP = (1⊗ E⊗ 1). In a similar way, we find T2R2(p⊗ p′) =
(p⊗ p′)EP where T2 is the other canonical map and R2 its generalized inverse construct with the
antipode SP

This proves that the candidate for the antipode satisfies all the requirements needed for Theorem
2.9 of [6] and it completes the proof.

We now consider the regular case. The result is as expected.

Theorem 5. If E is a regular separability idempotent in M(B⊗ C), then the weak multiplier Hopf algebra
(P, ∆P), constructed in the previous proposition, is a regular weak multiplier Hopf algebra.

Proof. There are different ways to prove this. We use the original definitions of regularity in both cases.
Recall that E is called regular if ζE is a separability idempotent in M(C⊗ B) where as before ζ is

the flip map. Assume that this is the case. We then have to show that the pair (P, ∆cop) is also a weak
multiplier Hopf algebra. Here, the algebra P is C⊗ B as before while

∆cop(c⊗ b) = E(2) ⊗ b⊗ c⊗ E(1)

for b ∈ B and c ∈ C. Define the isomorphism γ : B⊗ C → P by γ(b⊗ c) = c⊗ b. Then, the coproduct
∆cop yields a coproduct ∆′ on B⊗ C given by

∆′(b⊗ c) = b⊗ E(2) ⊗ E(1) ⊗ c
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for b ∈ B and c ∈ C. Because ζE is a separability idempotent in M(C⊗ B), it follows from the previous
proposition that (B ⊗ C, ∆′) is a weak multiplier Hopf algebra. Then, this is also true for the pair
(P, ∆cop). This completes the proof.

Observe the following. Given b ∈ B and c ∈ C, we have

(SC(c)⊗ 1)E(b⊗ 1) = (1⊗ c)E(1⊗ SB(b)) (26)

and if we apply ϕB ⊗ ϕC we find that ϕ(SC(c)b) = ϕC(cSB(b)). This illustrates the equality of the two
forms of the counit in the formulation of Theorem 4. This argument however only seems to work for
a (semi-)regular separability idempotent because only in that case we know that the elements in the
Equation (26) belong to B⊗ C.

In Theorem 4, we associate a weak multiplier Hopf algebra to any separability idempotent. On the
other hand, we know that conversely, the canonical idempotent E of a weak multiplier Hopf algebra is
a separability idempotent in M(B⊗ C) where now B and C are the source and target algebras. This is
proven in Section 3 (Theorem 3). What happens when we then apply the construction of Theorem 4
again is explained in the following proposition.

Proposition 12. Let (A, ∆) be a weak multiplier Hopf algebra. Consider the canonical idempotent E as sitting
in M(B⊗ C) where (B, C) is the symmetric pair of source and target algebras. Associate a new weak multiplier
Hopf algebra (P, ∆P) as in Theorem 4. Define γ : P→ M(A) by γ(x⊗ y) = xy for x ∈ C and y ∈ B. Then,
γ is a non-degenerate homomorphism. It satisfies ∆ ◦ γ = (γ⊗ γ) ◦ ∆P and S ◦ γ = γ ◦ SP.

Proof. Because the source and target algebras B and C are commuting subalgebras of M(A), it follows
that γ is an algebra homomorphism from P to M(A). The image is CB. Because of Proposition 6,
we have CBA = A = ACB and so γ is non-degenerate. It extends to a unital homomorphism on the
multiplier algebra of P.

For all y ∈ B and x ∈ C we have

∆(γ(x⊗ y)) = ∆(xy) = (x⊗ y)E,

while on the other hand

(γ⊗ γ)∆P(x⊗ y) = (γ⊗ γ)(x⊗ E⊗ y) = (x⊗ 1)E(1⊗ y).

These expressions are the same as the element y commutes with the second leg of E.
For the antipode, we find

γ(SP(x⊗ y)) = γ(SB(y)⊗ SC(x)) = S(y)S(x) = S(xy) = S(γ(x⊗ y))

where we have again used that the element x of C and the element y of B commute.

Note that, in general, the map γ is not injective. Take, e.g., the weak multiplier Hopf algebra
constructed from a set X. The algebra A is the algebra K(X) of complex functions with finite support
and ∆( f )(p, q) = 0 when p and q are different while ∆( f )(p, p) = f (p). This is a weak multiplier Hopf
algebra. The canonical idempotent is the function X⊗ X that is 1 on the diagonal and 0 everywhere
else. Clearly, the left and right legs are all of K(X). In particular, B = C. The map γ is the multiplication
map from K(X× X) to K(X) and this is not injective.

If the algebra A is unital, we can also show that γ ◦ εP
t = εt ◦ γ and γ ◦ εP

s = εs ◦ γ. Indeed, for all
a in A and x, y in C and B, respectively, we have by Proposition 4

εt(xya) = xεt(a)S(y).
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If a = 1 we get εt(a) = 1 and so εt(xy) = xS(y). This means γ(εP
t (x⊗ y)) = xSB(y) = εt(γ(x⊗ y)),

and similarly for εs. If the algebra is not unital, we cannot argue this way because the counital maps εs

and εt have no obvious extensions from A to the multiplier algebra M(A).
In [13], we treated integrals and duality. We consider this example again and show that integrals

on (P, ∆P) automatically exist and therefore that we can obtain a dual version of this example.

4.3. Discrete Quantum Groups

In what follows, we use the term discrete quantum group for a regular multiplier Hopf algebra
(A, ∆) of discrete type with a (left) cointegral h satisfying the extra condition that ε(h) = 1 (where ε

is the counit). This is the case when h is an idempotent. Then, S(h) = h (where S is the antipode).
Symmetrically, h is also a right cointegral.

It is shown in Proposition 3.11 of [4] that ∆(h) is a separability idempotent in M(A⊗ A). Thus,
here, B and C coincide with the original algebra A. The antipodal maps SB and SC are both nothing
else but the antipode S on A. The distinguished linear functionals ϕB and ϕC are the right and left
integrals ψ and ϕ on (A, ∆), normalized so that ϕ(h) = ψ(h) = 1.

Then, as a consequence of Theorem 4, we get the following.

Proposition 13. Let (A, ∆) be a discrete quantum group and h the normalized cointegral. The algebra P defined
as A⊗ A is a regular weak multiplier Hopf algebra for the coproduct ∆P defined by ∆P(a⊗ b) = a⊗ ∆(h)⊗ b
with a, b ∈ A. The counit εP is given by the linear map a ⊗ b 7→ ϕ(aS(b)). We also have εP(a ⊗ b) =

ψ(S(a)b). The canonical multiplier EP is 1⊗ ∆(h)⊗ 1. The antipode SP is given by SP(a⊗ b) = S(b)⊗ S(a)
when a, b ∈ A. The source and target algebras are

εP
s (P) = 1⊗ A and εP

t (P) = A⊗ 1

and the source and target maps are given by

εP
s (a⊗ b) = 1⊗ S(a)b and εP

t (a⊗ b) = aS(b)⊗ 1

for all a, b ∈ A. Here, 1 is the identity in M(A).

Again, we have integrals and we can construct the dual. This is done in [13].

4.4. A Quantization of the Groupoid Associated with a Group Action

Let us start by considering the weak multiplier Hopf algebra associated with a groupoid in
Example 1 (i). We can apply the result of Theorem 5 made in the new version.

Denote the space of units by X. The source and target algebras B and C are identified with the
algebra K(X) of complex functions with finite support on X. Then, the canonical idempotent is a
separability idempotent in C(X× X), the algebra of all complex functions on X× X. It is the function
with value 1 on the diagonal and 0 on other elements.

We get for P the algebra K(X × X) of all complex functions with finite support on X × X.
The element EP is the function of four variables x, u, v, y in X that is 1 if u = v and 0 if u 6= v.
The antipodal maps SB and SC on B and C are given by the identity map on the algebra K(X).
Therefore, the antipode SP on K(X ⊗ X) is given by the flip map. In fact, the weak multiplier Hopf
algebra we get in this way, is nothing else but the algebra of functions on the trivial groupoid X× X
where the product of two elements (x, u) and (v, y) is only defined when u = v and then is (x, y).

It is also interesting to see what happens when we apply Proposition 12 in this case. We leave it
as an exercise to the reader.

We see that this now has very little to do with the original groupoid. Of course, we end up with a
special case of Theorem 4 made in the new version. For this, we just take any set X and look at the
above construction.
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Let us now consider the groupoid that results from a group action on a set. Thus, let X be any set
and assume that a group H acts on X, say from the left. Denote the action as h . x for x ∈ X and h ∈ H.
Then, there is a groupoid G associated as follows. One has

G = {(y, h, x) | x, y ∈ X and h ∈ H so that y = h . x}.

The product of two elements (z, k, y′) and (y, h, x) is defined if y = y′ and then

(z, k, y)(y, h, x) = (z, kh, x).

The set of units is X and the source and target maps are given by

s(y, h, x) = x and t(y, h, x) = y.

The set of units is considered as a subset of G by the embedding x → (x, e, x) where e is the
identity in H.

We can construct the weak multiplier Hopf algebras, associated with this groupoid, as in
Example 1. In the case where the group is trivial, we then get the example we just mentioned
above. If, on the other hand, the space X is trivial (i.e., it consists only of one point), then we get the
multiplier Hopf algebras associated with the group H.

There is however another way to associate a weak multiplier Hopf algebra. It is a special case of
the construction that we consider next.

The starting point is as in Theorem 4. We have a separability idempotent E in the multiplier algebra
M(B⊗ C) of the tensor product of two non-degenerate idempotent algebras B and C. It need not be
regular. Furthermore, we have a multiplier Hopf algebra (Q, ∆). Here, we assume that it is regular.
We explain why we need this condition for the multiplier Hopf algebra.

We assume that Q acts from the left on C and from the right on B. The actions are denoted by q . c
and b / q when b ∈ B, c ∈ C and q ∈ Q. It is assumed that B is a right Q-module algebra and that C is
a left Q-module algebra. In particular, the two actions are unital. Moreover, these data are required
to satisfy

(E(1) / q)⊗ E(2) = E(1) ⊗ (q . E(2)) (27)

where we use the Sweedler type notation E = E(1) ⊗ E(2) and where the equation is given a meaning
by multiplying with an element b of B in the first factor from the left and with an element c of C in the
second factor from the right.

The underlying algebra P that we use in this example is a two-sided smash product of Q with B
and C. The construction has been studied for Hopf algebras (see, e.g., [37]) but not yet for multiplier
Hopf algebras. However, the results and the arguments are very similar to the theory of smash
products as developed in [38]. Therefore, in the following proposition, we do not give all the details.
We concentrate on the correct statements and briefly indicate how things are proven. Note that the
construction only works fine in the case of a regular multiplier Hopf algebra. This is the reason we
need regularity for (Q, ∆).

Proposition 14. As above, assume that Q is a regular multiplier Hopf algebra, that B is a right Q-module
algebra and that C is a left Q-module algebra. Then, the tensor product C⊗Q⊗ B is an associative algebra P
with the product defined as

(c⊗ q⊗ b)(c′ ⊗ q′ ⊗ b′) = ∑
(q)(q′)

c(q(1) . c′)⊗ q(2)q
′
(1) ⊗ (b / q′(2))b

′ (28)

where b, b′ ∈ B, c, c′ ∈ C and q, q′ ∈ Q.
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Note that the actions are assumed to be unital and therefore they provide the necessary coverings
in (28).

The proof of this result is straightforward. In addition, algebra P is idempotent if this is the case
for B and C.

The two-sided smash product can be considered in two ways as a twisted product in the sense
of [39]. First, one considers the twisting of the algebras C and QB (where QB is the ordinary smash
product of Q and B). In this case, the twist map is given by the formula

qb⊗ c 7→∑
(q)

(q(1) . c)⊗ q(2)b

where b ∈ B, c ∈ C and q ∈ Q. For the second possibility, one takes the twisting of the algebras CQ
and B (where CQ is the smash product of C and Q). Now, the twist map is given by the formula

b⊗ cq 7→∑
(q)

cq(1) ⊗ (b / q(2))

where again b ∈ B, c ∈ C and q ∈ Q. In the two cases, one now has to verify that the twist map is
compatible with the product in the two algebras (ensuring that the result is an associative algebra).
One easily verifies that the two constructions give the same algebra and that the result is also the same
as in the proposition above.

Just as in the case of smash products, one has obvious embeddings of B, C and Q in the multiplier
algebra of P, and, if we identify these three algebras with their images in M(P), we see that P is the
linear span of elements cqb with b ∈ B, c ∈ C and q ∈ Q and that we have the commutation rules:

(i) B and C commute;
(ii) bq = ∑(q) q(1)(b / q(2)) for all b ∈ b and q ∈ Q; and

(iii) qc = ∑(q)(q(1) . c)q(2) for all c ∈ C and q ∈ Q.

Therefore, we can view P as the algebra generated by B, C and Q subject to these commutation rules.
By definition, we have that the map c⊗ q⊗ b 7→ cqb is a linear bijection from C ⊗ Q⊗ B to P.

However, one also has various other maps that are also bijective. One can consider, e.g., the maps

b⊗ q⊗ c 7→ bqc

b⊗ c⊗ q 7→ bcq

q⊗ b⊗ c 7→ qbc

where always b ∈ B, c ∈ C and q ∈ Q. This property is used in the proof of Proposition 15 below.
In addition, this construction reduces to well-known constructions in the following three special

situations. If the multiplier Hopf algebra Q is trivial, then we obtain for P simply the tensor product
algebra C ⊗ B. If the algebra B is trivial, we obtain the smash product C#Q, constructed with the
right action of Q on C while if C is trivial, we get the smash product Q#B, for the left action of B on C.
Recall that, in the original paper [38], we developed the theory for left actions. The reader can also
have a look at Section 2 of the expanded version of [40] found on arXiv where the two types of smash
products are reviewed.

Then, we are ready for the following example.

Proposition 15. Assume that B and C are non-degenerate idempotent algebras and that E is a separability
idempotent in M(B⊗ C). Let Q be a regular multiplier Hopf algebra and assume that B is a right Q-module
algebra and C a left Q-module algebra. Moreover, assume the compatibility relation (27) as above.
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Consider the two-sided smash product P as given in the previous proposition. Then, ∆(q) and E
commute in the multiplier algebra of P⊗ P for all q ∈ Q and the two-sided smash product P can be
equipped with a coproduct ∆P, defined by

∆P(cqb) = (c⊗ 1)∆(q)E(1⊗ b) (29)

whenever b ∈ B, c ∈ C and q ∈ Q.
It makes of the pair (P, ∆P) a weak multiplier Hopf algebra. The canonical idempotent EP is E,

considered as sitting in M(P⊗ P). The counit εP is given by the linear map

qcb 7→ ε(q)ϕC(cSB(b)))

where ϕC is the distinguished linear functional on C satisfying (ι⊗ ϕC)E = 1 and where SB is used
for the antipodal from B to M(C) associated with the separability idempotent E. The counit εP is also
given by

cbq 7→ ϕB(SB(c)b)ε(q)

where now ϕB is the distinguished linear functional on B and SB the antipodal map from C to M(B).
Here, ε is the counit on Q. The antipode SP is given by SP(cqb) = SB(b)S(q)SC(c) when b ∈ B, c ∈ C
and q ∈ Q. Here, S is the antipode of the multiplier Hopf algebra Q.

The source and target algebras for P are again the algebras B and C, as sitting in M(P) and the
source and target maps are given by

εP
s (cqb) = (SC(c) / q)b and εP

t (cqb) = c(q . SB(b))

for all b ∈ B, c ∈ C and q ∈ Q. Observe that we use the extensions of the actions to the
multiplier algebras.

Proof. First, we remark that, in the proof below, the coproduct, the counit and the antipode for the
regular multiplier Hopf algebra Q are denoted as ∆, ε and S, without the subscript Q. For the coproduct,
the counit and the antipode for the new weak multiplier Hopf algebra P, we use subscripts and write
∆P, εP and SP. We use superscripts for the counital maps and write εP

s and εP
t . For the antipodal maps

associated with E, we write SB and SC. We also use ϕB and ϕC for the distinguished linear functionals
on B and C, respectively.

(i) First, it is not hard to show that E and ∆(q) for all q ∈ Q are elements of M(P⊗ P). This is a
consequence of the fact that the multiplier algebras of B, C and Q all sit in M(P) and similarly for
tensor products.

(ii) We now show that E and ∆(q) commute in M(P⊗ P). Using the Sweedler notation, both for E as
before and for ∆(q), we get

E∆(q) = ∑
(q)

E(1)q(1) ⊗ E(2)q(2)

= ∑
(q)

q(1)(E(1) / q(2))⊗ E(2)q(3)

= ∑
(q)

q(1)E(1) ⊗ (q(2) . E(2))q(3)

= ∑
(q)

q(1)E(1) ⊗ q(2)E(2) = ∆(q)E.

In the above calculation, we first have used the commutation rule between B and Q (as the first
leg of E is in B), then the relation of the actions of Q on E as in Formula (27) and finally the
commutation rule between C and Q (as the second leg of E is in C). Of course, to make things
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precise, we need to cover at the right places with the right elements. This can be done if we
multiply from the left in the first factor with bp and from the right in the second factor with rc,
where b ∈ B, c ∈ C and p, r ∈ Q.

Then, we can define ∆P on P by Formula (29) in the formulation of the proposition. Using the
commutation rules, namely that E is an idempotent, it commutes with elements ∆(q) and ∆ is a
coproduct on Q, it can be shown that ∆P is a coproduct on P. It is full.

It is also clear that E, as sitting in M(P⊗ P), has to be the canonical idempotent for ∆P.
(iii) We now prove that there is a counit and that it is given by the formulas in the formulation of the

proposition.

First, define εP on P by εP(qcb) = ε(q)ϕC(cSB(b)) for b, c, q in B, C, Q, respectively. Observe that
we use a different order of the elements b, c, q in this definition. Then, we get for all b, c, q that

(ιP ⊗ εP)∆P(cqb) = (ιP ⊗ εP)((c⊗ 1)∆(q)E(1⊗ b))

= ∑
(q)

cq(1)E(1)εP(q(2)E(2)b)

= ∑
(q)

cq(1)E(1)ε(q(2))ϕC(E(2)SB(b))

= cqE(1)bϕC(E(2)) = cqb.

If, on the other hand, we define ε′P on P by the formula ε′P(cbq) = ϕB(SC(c)b))ε(q), a similar
calculation will give then that

(ε′P ⊗ ιP)∆P(cqb) = cqb

for all b, c, q.

It then follows from the general theory that ε′P = εP and that this is the counit.

In the regular case, we consider after the proof of this proposition, we can give a direct argument
for the equality of these two expressions for the counit, as done in the simpler case in Theorem 4
(see the remark after the proof of Theorem 5).

This takes care of the counit.
(iv) Let us now look at the antipode and the source and target maps. It is expected that the antipode SP

must coincide with SB, SC, SQ on B, C, Q, respectively.

It can be verified that SP defined in this way is an anti-homomorphism from P to M(P). For this,
one has to argue that the definition is compatible with the commutation rules between the
component B, C, Q. We need to use this further in our calculations.

To use Theorem 2.9 of [6] again to prove that (P, ∆P) is a weak multiplier Hopf algebra, we first
must show that the candidates for the maps R1 and R2, constructed with the candidate for the
antipode map, P⊗ P to itself. We do this for R1.

We have

R1(cqb⊗ c′q′b′) = ∑
(q)

cE(1)q(1) ⊗ SP(E(2)q(2)b)c
′q′b′

= ∑
(q)

cE(1)q(1) ⊗ SB(b)S(q(2))SC(E(2))c
′q′b′

for c, c′ ∈ C, b, b′ ∈ B and q, q′ ∈ Q. Then, we first use that E(1) ⊗ SC(E(2))b′′ is in B⊗ B for all
b′′ ∈ B as we proved in Proposition 1.9 of [4]. We use that also ∑(q) q(1) ⊗ S(q(2))q′ is in Q⊗Q
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for all q, q′ ∈ Q. All the time, we have to shuffle elements of B, C and Q but this does not present
problems. We finally get that R1(cqb⊗ c′q′b′) ∈ P⊗ P. The argument for R2 is similar.

To prove the next conditions, we first calculate the candidates for the counital maps εP
s and εP

S.
For all b, c, q we find

εP
s (cqb) = ∑

(q)
SP(cE(1)q(1))E(2)q(2)b

= ∑
(q)

SP(E(1)cq(1))E(2)q(2)b

= ∑
(q)

S(q(1))SC(c)SB(E(1))E(2)q(2)b

= ∑
(q)

S(q(1))SC(c)q(2)b

= ∑
(q)

S(q(1))q(2)(SC(c) / q(3))b

= (SC(c) / q)b.

In a similar way, we find
εP

t (cqb) = c(q . SB(b))

for all b, c, q in B, C, Q, respectively. We use here the extension of an action to the multiplier
algebra. If, e.g., q ∈ Q and m ∈ M(C), we can define q / m by the requirement q / (mc) =

∑(q)(q(1) / m)q(2) / c (see Proposition 4.7 in [38]).

Next, we verify that T1R1 is given by left multiplication by E. For this, it is enough to verify that
E(cqb⊗ 1) = (ι⊗ εP

t )∆P(cqb) for all b, c, q. For the left hand side, we have

E(cqb⊗ 1) = cE(1)qb⊗ E(2)

= ∑
(q)

cq(1)(E(1) / q(2))b⊗ E(2)

= ∑
(q)

cq(1)E(1)b⊗ q(2) . E(2)

= ∑
(q)

cq(1)E(1) ⊗ q(2) . (E(2)SB(b))

= ∑
(q)

cq(1)E(1) ⊗ (q(2) . E(2))(q(3) . SB(b))

= ∑
(q)

cq(1)(E(1) / q(2))⊗ E(2)(q(3) . SB(b))

= ∑
(q)

cE(1)q(1) ⊗ E(2)(q(2) . SB(b))

= ∑
(q)

E(1)cq(1) ⊗ E(2)(q(2) . SB(b)).

We find precisely (ι ⊗ εP
t )∆P(cqb). In a similar way, we find that T2R2 is given by right

multiplication with E.
(v) Finally, the only thing left is to show that

∑
(p)

p(1)SP(p(2))p(3) = p and ∑
(p)

SP(p(1))p(2)SP(p(3)) = SP(p)
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for all p ∈ P. We do this, e.g., for the first one. We use that

∑
(p)

p(1)SP(p(2))p(3) = ∑
(p)

εt(p(1))SP(p(2)).

Now, if p = cqb, we get using the Sweedler notation for E that

∑
(p)

εP
t (p(1))SP(p(2)) = ∑

(q)
εP

t (cq(1)E(1))q(2)E(2)b

= ∑
(q)

cq(1) . (SB(E(1)))q(2)E(2)b

= ∑
(q)

cqSB(E(1))E(2)b = cqb.

The other formula is proven in a similar way. This completes the proof.

Of course, the result in Theorem 4 is a special case of the above. Just remark that we have to
reformulate the formulas in Theorem 5 by considering the algebra P, defined as C⊗ B as the algebra
generated by B and C, subject to the commutation of elements of B and elements of C as in (i) above.
Elements in P are then linear combinations of products cb with b ∈ B and c in C. The coproduct ∆P is
now given as ∆P(cb) = (c⊗ 1)E(1⊗ b) in M(P⊗ P). In addition, Ps and Pt are identified with M(B)
and M(C), as sitting in M(P), whereas the source and target maps are

εP
s (cb) = SC(c)b and εP

t (cb) = cSB(b)

when b ∈ B and c ∈ C.
Consider now the regular case. The following is again expected.

Proposition 16. If E is a regular separability idempotent, then (P, ∆P) is a regular weak multiplier Hopf algebra.

Proof. We could give a direct argument as for the proof of Theorem 5. However, here we choose
another, simpler way.

If E is regular, we know that the antipodal maps SB and SC are anti-isomorphisms from B to C
and from C to B, respectively. Because Q is also assumed to be a regular multiplier Hopf algebra, its
antipode S is bijective from Q to itself. This all implies that SP will map P into itself and that it will be
bijective. This is equivalent with saying that (P, ∆P) is a regular weak multiplier Hopf algebra.

We finish by giving another argument for the equality of the two expressions for the counit in the
regular case.

For all b, c, q, we have, using again the Sweedler type notation for E,

E(1)b⊗ c(q . E(2)) = (E(1) / q)b⊗ cE(2).

This implies that

E(1) ⊗ c(q . (E(2)SB(b))) = ((SC(c)E(1)) / q)b⊗ E(2).

If we apply ϕB ⊗ ϕC, we find

ϕC(c(q . SB(b))) = ϕB((SC(c) / q)b). (30)

for all b, c, q. This is one equation we will use.
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If again we start with Equation (27), apply ϕB on the first factor and use fullness of E, we find
that ϕB(b / q) = ε(q)ϕB(b). Similarly, if we apply ϕC on the second leg, we get ϕC(q . c) = ε(q)ϕC(c).
In other words, the distinguished linear functionals ϕB and ϕC are invariant under the actions of Q.

Define εP and ε′P as in the proof of Proposition 15. We use the above results to give a proof of the
equality of these counits.

We find, on the one hand,

εP(cqb) = ∑
(q)

εP(q(2)(S
−1(q(1)) . c)b)

= ∑
(q)

ε(q(2))ϕC((S−1(q(1)) . c)SB(b))

= ϕC((S−1(q) . c)SB(b))

while, on the other hand,

ε′P(cqb) = ∑
(q)

ε′P(c(b / S−1(q(2)))q(1))

= ∑
(q)

ε(q(1))ϕB(SC(c)(b / S−1(q(2))))

= ϕB(SC(c)(b / S−1(q))).

Thus, we need to show that

ϕC((S−1(q) . c)SB(b)) = ϕB(SC(c)(b / S−1(q))) (31)

for all b, c, q.
For the left hand side of (3.6), we find

ϕC((S−1(q) . c)SB(b)) = ∑
(q)

ϕC(q(2) . ((S
−1(q(1)) . c)SB(b))

= ϕC(c(q . SB(b)).

We use that ϕC is invariant under the action of Q. For the right hand side of (31), we get

ϕB(SC(c)(b / S−1(q))) = ∑
(q)

ϕB((SC(c)(b / S−1(q(2))) / q(1)

= ϕB(SC(c) / q)b).

Here, we use that ϕB is invariant under the action of Q.
Then, Equation (31) follows from Equation (30)
Again, the argument does not seem to work if E is not regular. Fortunately, we do not need it as

we obtain the equality in another way.
We do not include examples of weak multiplier Hopf ∗-algebras. In fact, the basic examples

(Example 1) are weak multiplier Hopf ∗-algebras for the obvious involutive structures. If in the
example of Theorem 4 the algebras B and C are ∗-algebras and if E is self-adjoint, then the associated
pair (P, ∆P) will be a weak multiplier Hopf ∗-algebra for the involutive structure on B⊗ C obtained
from the ones on the factors B and C. For a discrete quantum group (as in Proposition 13), we obtain a
weak multiplier Hopf ∗-algebra if the original discrete quantum group is a multiplier Hopf ∗-algebra
of discrete type. Finally, if in Proposition 15 we start with a self-adjoint separability idempotent and
and with appropriate actions of a multiplier Hopf ∗-algebra, again we end up with a weak multiplier
Hopf ∗-algebra.
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All these statements are more or less straightforward and we leave the verification as an exercise
to the reader.

5. Conclusions and Further Research

In this paper, we study the source and target maps, as well as the source and target algebras,
associated with a weak multiplier Hopf algebra. We obtain results in the general case in Section 3.
We pay special attention to the regular case. It is still not clear if the nicer results, obtained in the
regular case, can be pushed forward to the non-regular case so that also there better results can be
shown. We expect however that this will not be easy, neither to prove these results if they are true nor
to find counter examples if they are not.

In fact, non-regular examples are not so easy to construct. Of course, there are examples
of Hopf algebras with a non-invertible antipode. However, at this moment, we do not know of
examples of multiplier Hopf algebras with a non-regular coproduct, which is with a coproduct ∆ on a
non-degenerate algebra A so that elements of the form ∆(a)(b⊗ 1) and (1⊗ c)∆(a) are not always in
A⊗ A for a, b, c ∈ A. More research here is needed.

Section 4 is devoted to examples. All of the examples we give are generalizations of known
examples of finite-dimensional weak Hopf algebras. The duals of some of these examples, included
in [13], are probably not yet considered, even in the case of finite-dimensional weak Hopf algebras.
Nevertheless, it would still be desirable to find more examples and, in particular, examples that are not
simply generalizations of known examples of weak Hopf algebras. We refer also to the modification
procedure as explained in [41] to construct new examples of regular weak multiplier Hopf algebras.

The separability elements for non-unital algebras play an important role in Section 4. It is
certainly worthwhile to carry out a more thorough study of these separable non-unital algebras and
the associated separability idempotents (and to relate our approach with other approaches in the
literature). This is partly done already in [3]. A new version of this paper contains more information [4].
However, there is still the open question of the existence of non-regular separability idempotents as
posed in Section 5 of [4].

Some of the examples suggest certain generalizations of the theory. Consider, e.g., a multiplier
Hopf algebra (A, ∆) of discrete type. Denote by h a left cointegral. Either it can be normalized so that
ε(h) = 1 and hence h2 = h (where ε is the counit), or we have ε(h) = 0 and then h2 = 0. The first case
is considered in Proposition 13. The other case does not fit into this theory because h and hence ∆(h) is
not an idempotent. However, it has most of the other properties of a separability idempotent. The two
antipodal maps exist. Indeed, on one side, we simply have

(1⊗ a)∆(h) = (S(a)⊗ 1)∆(h).

The other side is different because h is not necessarily a right cointegral. However, by the
uniqueness of cointegrals, there is a homomorphism γ : A→ C defined by ha = γ(a)h for all a. Then,

∆(h)(a⊗ 1) = ∆(h)(1⊗ S′(a))

where S′(a) = ∑(a) γ(a(1))S(a(2)). This is discussed in Section 5 of [4].
Finally, as mentioned in the Introduction, the material studied in this paper relates intimately

with other research. Firstly, there is the study of weak multiplier bialgebras as introduced in [14]).
We also have [18] where a Larson–Sweedler type theorem is proven. Roughly, it says that a weak
multiplier bialgebra with enough integrals is a weak multiplier Hopf algebra. Here, we have properties
of the source and target maps and source and target algebras, proven in the context of weak multiplier
bialgebras and separability idempotents.

The other obvious link with the literature is the theory of multiplier Hopf algebroids as developed
in [16]. In particular, there is the paper by [17], where the relation between weak multiplier Hopf
algebras and multiplier Hopf algebroids is studied. It seems interesting to observe that there are
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various possible reasons a multiplier Hopf algebroid does not have an underlying weak multiplier
Hopf algebra.

We would like to emphasize again the importance of this paper, with the results on the source and
target algebras and source and target maps for the study of integrals on weak multiplier Hopf algebras
and the construction of the dual in the case enough such integrals exist. We refer to the work by [13].
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