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Abstract: A non-Anderson weak localization of an electron beam scattered from disordered matter
is considered with respect to the principle of electron indistinguishability. A weak localization of
electrons of a new type is essentially associated with inelastic processing. The origin of inelasticity
is not essential. We take into account the identity principle for electron beam and electrons of
the atom of the scatterer with an open shell. In spite of isotropic scattering by each individual
scatterer, the electron exchange contribution has a hidden parameters effect on the resulting angular
dependence of the scattering cross-section. In this case, the electrons of the open shell of an atomic
scatterer can be in the s-state, that is, the atomic shell remains spherically symmetric. The methods of
an invariant time-dependent exchange perturbation theory and a Green functions with exchange
were applied. An additional angular dependence of the scattering cross-section appears during the
coherent scattering process. It is shown exactly for the helium scatterer that the role of exchange
effects in the case of a singlet is negligible, while for the triplet state, it is decisive, especially for those
values of the energy of incident electrons when de Broglie’s waves are commensurate with the atomic.

Keywords: identity principle; exchange contribution; new type weak localization; inelastic
coherent scattering

1. Introduction

The phenomenon of weak localization of conduction electrons, which manifests itself in the
enhancement of backscattering of classical waves in disordered media, has attracted scientific interest
in recent decades [1–9]. Weak localization manifests itself mainly in an increase in the probability of
elastic backscattering in a narrow range of solid angles, of the order of λ/l, where λ is the length of an
electron or light wave, and l is the mean free path of electrons and photons. Coherent phenomena
associated with the scattering of external particles (such as electrons or neutrons) with fixed excitation
energies of a disordered medium were studied in [10–13], where weak localization was observed for
electron beams with energies from 10 to 1000 electron volts. Neutron beams were also the subject of
this work [14]. According to these works, coherent phenomena can be observed in the enhancement
of particle backscattering during elastic interaction with a disordered medium, despite the relatively
high energies of the particle beams. The influence of inelastic processes on the conductivity under
conditions of weak localization has been studied in many works [15–18]. In these cases, two basic
assumptions are usually made. First, multiple scattering is represented as forward multiple scattering
and single large-angle scattering [19]. Second, the scattering by each individual diffuser is considered
to be isotropic. It was shown that the role of inelastic processes at weak localization is secondary and
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negative, since inelastic collisions violate phase relations, thereby reducing the probability of coherent
processes. However, there are cases when inelastic processes do not lead to the loss of phase memory
by the system. It was shown for the first time in [20]. In this case, in addition to the usual weak
localization of the Anderson type, there is a weak localization of electrons of a new type or a new weak
localization, which is essentially associated with inelastic processing. Moreover, the origin of inelasticity
is not essential, for example, it can be a plasmon, photon, phonon, or exciton. Moreover, quantum
coherence can exist even if the electron is exposed to an incoherent electromagnetic field. In these
cases, the situation is considered when, in the case of an inelastic interaction, the particle loses a fixed
energy and enters the inelastic channel, having an energy different from the initial value in the incident
beam. In addition to inelastic collision, the particle can still participate in at least one elastic process,
after which it leaves the medium and can be registered. This effect demonstrates itself in the scattering
processes of high-energy electron beams, where electrons velocities are relativistic. The investigation
of the process of the resonant spontaneous bremsstrahlung of ultrarelativistic electrons in the fields
of a nucleus and a weak quasimonochromatic electromagnetic wave was done in [21,22]. There is a
coherent scattering process of photons with inelastic interaction with ultrarelativistics electrons. In this
case, a characteristic angular dependence with a frequency shift appears for photons. The process has
been studied in a special kinematic region, where stimulated processes with correlated emission and
absorption of photons of the first and second waves predominate (the effect of parametric interference).
It is interesting that the described effect of a new type of weak localization for photons does not depend
on the type of inelasticity, the creation of an electron-positron, or something else. The amount of energy
loss is important. In this interference kinematics, correspondence is established between the emission
angle and the energy of the final electron.

There are two ways to implement this process, so it can start or end with an inelastic collision.
The interference of electron waves associated with these additional processes turns out to be
constructive [23]. This manifests itself in an increase in the scattering of electrons at an angle
other than π, and this difference can be significant. There are certain differences in the localization
of electrons for different mechanisms of inelastic scattering, but it turns out that the general features
of this phenomenon prevail. The most striking difference between localization of a new type in
the case of inelastic scattering from ordinary weak localization is the difference in the characteristic
scattering angles. The scattering probability here is maximal in the range of scattering angles close
to π/2, and the effect manifests itself in a much wider range of angles than in the case of traditional
localization, in which the beam enhancement is observed in forward or backward scattering at an angle
of π. As already mentioned, the main difference between conventional and new weak localization
is the typical electron scattering angle. The angular distribution of particles and radiation in the
case of ordinary weak localization in a disordered medium is usually described using the maximum
cross (or so-called “fan”) diagrams, which are used to calculate the electron radiation cross-section.
Regular weak localization, in particular, can be described by a simple graphical method [24,25],
which gives an idea of this phenomenon and explains why the angle pi is specific for regular weak
localization. This method takes into account that an electron with momentum k is scattered through
two complementary series of intermediate scattering states k→ k1 → k2 → . . .→ kn−1 → kn = −k and
k→ k′1 = −kn−1 → k′2 = −kn−2 → . . .→ k′n−1 = −k1 → kn = −k to the state −k. Momentum changes:
q1, q2, . . . qn−1, qn for the first scattering chain and qn, qn−1, . . . q2, q1 for the second. The amplitudes in
the final state −k are the same, and add up, and the waves in the forward and reverse directions are
superimposed on each other constructively, reinforcing each other. This is due to the fact that the
complementary scattering processes have the same changes in momentum, both in a straight line and
in the opposite sequence. An explanation of why the coherent enhancement of electron scattering in the
inelastic scattering channel occurs at angles other than π is proposed in [25]. A simple kinematic model
is used to determine the basic properties of weak localization of electrons in the inelastic scattering
channel. It easily reproduces the range of scattering angles characteristic of weak localization of
electrons with energy loss. The results are consistent with the results based on the dynamic theory
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associated with the calculation of crossed and ladder diagrams. It is possible to trace the transition
from a new type of weak localization to the usual weak localization with a decrease in energy losses.
The new type of weak localization is consistent with regular weak localization if the energy losses are
approximately equal to zero.

The range of angles in the elastic channel is of the order of λ/l, and in the inelastic channel is of
the order γ/ω = (λ/l)(E/}ω), where γ is the electron collision frequency, E is its energy, and }ω is the
energy transferred to the medium. It is assumed that the energy of an electron incident on the medium
is high enough to excite plasmons or atoms. However, this energy should not be too large so that the
de Broglie wavelength of electrons was less but remained comparable to the distance between the
centers of scattering, so that constructive interference of waves of scattered electrons inside condensed
media could exist. The corresponding energy values for electron beams are in the range from hundreds
of eV to keV. Moreover, the above statements remain valid both for the case of a small number of
elastic collisions, and for a sufficiently large number; the main thing in this case is only one inelastic
collision [23]. The main reason for the difficulty of fixing the indicated effect in a solid is that the
very phenomenon of the new weak localization and all possible measurable parameters have been
considered and calculated for an infinite three-dimensional medium, while the role of surface effects at
a boundary of a condensed medium is large.

Taking into account the principle of indistinguishability of electrons in a beam and a medium,
as was shown for a neutral atomic medium [26], but also takes place in a solid, this shifts the scattering
enhancement to the parameters of an ordinary weak localization. As it is shown in [26], the scattering
intensity includes the electron exchange terms varying directly as cosχ, where χ is a scattering angle.
The expression for intensity contains two main terms, the first one is specific for the new weak
localization, and the exchange interaction here contributes as an increasing pre-factor. The second term
is entirely produced by electron exchange and is proportional to cosχ. Despite the obtained interesting
exchange effect in a new type of weak localization for hydrogen scatterers, there was no systematic
method allowing the principle of indistinguishability and permutation symmetry to be taken into
account when describing scattering processes in the general case. The exchange effect considered
in [24] is a good example of the importance of developing a general formalism that makes it possible to
take into account the permutation symmetry of a many-electron system in the scattering problem in
general and for weak localization, in particular.

In the presented work, we discuss how exchange affects the scattering of electrons in a disordered
medium in a general case. We will take into account the identity of the incident electrons and electrons
belonging to multielectron scatterer atoms. An invariant exchange perturbation theory method [27,28]
is applied for the development of the cross-section for the weak localization scattering process while
taking into account exchange effects. It is shown that, in spite of isotropic scattering by each individual
scatterer, the number of electrons and their spin state in the open shell of the atom radically affect
the resulting angular dependence of the scattering cross-section of incident electrons. In this case,
the electrons themselves of the open shell of the scattering atom can be in the s-state, that is, the shell
of the atom remains spherically symmetric. An additional angular dependence of the scattering
cross-section appears, which is proportional to cosχ and does not depend on the number and state of
the spin of electrons with an open or closed shell. The main difference, depending on the number of
electrons and their spin states, is the coefficient in front of cosχ.

2. Probability of Plasmon Emission with Atom Excitation and Electron Exchange

We consider the interaction of electrons with a medium, accompanying the excitation of atoms
when electrons are scattered by them, by the same way as in [20] by using the interaction operator in
the form of the sum of two contributions:

V = Vat + Vpl, (1)
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where the operator Vat describes electron interaction with atoms of medium, numbered by indexes l:

Vat =
∑

l
V(r−Rl), (2)

and Vpl describes the interaction of the moving electron with the electric polarization field of the
medium electrons, which arises under this action. Then, let the process of inelastic scattering of an
electron be associated with the loss of energy on the plasmon:

Vpl =

∫
drρ̂(r)φ̂(r), (3)

where φ̂(r) is the operator of the electric field potential due to plasma oscillation and ρ̂(r) is the charge
density operator.

The initial state of the system corresponding to an incident electron and an atom of the medium
(for example, a Zi-Ni alloy doped with Ca, Mg, or hydrogen or He) is described by the wave vector∣∣∣n, p

〉
, antisymmetric taking into account the electronic permutations between the atom and the incident

electron. Here, n is the set of quantum numbers of atoms in the initial state, and p is the momentum of
the incident electron. Regarding the exchange perturbation theory method [27,28], the final state of the
whole system can be described by the non-symmetric wave function

∣∣∣m, p−Q) = |m〉 ·
∣∣∣p−Q

〉
, which is

a simple product of the atomic function |m〉, antisymmetrized with internal electron permutations, and a
free electron function

∣∣∣p−Q
〉

, where Q is the total momentum transferred to the medium. It should be
underlined that the operator (2) describing electron interaction with atoms has a non-symmetric form
regarding the interatomic electron permutations (the exchange of numbered atomic electrons with the
free electron of incident): [

ÂVat
]
, 0, (4)

where Â is the antisymmetrization operator [27,28]. Acting on a non-symmetric wave function, operator
Â performs antisymmetrization:∣∣∣n, p

〉
= Â

∣∣∣n, p
)
=

1
fnp

∑
ν
(−1)gν

∣∣∣n, p
)
ν
, (5)

where gν is the parity of the ν − th permutation, (n, p
∣∣∣n, p

〉
= 1, fnp =

∑
ν(−1)gν(n, p

∣∣∣n, p
)
ν

are the

normalization condition and a normalization factor,
∣∣∣n, p) = |n〉 ·

∣∣∣p〉 ≡ ∣∣∣n, p) 0 is the wave vector of
the zeroth permutation with the initial arrangement of the electrons, and the subindex shows that
the number of the permutation is ν = 0. Here, we deal with the antisymmetric non-orthogonal
basis, while 0 < (m, p ′

∣∣∣n, p
〉
< 1, is the same as for 0 <

〈
m, p′

∣∣∣n, p
〉
< 1, but this set meet a

completeness property: ∑
n,p

∣∣∣n, p
〉 fnp

N

(
n, p

∣∣∣ = 1̂, (6)

where N is the total number of electron permutations. The proof of completeness property (6) is
described in detail in Appendix A. Generally speaking, both the “zero” Hamiltonian Ĥ0 describing a
multicentre many-electron system without interatomic interaction, and the perturbation operator V̂
describing this interatomic interaction are not invariant to the operation of antisymmetrization, taking
into account the rearrangement of electrons between the two subsystems: [ÂĤ0], 0,[ÂV] , 0. At the
same time, the complete Hamiltonian of the system Ĥ = Ĥ0 + V̂ retains its invariance:

[
ÂĤ

]
= 0.

This discrepancy means a serious problem related to the fact that the zero-order wave function,
antisymmetrized with respect to center-to-center electron permutations, is not an eigenfunction of
the non-invariant Hamiltonian Ĥ0 [27], and the corrections are obtained by applying an asymmetric
operator of interactions containing non-physical contributions. In [27,28], a special symmetric form of
the perturbation operator and zeroth Hamiltonian were developed. It allows corrections of the wave
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functions, properly antisymmetrised, and the energy corrections to be obtained by using the correct
antisymmetric basis of the wavefunctions:

Ĥ0 =

(
ν=N∑
ν=0

H0
νΛν

)
=

N∑
ν=0

H0
ν
∑
n

∣∣∣n,p)ν( p,n|ν
fnp

,

V̂at =
(∑ν=N

ν=0 VνΛν
)
=

∑N
ν=0 Vν

∑
n

∣∣∣n,p)ν( p,n|ν
fnp

,

where Λν denotes a projector onto an asymmetric state, corresponding to the ν − th permutation

Λν =
∑

n

∣∣∣n,p)ν( p,n|ν
f N
n

, and Λν
∣∣∣n, p

〉
= (−1)gν

∣∣∣n, p) , and N, as mentioned before, is the total number of

permutations. In this case, the Hamiltonian Ĥ0 describing a system without the interaction of two
subsystems has an eigenvector, which has an antisymmetric form taking into account the electronic
permutations between these subsystems:

Ĥ0
∣∣∣n, p

〉
=

(
En + p2/2m

)∣∣∣n, p
〉
. (7)

In our case, the second term of the perturbation operator (1) Vpl has a symmetric form with
respect to the permutations of electrons. It is important to emphasize that after obtaining all the
corrections to the energy and the wave vector in all orders of the perturbation theory in the general
formalism, all matrix elements containing the complex symmetric form (6) of the perturbation operator
can be analytically reduced to a simple form. This is a symmetry-adapted form that includes the
usual asymmetric perturbation operator corresponding to the initial zero permutation of electrons.
Such a form is more convenient for practical applications. We transform all matrix elements in the
following way:

(k, p′
∣∣∣V̂∣∣∣n, p

〉
= (k, p′

∣∣∣ N∑
ν=0

VνΛν
∣∣∣n, p

〉
= (k, p′

∣∣∣ N∑
ν=0

(−1)gν

fnp
Vν|n, p)ν =

N∑
ν=0

(−1)gν

fkp
(k, p′

∣∣∣
ν
Vp=0|n, p)ν=0 =

fnp
fkp

k, p′|Vν=0|n, p).
(8)

The probability of a transition of the system in unit time from one state to another with transfer of
momentum Q from the incident electron to the medium and with transition of the medium from state
n to state m has the form obtained in [27,28], taking into account electron exchange

wmn,Q =
2π
} δ

(
En − Em + Ep − Ep−Q

)∣∣∣〈m, p−Q
∣∣∣T̂∣∣∣n, p)

∣∣∣2, (9)

where operator T̂ is the operator of transition on the energy surface [27–29], the general operator
equation for which with taking into account electron permutations between subsystems is:

T̂ = VN + VN(Ei −H0 + iη)−1
(

f̂
N

)−1
T̂,

VN = V
(

f̂
N

)
, ____ f̂

∣∣∣n, p
〉
= fnp

∣∣∣n, p
〉
,

(10)

where η is the relaxation frequency in the general case. We rewrite it as a series:

T̂ = VN + VN(Ei −H0 + iη)−1
(

f̂
N

)−1
VN+

VN
(
Ei −H0

p=0 + iη
)−1( f̂

N

)−1
VN

(
Ei −H0

p=0 + iη
)−1( f̂

N

)−1
VN + . . .

(11)
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In the matrix element
〈
m, p−Q

∣∣∣T̂∣∣∣n, p) in Equation (9), the bra-vector has an antisymmetric form
with respect to electronic permutations, and the ket-vector has a simple non-symmetric form. Then,
a transition amplitude will be:

〈
m, p−Q

∣∣∣T̂∣∣∣n, p) =
〈
m, p−Q

∣∣∣(Vat + Vpl)
N∣∣∣n, p) +

〈
m, p−Q

∣∣∣(Vat + Vpl)
NĜN

0 (Vat + Vpl)
N∣∣∣n, p)+〈

m, p−Q
∣∣∣(Vat + Vpl)

NĜN
0 (Vat + Vpl)

NĜN
0 (Vat + Vpl)

N∣∣∣n, p) + . . . =
〈
m, p−Q

∣∣∣(Vpl)
NĜN

a (Vat)
N∣∣∣n, p)+〈

m, p−Q
∣∣∣(Vat)

NĜN
a (Vpl)

N∣∣∣n, p) +
〈
m, p−Q

∣∣∣(Vat)
NĜN

a (Vat)
N∣∣∣n, p) . . . ,

(12)

where we denote the normalized (indexed N) resolvent operator ĜN
0 (or the Green’s function for

the coordinate representation) and the operator equation taking into account an antisymmetric
nonorthogonal basis:

ĜN
0 = (Ei −H0 + iη)−1

(
f̂

N

)−1

ĜN
a = ĜN

0 + ĜN
0 VN

atĜ
N
a .

(13)

Since the plasmon excitation is small, we can consider this process in the Born approximation.
We do not fix our attention on the features of plasmon excitation in different situations, as it was done
in detail in [22,30], where the excitation and propagation of bulk and surface plasma waves by incident
electrons were analyzed. The motion of electrons was considered both in vacuum when approaching
the surface of the metal, and inside the metal, the boundary of which elastically and specularly reflected
the internal nonequilibrium electrons. The effect of electron boundary scattering parameters on the
structure of bulk and surface plasmon resonances was analyzed in [31]. The probability of transition
radiation of bulk plasmon by an electron moving in vacuum was examined.

We leave only the first two terms in Equation (12), where the scattering process begins or ends
with plasmon excitation, and omit all other terms where the inelastic process with a plasmon occurs
between the processes of elastic scattering by atoms. This is because we are not interested in small-angle
scattering by the medium as a whole. The mentioned two terms we shall write out in the form:

〈
m, p−Q

∣∣∣T̂∣∣∣∣Ψ+
p

)
=

{〈
m, p−Q

∣∣∣(Vpl

)∣∣∣m, p−Q + q)
[〈

m, p−Q + q
∣∣∣δQq

∣∣∣n, p) +
〈
m, p−Q + q

∣∣∣Ĝa(Vat)
N∣∣∣n, p)

]
+[〈

m, p−Q
∣∣∣(Vat)

NĜa
∣∣∣n, p− q) +

〈
m, p−Q

∣∣∣δQq
∣∣∣n, p− q)

]〈
n, p− q

∣∣∣Vpl
∣∣∣n, p)

}
=〈

m, p− q
∣∣∣n, p− q)

〈
n, p− q

∣∣∣Vpl
∣∣∣n, p)+

〈
m, p− q

∣∣∣Vpl
∣∣∣m, p)

〈
m, p

∣∣∣n, p)+{〈
m, p−Q

∣∣∣(Vpl

)∣∣∣m, p−Q + q)
〈
m, p−Q + q

∣∣∣Ĝa(Vat)
N∣∣∣n, p) +

〈
m, p−Q

∣∣∣(Vat)
NĜa

∣∣∣n, p− q)
〈
n, p− q

∣∣∣Vpl
∣∣∣n, p)

}
,

(14)

where the first two matrix elements describe the process of plasmon excitation without atomic scattering.
However, the exchange coefficients:

Smnp−q =
〈
m, p− q

∣∣∣n, p− q) and Smnp =
〈
m, p

∣∣∣n, p), (15)

mean the exchange density due to the entanglement of electronic states. The third term of Equation (14)
corresponds to a process that begins with scattering by atoms and ends with excitation of plasmons.
The fourth term corresponds to the process in which the events occur in the opposite order. Since we
are not interested in small-angle scattering by the medium as a whole, as mentioned earlier, we can
omit the first two terms.

Dividing the result of Equation (9) by the flux density of incident particles ( jp = }kp/me, where kp

is the wavevector of the relative movement of the incident electrons and me is their mass), we obtain an
expression for the cross-section of scattering events and reactions. Then, we multiply this expression
for the cross-section by the number of final states in the volume per unit energy interval for scattering

along the unit vector n f into a solid angle element dΩ, dρ
(
E f

)
=

mk f

(2π)3}2
dΩ, because the final state is
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within the continuous spectrum. Then, for the differential cross-section summed over the final states of
the medium, it has the form:

dσ f i =
m2

e k f

(2π}2)2kp

∣∣∣∣〈m, p−Q
∣∣∣T̂∣∣∣∣Ψ+

n,p

) ∣∣∣∣2dΩd(}ω)→(
me
2}2

)3/2 (p2
−2me}ω)

1/2

2π2p

∑
q

∣∣∣∣∣〈m, p−Q
∣∣∣T̂∣∣∣∣Ψ+

n,p

) ∣∣∣∣∣2dΩQdω.
(16)

For electrons, we take into account the disorder of the medium, and for the plasmon electric field,
we assume that the medium is completely homogeneous. Therefore, we can assume that the matrix
elements in Equation (14) are approximately equal to each other:

〈
n, p− q

∣∣∣Vpl
∣∣∣n, p) ≈

〈
m, p− q

∣∣∣Vpl
∣∣∣m, p) ≈

〈
m, p−Q

∣∣∣(Vpl

)∣∣∣m, p−Q + q)

and the exchange coefficients Smnp−q and Smnp have the same order and are proportional to 1

[1+(p/})2a2
B]

2 =

1[
1+(aB/lp)

2
]2 , then we can rewrite Equation (16) in the form:

dσ f i =
(

me
2}2

)3/2 (p2
−2me}ω)

1/2

2π2p ×∑
q

∣∣∣∣∣〈m, p−Q
∣∣∣(Vpl

)∣∣∣m, p−Q + q)
〈
m, p−Q + q

∣∣∣Ĝa(Vat)
N∣∣∣n, p) +

〈
m, p−Q

∣∣∣(Vat)
NĜa

∣∣∣∣n, p− q)
〈
n, p− q

∣∣∣Vpl
∣∣∣n, p)

∣∣∣∣∣2dΩQdω,
(17)

which is illustrated in Figure 1 by the set of so-called fan diagrams determining the effect of new angle
dependence of the effective cross-section.
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ℕ|𝑛, 𝑝) + ⟨𝑚, 𝑝 −𝑞

𝑄|(𝑉𝑎𝑡)
ℕ𝐺̂𝑎 |𝑛, 𝑝 − 𝑞)⟨𝑛, 𝑝 − 𝑞|𝑉𝑝𝑙|𝑛, 𝑝)|

2

𝑑𝛺𝑄𝑑𝜔, 

(17) 

which is illustrated in Figure 1 by the set of so-called fan diagrams determining the effect of new 

angle dependence of the effective cross-section. 
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contributed to the cross-section (17), are independent of the electron-scattering angle. The relation of 

the crossed diagram contributions and ladder diagrams determine a so-called coherency degree [25]: 

𝑑𝜎𝑓𝑖

𝑑𝛺𝑄
= (

𝑚𝑒

2ℏ2
)
3/2 (𝑝2 − 2𝑚𝑒ℏ𝜔)

1/2

2𝜋2𝑝
× 

×∑𝑤𝑚𝑛𝑄 |⟨𝑚, 𝑝 − 𝑄 + 𝑞|𝐺̂𝑎(𝑉𝑎𝑡)
ℕ|𝑛, 𝑝) + ⟨𝑚, 𝑝 − 𝑄|(𝑉𝑎𝑡)

ℕ𝐺̂𝑎|𝑛, 𝑝 − 𝑞)|
2

𝑞

𝑑𝜔 

𝑤ℎ𝑒𝑟𝑒, 

𝑤𝑚𝑛𝑄 = |⟨𝑚, 𝑝 − 𝑞|𝑛, 𝑝 − 𝑞)⟨𝑛, 𝑝 − 𝑞|𝑉𝑝𝑙|𝑛, 𝑝)|
2
∼ 

∼ |⟨𝑚, 𝑝 − 𝑞|𝑉𝑝𝑙|𝑚, 𝑝)⟨𝑚, 𝑝|𝑛, 𝑝)|
2
∼ |⟨𝑚, 𝑝 − 𝑄|(𝑉𝑝𝑙)|𝑚, 𝑝 − 𝑄 + 𝑞)|

2
. 

(18) 

Neglecting exchange effects, in the resulting expression (17), both bra- and ket- vectors become 

non symmetric, and we obtain the well-known result obtained in [25–27]. In contrast to the usual 

weak localization, one of the crossed lines in the new type of weak localization corresponds to 

Figure 1. Crossed diagrams correspond to two, three, and so on, scattering events. The wavy line
corresponds to the inelastic scattering process with plasmon excitation. Dotted lines link the same atom.
(a) The processes, beginning from the elastic scattering events and ending by the inelastic, (b) processes
ranging from inelastic scattering to a series of elastic scattering by atoms.

As usual, in the diagrams that match Equation (17), we will use the dotted line to connect two
vertices belonging to the same atom. The lower parts of the diagrams correspond to the analytic
expression, which is the complex conjugation of the expression equivalent to the upper parts. The wavy
line corresponds to the plasmon. The set of ladder diagrams, correspondent to the terms contributed
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to the cross-section (17), are independent of the electron-scattering angle. The relation of the crossed
diagram contributions and ladder diagrams determine a so-called coherency degree [25]:

dσ f i
dΩQ

=
(

me
2}2

)3/2 (p2
−2me}ω)

1/2

2π2p ×∑
q

wmnQ

∣∣∣∣〈m, p−Q + q
∣∣∣Ĝa(Vat)

N∣∣∣n, p) +
〈
m, p−Q

∣∣∣(Vat)
NĜa

∣∣∣n, p− q)
∣∣∣∣2dω

where,

wmnQ =
∣∣∣〈m, p− q

∣∣∣n, p− q)
〈
n, p− q

∣∣∣Vpl
∣∣∣n, p)

∣∣∣2 ∼∣∣∣〈m, p− q
∣∣∣Vpl

∣∣∣m, p)
〈
m, p

∣∣∣n, p)
∣∣∣2 ∼ ∣∣∣∣∣〈m, p−Q

∣∣∣(Vpl

)∣∣∣m, p−Q + q)
∣∣∣∣∣2.

(18)

Neglecting exchange effects, in the resulting expression (17), both bra- and ket- vectors become
non symmetric, and we obtain the well-known result obtained in [25–27]. In contrast to the usual
weak localization, one of the crossed lines in the new type of weak localization corresponds to
inelastic scattering, while the others correspond to elastic interaction with randomly distributed power
centers. According to formula (18), crossed diagrams together with the corresponding ladder diagrams
contribute to the scattering probability factor =(ω,χ) [20]:

∫
dΩQ

∑
q

wmnQ(q,}ω)
∣∣∣∣〈m, p−Q + q

∣∣∣Ĝa(Vat)
N∣∣∣n, p) +

〈
m, p−Q

∣∣∣(Vat)
NĜa

∣∣∣n, p− q)
∣∣∣∣2dω→∑

q
wmnQ(q,}ω)dω

∣∣∣m, p−Q + qVat
∣∣∣n, p)

∣∣∣2×∫
dΩQ

∣∣∣p−Q + qĜa p−Q + q) +
∣∣∣m, p−QĜa m, p−Q)

∣∣∣2dω,

=(ω,χ) = }2

(2π})3

∫
∞

0 qdqwmn(q,}ω)
∫ ∣∣∣∣G(

p−Q + q, Ep
)
+ G

(
p− q, Ep − }ω

)∣∣∣∣2dΩQ.

(19)

It was shown in [24–26] that the angular dependence characteristic of a new weak localization
arises due to the term in the integrand, which describes the contribution of the interference of two
electron waves propagating along the same path in opposite directions:

G∗
(
p−Q + q, Ep

)
G
(
p− q, Ep − }ω

)
+ G

(
p−Q + q, Ep

)
G∗

(
p− q, Ep − }ω

)
=

1
Ep−Ep−Q+q+iγ ·

1
Ep−Ep−q−}ω−iγ +

1
Ep−Ep−Q+q−iγ ·

1
Ep−Ep−q−}ω+iγ ,

(20)

where γ is the electron collision frequency.
This means that weak localization occurs due to such collisions of electrons in which each

subsequent scattering begins earlier than the end of the previous one. Thus, a new weak localization is
realized when two conditions are met simultaneously:{ ∣∣∣Ep − Ep−Q+q = 0,∣∣∣Ep − Ep−q − }ω = 0

. (21)

If we denote p′ = p−Q, then a simple kinematic approach explains the range of the scattering
angle χ = cos−1 p·p′

p·p′ typical for the new type of weak localization:

cosχ = −
p2 + p′2

2pp′
+

2(m}ω)2

pp′q2 , . (22)

For more details, [24,25], where it is explained why the ang1es typical of the new type of weak
localization differ from π, and by using the simple kinematic approach, these angles can be estimated
very accurately.
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Considering Equation (18) taking into account the exchange contributions, we can write the
following:

σ f i(χ,ω) =
(

me
2}2

)3/2 (p2
−2me}ω)

1/2

2π2p ×∫
dΩQ

∑
q

wmnQ(q,}ω)
∣∣∣∣〈m, p−Q + q

∣∣∣Ĝa(Vat)
N∣∣∣n, p) +

〈
m, p−Q

∣∣∣(Vat)
NĜa

∣∣∣n, p− q)
∣∣∣∣2 =(

me
2}2

)3/2 (p2
−2me}ω)

1/2

2π2p

∑
q

wmnQ(q,}ω)
∣∣∣∣〈m, p−Q + q

∣∣∣(Vat)
N∣∣∣n, p)

∣∣∣∣2×∫
dΩQ

∣∣∣〈m, p−Q + q
∣∣∣Ĝa

∣∣∣m, p−Q + q) +
〈
n, p− q

∣∣∣Ĝa
∣∣∣n, p− q)

∣∣∣2.

(23)

In the case of an antisymmetric basis, the calculation of matrix elements
〈
n, p− q

∣∣∣Ĝa
∣∣∣n, p− q)

requires additional comments. Instead of the resolvent operator Ĝa, we will use a one-electron Green
function Gex

a (r, r′) taking into account that exchange contributions influence the one-particle system:

Gex
a (r, r′, R) =

〈
n, p− q

∣∣∣Ĝa
∣∣∣n, p− q) rr′ =

∑
lp fnl(r, R) f ∗ln (r′, R)

Ep − Ep−q − }ω+ iγ
, (24)

where:

fnl(r, R) =
∫

dr1dr2 . . . rn

(
N∑
ν
(−1)gνΨn

∗(r1 −R, r2 −R, . . . (r−R)ν . . . rk −R)ψ ∗p−q (rν)
)
×√

flp
N Ψl(r1 −R, r2 −R, . . . rν −R . . . rk −R)ψp−q(r),

(25)

fln(r′, R) =
∫

dr1dr2 . . . rn

(
N∑
ν
(−1)gνΨl

∗(r1 −R, r2 −R, . . . (r′ −R)ν . . . rk −R)ψ ∗p−q (rν)
)
×√

flp
N Ψn(r1 −R, r2 −R, . . . rν −R . . . rk −R)ψp−q(r′).

(26)

Integration over the conductor volume V means averaging over randomly distributed scatterers.
Here, we used the completeness property (6). In the same way, we rewrite the matrix element of
another resolvent operator:

Gex
a(p−Q+q)

(r, r′) =
〈
m, p−Q + q

∣∣∣Ĝa
∣∣∣m, p−Q + q)r,r′ =

∑
lp fml(r,R) flm(r′,R)R

Ep−Ep−Q+q+iγ ,

fml(r, R) flm(r′, R)R = 1
V

∫
V fml(r, R) flm(r′, R)dR.

(27)

The spectral density σ f i(χ,ω) of the cross-section (23) of the process of inelastic scattering of
electrons on disordered media consisting of atomic defects in a metal alloy (metal alloy doped with di-
or trivalent atoms), taking into account exchange effects, has the form:

σ f i(χ,ω) =
(

me
2}2

)3/2 (p2
−2me}ω)

1/2

2π2p

∑
q

wmnQ(q,}ω)
∣∣∣∣〈m, p−Q + q

∣∣∣(Vat)
N∣∣∣n, p)

∣∣∣∣2×∫
dΩQ

∣∣∣∣∣∣∑lp fml(r,R) flm(r′,R)R
Ep−Ep−Q+q+iγ +

∑
lp fnl(r,R) fln(r′,R)R
Ep−Ep−q−}ω+iγ

∣∣∣∣∣∣2.
(28)

Using the obtained general expression for the cross-section (18) for the case considered in [24],
the alloy doped by hydrogen atoms as disordered centers, we obtain the same expression for the
Green functions and for the scattering probability. It proves a limit transition of the obtained general
expression (18) for the cross-section to the known case described in [24].
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3. The Electron Identity Principle in Quantum Interference for Multielectron Scatterers

In our consideration, we take into account the identity of the beam electrons and the electrons
belonging to the atoms of the scatterer. Firstly, we use a scatterer as a helium-like atom in the ground
state (1s2, 1S) and in the excited state (1s12s1, 3S).

3.1. Helium-Like Scatterer 1S

The wave functions of the ground state of a helium-like atom and a free (incident) electron are:

ΦHe(R− r11, R− r22; ξ11, ξ22) = (ϕ1s(R− r1)ϕ1s(R− r2)) ·
1
√

2
(α1β2− β1α2),

ψp(r) = ei p·r
} ,

(29)

where ϕ1s(R− ri) =
(
α3/π)1/2exp(−α|R− ri|

)
, α = 27/16.

The vector of the initial state, corresponding to the permutation ν = 0, but antisymmetrized only
accounting for the internal permutations in the helium atom, see Equation (29), has the form:∣∣∣∣Φν=0

i

)
= ΦHe(r1, r2)XHe(ξ1ξ2)ψe(r)χe(ξ) =

∣∣∣n = 0, p) . (30)

We obtain the antisymmetric wave function by applying the normalized Young operator [29,32]
to the wave function of the free electron–helium system as follows: Antisymmetrization of the atomic
wavefunction given by Equation (30) over interatomic electrons permutations performed using the
four independent Young’s operators: ω[21]

11 ;ω[21]
12 ;ω[21]

21 ;ω[21]
22 (see Appendix A), where:

Ψ =
1
f0
(Ψ11(r1, r2, r)X22(ξ1, ξ2, ξ) + Ψ12(r1, r2, r)X21(ξ1, ξ2, ξ)),

Ψ11(r1, r2, r) = ω
[21]
11 ΦHe(r1, r2)ψp(r) = 1

√
3

(
2ΦHe(r1, r2)ψp(r) −ΦHe(r1, r)ψp(r2) −ΦHe(r, r2)ψp(r1)

)
Ψ12(r1, r2, r) = ω

[21]
12 ΦHe(r1, r2)ψp(r) =

(
ΦHe(r1, r)ψp(r2) −ΦHe(r, r2)ψp(r1)

)
X21(ξ1, ξ2, ξ) = ω

[21]
21 XHe(ξ1ξ2)χe(ξ) = ω

[21]
21

1
√

2
(α1β2 − β1α2)χe(ξ) =

1
√

2
[(α1β− β1α)χ2(ξ) − (αβ2 − βα2)χ1(ξ)]

X22(ξ1, ξ2, ξ) = ω
[21]
22 XHe(ξ1ξ2)χe(ξ) =

1
√

3
1
√

2
[2(α1β2 − β1α2)χe(ξ) + (α1β− β1α)χ2(ξ) + (αβ2 − βα2)χ1(ξ)],

(31)

where f0 is the normalized factor, determined by:

〈
(Ψ11(r1, r2, r)X22(ξ1, ξ2, ξ) + Ψ12(r1, r2, r)X21(ξ1, ξ2, ξ))

∣∣∣ΦHe(R− r1, R− r2, ξ1, ξ2)ψp(r)χ(ξ)
)
R
=

f0 = 4πn
3

(
2π}

p

)3
(
1− (2p/}α)

1+(p/}α)

)
.

(32)

For this case, Equations (25) and (26) will have the forms:

fnl(r, R)→ f00(r, R) =∫
dr1dr2

1
√

3

{
2ϕ1s(r1 −R)ϕ1s(r2 −R)ψ ∗p−q (r)−

ϕ1s(r1 −R)ϕ1s(r−R)ψ ∗p−q (r2) −ϕ1s(r2 −R)ϕ1s(r−R)ψ ∗p−q (r1)
}
×√

f0
6 (ϕ1s(R− r1)ϕ1s(R− r2))ψp−q(r′′) 2

√
3
=

4
3

√
f0
6

ei (p−q)(r′′−r)
} −

81+ |p−q|2

α2}

22 exp
(
i (p−q)r′′

} − α|r−R|
).

(33)
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That is, the Green’s function (28), averaged over randomly distributed centers, can be written as:

Gex
(p−Q+q)

(r, r′) = 1
V

∫
V dRGex

a(p−Q+q)
(r, r′, R)→ 1

V

∫
V dR

∑
p f00(r) f ∗00(r′)

Ep−Ep−Q+q+iγ =

(
4
3

)2 f0
6

1
V

∫
V dR

∑
p


exp

(
−i p(r−r′)

}

)
Ep−Ep−Q+q+iγ

1 + 821+ |p|
2

α2}

24

−
81+ |p|

2

α2}

22

exp
(
i p(R+r′−r)

} −α|r−R|
)
+exp

(
−i p(R−r′+r)

} −α|r′−R|
)

Ep−Ep−Q+q+iγ +

821+ |p|
2

α2}

24
exp(−α|r−R|−α|r′−R|)

Ep−Ep−Q+q+iγ

 =

Gex
0(p−Q+q)

(r, r′) −Gex
1(p−Q+q)

(r, r′) + Gex
a(p−Q+q)

(r, r′),

(34)

which has the same construction as in [26] but with a well-defined sign in front of the second term.
Here, Gex

0 (r, r′) is the ordinary Green’s function, previously considered in [22,24,26], making it the
main contribution to the new weak localization, corrected only by adding a normalization factor due
to exchange effects. The specific exchange contribution has the form:

Gex
1p−Q+q)(r, r′) =

(4
3

)2 f0
6Vα3 2π

∑
p

82(
1 + p2

α2}

2
)4

(
1 + ip(r−r′)

2}

)
e−i p(r−r′)

}

Ep − Ep−Q+q + iγ
, . (35)

Since we are interested in the correlation length |r− r′| ≤ λp, we can neglect the higher-order terms

of the parameter p(r−r′)
} . Then, this term in the p-representation after the Fourier transform and an

ordinary Green function in the p-representation have the following form:

Gex
1 (p−Q + q) = Gex

1 (p′+ q) = 210

34

1−
( 2p
}α

)3(
1+( p

}α )
2
)4


(
}
αp

)3(
1+ p2

α2}

2)4
(2π)2n2

Ep−Ep−Q+q+iγ ,

G0(p′+ q) = 1
Ep−Ep−Q+q+iγ .

(36)

The third term Gex
a (r, r′) describes a process that begins and ends at the same atom; therefore, it

does not contribute to the quantum transfer of electrons.
Now, consider the main pre-factor Ξ in the cross-section (28):

Ξ =
∫

dΩQ

∣∣∣∣∣∣∑lp fml(r,R) flm(r′,R)R
Ep−Ep−Q+q+iγ +

∑
lp fnl(r) fln(r′)R

Ep−Ep−q−}ω+iγ

∣∣∣∣∣∣2 =∫
dΩQ

∣∣∣Gex(p−Q + q) + Gex(p− q)
∣∣∣2,

(37)

where we denoted the Green’s function (34) in the p-representation as Gex(p−Q + q) = Gex
0 (p′+ q) −

Gex
1 (p′+ q), taking into account p−Q = p′, and in exactly the same way the Green’s function of the

second term in the same representation as Gex(p− q) = Gex
0 (p− q) −Gex

1 (p− q). Then, the factor Ξ
consists of three contributions, background, “the simple new weak localization”, and the exchange term:

Ξ = Ξbg + Ξ0 − Ξexc. (38)
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The background term has the following form:

Ξbg =
∫

dΩQ

{∣∣∣Gex
0 (p′+ q) −Gex

1 (p′+ q)
∣∣∣2 + ∣∣∣Gex

0 (p− q) −Gex
1 (p− q)

∣∣∣2} =∫
dΩQ

{∣∣∣Gex
0 (p′+ q)

∣∣∣ 2
+

∣∣∣Gex
1 (p′+ q)

∣∣∣2 + ∣∣∣Gex
0 (p− q)

∣∣∣2 + ∣∣∣Gex
1 (p− q)

∣∣∣2−[
Gex∗

0 (p′+ q)Gex
1 (p′+ q)+Gex∗

1 (p′+ q)Gex
0 (p′+ q) + Gex∗

0 (p− q)Gex
1 (p− q) + Gex∗

1 (p− q)Gex
0 (p− q)

}]
.

(39)

Substituting Expression (36), we obtain:

Ξbg =

1− π

(1+ p2

(}α)2
)

6
210(πn)2

3α6

×[
5
(

1
(v′q)2 ln

(
(v′q−}ω)2+(}γ)2

(v′q+}ω)2+(}γ)2

)
−

1
(vq)2 ln

(
(vq−}ω)2+(}γ)2

(vq+}ω)2+(}γ)2

))
−4− 25

(1+ p2

(}α)2
)

2

 Γ2(5)(vq)2(
}2α2

2m

)4
(1+ p2

(}α)2
)

4

.
(40)

“The ordinary new weak localization” contribution has the form:

Ξ0 =
∫

dΩQ

{
Gex∗

0 (p′+ q)Gex
0 (p− q) + Gex∗

0 (p− q)Gex
0 (p′+ q)2

}
=

4π
(qv)}γ ·

arctg
(

qv+}ωp
}γ

)
+ arctg

(
qv−}ωp

}γ

)
−

γ√
2ω2

p(1−cosχ)− q2v2

}2 sin2χ

×
ln

}2ω2
p−q2v2cosχ+qv

√
2}2ω2

p(1−cosχ)−q2v2sin2χ

}2ω2
p−q2v2cosχ−qv

√
2}2ω2

p(1−cosχ)−q2v2sin2χ

.

(41)

This expression was first obtained in [20] and used in [26]. The Langmuir frequency is denoted as
ωp, and γ is the collision frequency. The specific exchange contribution in the cross-section is:

Ξexc =
∫

dΩQ
{
Gex∗

0 (p + q)Gex
1 (p− q) + Gex∗

1 (p′+ q)Gex
0 (p− q) + Gex∗

0 (p− q)Gex
1 (p′+ q) + Gex∗

1 (p− q)Gex
0 (p′+ q)−(

Gex∗
1 (p′+ q)Gex

1 (p− q) + Gex∗
1 (p− q)Gex

1 (p′+ q)
)}
=

28 nπ
α3

(1+ p2

(}α)2
)

3

Ξ0

1−
25 nπ

α3

(1+ p2

(}α)2
)

5

 − cosχ
(
4 + }ωL

vq ln
(
(vq−}ωp)

2+(}γ)2

(vq+}ωp)
2+(}γ)2

))
(2m)2

·4π

(}α)4(1+ p2

(}α)2
)

2

1−
25 nπ

α3 Γ2(5)

(1+ p2

(}α)2
)

5


,

(42)

where Γ(5) = 4! is a Γ-function. Then, taking into account Equations (39)–(42), the main factor
determining the angular dependence of the scattering cross-section is:

Ξ(χ) = Ξbg + Ξ0

1−
28 nπ

α3

(1+ p2

(}α)2
)

3 +
213

(
nπ
α3

)2

(1+ p2

(}α)2
)

8

+
28 nπ

α3

(1+ p2

(}α)2
)

3 cosχ
(
4 + }ωL

vq ln
(
(vq−}ωp)

2+(}γ)2

(vq+}ωp)
2+(}γ)2

))
(2m)2

·4π

(}α)4(1+ p2

(}α)2
)

2

1−
25 nπ

α3 Γ2(5)

(1+ p2

(}α)2
)

5

 =
Ξbg + Ξ0exc + Ξ1exc.

(43)

Thus, the cross-section σ f i(χ,ω) ∝ Ξ(χ). is proportional to the factor Ξ(χ) determined by
Equation (43), which contains the total dependence on the scattering angle.

3.2. Helium-Like Scatterer 3S

The wave functions of the excited state helium-like atom and a free (incident) electron are:

ΦHe(R− r11, R− r22; ξ1, ξ2) =
1
√

2
(ϕ1s(R− r1)ϕ2s(R− r2) −ϕ1s(R− r2)ϕ2s(R− r1)) ·X(α1α2), (44)
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where:
ϕ2s(R− ri) = (α3/23π)

1/2(1− α|R−ri |
2

)
exp

(
−
α|R−ri |

2

)
,

α = 27/16.
(45)

The vector of the initial state, corresponding to the permutation ν = 0, but antisymmetrized
only accounting for the internal permutations in the helium atom, see Equation (44), has the form:∣∣∣∣Φν=0

i

)
= ΦHe(r1, r2)XHe(ξ1ξ2)ψe(r)χe(ξ) =

∣∣∣n = 1∗, p) .
The antisymmetrized vector of the final state is:

Ψ(r1, r2, r3α1α2α3) =
(α1α2α3)

f1
√

3!

∣∣∣∣∣∣∣∣∣
φ1s(R− r1) φ2s(R− r1) ψp(r1)

φ1s(R− r2) φ2s(R− r2) ψp(r2)

φ1sα(R− r3) φ2s(R− r3) ψp(r3)

∣∣∣∣∣∣∣∣∣ =
(α1α2α3)

f1
√

3

(
1
√

2
[φ1s(R− r1)φ2s(R− r2) −φ1s(R− r2)φ2s(R− r1)] ·ψp(r3)−

[φ1s(R− r1)φ2s(R− r3) −φ2s(R− r1)φ1s(R− r3)] ·
1
√

2
ψp(r2)+

[φ1s(R− r2)φ2s(R− r3) −φ1s(R− r3)φ2s(R− r2)] ·
1
√

2
ψp(r1)

)
.

(46)

Then, an exchange normalization factor:

f1 =
t

dr1dr2dr3
1
√

2
(ϕ ∗1s (R− r1)ϕ ∗2s (R− r2) −ϕ ∗1s (R− r2)ϕ ∗2s (R− r1))ψp(r3) ×

1
√

3

(
1
√

2
[φ1s(R− r1)φ2s(R− r2) −φ1s(R− r2)φ2s(R− r1)] ·ψp(r3) − [φ1s(R− r1)φ2s(R− r3) −φ2s(R− r1)φ1s(R− r3)] ·

1
√

2
ψp(r2) +

[φ1s(R− r2)φ2s(R− r3) −φ1s(R− r3)φ2s(R− r2)] ·
1
√

2
ψp(r1)

)
R
=

1
√

3

{
1−

[∣∣∣∣ 〈φ2s
∣∣∣ψp

〉∣∣∣∣2 + ∣∣∣∣ 〈φ1s
∣∣∣ψp

〉∣∣∣∣2]}
R
=

4πn
3

(
2π}

p

)33
1
√

3

1− 26



( 2p
} α

)4
+7·2

( 2p
} α

)2
−11(

1+
( 2p
} α

)2)4


2

+ 4(
4+

( 2p
α}

)2)4


.

A one-electron amplitude with respect to the electron permutations has the form:

f11(r, R) = (α1α2α3)
f1
√

3

∫
dr1dr2

(
1
√

2
[ϕ1s(R− r1)ϕ2s(R− r2) −ϕ1s(R− r2)ϕ2s(R− r1)] ·ψp(r)−

[ϕ1s(R− r1)ϕ2s(R− r) −ϕ2s(R− r1)ϕ1s(R− r)] · 1
√

2
ψp(r2) +

[ϕ1s(R− r2)ϕ2s(R− r) −ϕ1s(R− r)ϕ2s(R− r2)] ·
1
√

2
ψp(r1)

)
×√

f1
6

1
√

2
(ϕ ∗1s (R− r1)ϕ ∗2s (R− r2) −ϕ ∗1s (R− r2)ϕ ∗2s (R− r1))ψ ∗p (r′′) =

1√
6 f1
√

3

(
eip(r−r′′)/}

− (α3/π)1/2exp
(
−
α|R−r|

2 −
ipr′′
}

)
×[

−2−3/2
(
1− α|R−r|

2

) 4πΓ(5)(α/2)3((α/2)2
−(p/})2)

((α/2)2+(p/})2)
4 +(

2−3/2
(
1− α|R−r|

2

)
+ exp(−α|R−r|

2

) 8π(α/2)

((α/2)2+(p/})2)
2

])
.

(47)
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These amplitudes determine a one-electron Green function while accounting for the exchange
contributions:

G(r, r′) = 1
18 f1

∑
p

1
Ep−Ep−Q+q+iγ

(
eip(r−r′)/}

− (α3/π)1/2eip(r−r′)/}
(
e−

ipr
} + e

ipr′
}

)
8π

(α/2)3

)
×[

2−3/2
(

Γ(5)(α/2)3((α/2)2
−(p/})2)

((α/2)2+(p/})2)
4 − 2

)
+

(α/2)

8((α/2)2+(p/})2)
2

])
+ Gaa(r, r′) =

1
18 f1

∑
p

eip(r−r′)/}
Ep−Ep−Q+q+iγ −

1
18 f1

(∑
p

eip(r−r′)/}
Ep−Ep−Q+q+iγ

(
2− ip(r−r′)

}

)
82n(α/2)−3

)
×[(

Γ(5)(1−(2p/}α)2)

(1+(2p/}α)2)
4 − 2

)
+ 1

8(1+(2p/}α)2)
2

])
+ Gaa(r, r′) =

1
18 f1

(
G0(r, r′) −Gexc

1 (r, r′) + Gaa
)
.

Gexc
1 (r, r′) =

∑
p

eip(r−r′)/}
Ep−Ep−Q+q+iγ

(
2− ip(r−r′)

}

)
82n(α/2)−3

[(
Γ(5)(1−(2p/}α)2)

(1+(2p/}α)2)
4 − 2

)
+ 1

8(1+(2p/}α)2)
2

]
.

(48)

The mentioned Green function in p-representation is:

G(p−Q + q) = G(p′+ q) = nα−3

18 f1
G0(p′+ q)

(
1 + 211π

)
−

210πnα−3

18 f1
Gexc

1 (p′+ q) =
nα−3

18 f1
G0((p′+ q)

(
1 + 211π

)
−

210πnα−3

18 f1
1

Ep−Ep−Q+q+iγ ·

 1

8
(
1+(2|p′+q|/}α)

2
)2 −

24(
1+(2|p′+q|/}α)

2
)3 +

24(
1+(2|p′+q|/}α)

2
)4


.

(49)

where the general G0(p′+ q) and the exchange Gexc
1 (p′+ q) contributions are:

G0(p′+ q) = 1
Ep−Ep−Q+q+iγ

Gexc
1 (p′+ q) =

1
Ep−Ep−Q+q+iγ ·

 1

8
(
1+(2|p′+q|/}α)

2
)2 −

24(
1+(2|p′+q|/}α)

2
)3 +

24(
1+(2|p′+q|/}α)

2
)4

.
(50)

The contribution Ξ in the cross-section (28) in the form (38) for our case of the excited helium
atom has the same structure as Equation (40), where the background contribution is:

Ξbg =
(

210πnα−3

18 f1

)2 ∫
dΩQ{4

(∣∣∣Gex
0 (p′+ q)

∣∣∣2 + ∣∣∣Gex
0 (p− q)

∣∣∣2)+ (∣∣∣Gex
1 (p′+ q)

∣∣∣2 + ∣∣∣Gex
1 (p− q)

∣∣∣2)−
2
[
Gex∗

0 (p′+ q)Gex
1 (p′+ q)+Gex∗

1 (p′+ q)Gex
0 (p′+ q) + Gex∗

0 (p− q)Gex
1 (p− q) + Gex∗

1 (p− q)Gex
0 (p− q)

}]
.

(51)

The exchange contribution (42) in this case has the form:

Ξexc =
∫

dΩQ
{
Gex∗

0 (p′+ q)Gex
1 (p− q) + Gex∗

1 (p′+ q)Gex
0 (p− q) + Gex∗

0 (p− q)Gex
1 (p′+ q)+

Gex∗
1 (p− q)Gex

0 (p′+ q) −
(
Gex∗

1 (p′+ q)Gex
1 (p− q) + Gex∗

1 (p− q)Gex
1 (p′+ q)

)}
.

(52)
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The explicit form is presented in Appendix A (see Equations (A3) and (A4)). In this expression,
we neglected by the second order small terms proportional to q2, while the inelastic momentum loss is
q� p. Thus, the exchange contribution to the cross-section has the form:

Ξexc = −
(
(}α)2

8m

)2{
1
8
∂
∂R + 12

(
(}α)2

8m

)
∂2

∂R2 +4
(
(}α)2

8m

)2
∂3

∂R3

}[
1

(R−}ω−iγ) + c.c.
]
(J0 + J2)−(

(}α)2

8m

)2
×

{
1
8
∂
∂R′ + 12 (}α)2

8m
∂2

∂R′2
+ 4

(
(}α)2

8m

)2
∂3

∂R′3

}[
1

R′+}ω+iγ + c.c.
]
(J0 + J1)−(

(}α)2

8m

)4[
1
8
∂
∂R′ + 12

(
(}α)2

8m

)
∂2

∂R′2 + 4
(
(}α)2

8m

)2
∂3

∂R′3

]
×[

1
8
∂
∂R + 12

(
(}α)2

8m

)
∂2

∂R2 + 4
(
(}α)2

8m

)2
∂3

∂R3

]
×

1
R−iγ

1
R′−iγ {J0 + J1 + J2 + J3}.,

(53)

where the contribution J0 = Ξ0 is determined by Equation (41), c.c. is denoted by a complex conjugate
expression. Here:

R =
(
(}α)2

8m + Ep

)
R′ = R− }ω =

(
(}α)2

8m + Ep − }ω
)
.

(54)

The total exchange contribution consists of four terms:

Ξexc = Ξexc0 + Ξexc1 + Ξexc2 + Ξexc3, (55)

where each term is determined in detail in Appendix A, and the results of the calculations for each
term are the following:

(1) The usual term “new weak localization” Ξexc0, which retains the angular dependence of the
kinematic model with a factor depending on the exchange contributions:

Ξexc_0 =

{
1
26

(
(}α)2

2m

)2
1

(R)2

[
(R)2

(R−}ω)2 + 1
]
− 12

(
(}α)2

2m

)3
1

(R)3

[
(R)3

(R−}ω)3 + 1
]
+

3
(
(}α)2

2m

)4
1

(R)4

[
(R)4

(R−}ω)4 + 1
]
−

1
214

(
(}α)2

2m

)4
1

(R−}ω)2(R)2 +

3
210

(
(}α)2

2m

)5
1

(R)5

(
(R)2

(R−}ω)2 +
(R)3

(R−}ω)3

)
−

9·
26

(
(}α)2

2m

)6
1

(R)6
(R)3

(R−}ω)3−

3
213

(
(}α)2

2m

)6
1

(R)6

(
(R)2

(R−}ω)2 +
(R)4

(R−}ω)4

)
+

9
29

(
(}α)2

2m

)7
1

(R)7

(
(R)4

(R−}ω)4 +
(R)3

(R−}ω)3

)
−

9
212

(
(}α)2

2m

)8
1

(R−}ω)4(R)4

}
J0.

(56)

(2) There are three typical exchange contributions, which differ from each other, each of which
contains, in addition to the background exchange terms, a term proportional to cosχ

Ξexc1 = 1
8
π
R4

(
(}α)2

2m

)2

1 + 1
25

 1
8

(
(}α)2

2m

)2

(R−}ω)2 − 6

(
(}α)2

2m

)3

(R−}ω)3 +
3
4

(
(}α)2

2m

)4

(R−}ω)4


×{

R
vq ln

(
(vq−}ωp)

2+(}γ)2

(vq+}ωp)
2+(}γ)2

) [
1
8

(
2 + 3}ω

R

)
− 3 (}α)2

2m

(
6
R + 12}ω

R2

)
+

(
(}α)2

2m

)2(
6
R2 +

15}ω
R3

)]
+

3 v′
v cosχ

(
2 + }ω

2v·q ln
(
(vq−}ωp)

2+(}γ)2

(vq+}ωp)
2+(}γ)2

))  1
4 − 24

(
(}α)2

2m

)
R + 10

(
(}α)2

2m

)2

R2


.

(57)
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Ξexc2 = 1
8

(
π
R4

)(
(}α)2

2m

)2

1 + 1
25

(
(}α)2

2m

)2

(R−}ω)2

 1
8 − 6

(
(}α)2

2m

)
(R−}ω) +

3
4

(
(}α)2

2m

)2

(R−}ω)2


× 2R

v′q ln
(
(v′q−}ωp)

2+(}γ)2

(v′q+}ωp)
2+(}γ)2

) 1
8 − 9

(}α)2
2m
R + 3

(
(}α)2

2m

)2

R2

+
3 v

v′cosχ
(
2 + }ω+iγ

2v·q ln
(
(v′q−}ωp)

2+(}γ)2

(v′q+}ωp)
2+(}γ)2

)) [
1
4 −

(
(}α)2

2m

)
24
R +

(
(}α)2

2m

)2
10
R2

]}
.

(58)

Ξexc3 = −π · cosχ 1
(R−}ω)2

(
(}α)2

2m

)4

(4R)4

− 1
2 + 24

(
(}α)2

2m

)
(R−}ω) + 3

(
(}α)2

2m

)2

(R−}ω)2

×{[
−

1
8

(
3 + 4}ω

R

)
+ 5

3
(vq)(v′q)

R2

]
+ 6

(
(}α)2

2m

)
R

[(
6 + 10}ω

R

)
− 5 (vq)(v′q)

R2

]
+

5
2

(
(}α)2

2m

)2

R2

[
−6

(
1 + 2}ω

R

)
+ 7 (vq)(v′q)

R2

]}
.

(59)

These three exchange terms (57)–(59) depend on the initial atomic states of the scatterers,
the number of electrons, and their multiplicity, but this dependence is expressed in the value of the
background contribution and the value of the factor in front of cosχ. Variance in the number of
electrons for different scatterers and their states does not lead to a new angular dependence in the
scattering cross-section under conditions of a new weak localization.

In our work, we consider the identity of the incident electrons and electrons on helium-like
scatterers. Helium-doped Zi-Ni alloys were used as a disordered medium. Doping the samples with
helium increases disorder and enhances quantum interference. For our estimates, we take ωp ∼ 1015,
then the energy losses due to inelastic scattering will be ~1 eV, then the contribution from the usual
weak localization of a new type, determined by Equation (42), to the factor in the cross-section is
shown in Figure 2a. It is easy to see the fluctuations of the factor with increasing energy of the incident
electron (the value determined by Equation (52)) and the singularity at an angle of 2.9 rad, which
corresponds to 166 angular degrees. This angle is in a good agreement with the results of the kinematic
model Equation (22):

cosχ = −
Ep +

(
Ep − }ω

)
2
√

Ep
(
Ep − }ω

) + 2
(}ω)2

vv′q2 ≈ 0.98,⇒ χ ≈ 2, 94, (60)

where it was taken }ω
vq ≈ 0.1, and }ω

Ep
≈ 0.05. Taking into account the identity of incident electrons with

atomic electrons increases the contribution Ξexc0 in Equation (57) by 3–15 times dependently from the
incident electron energy and does not change the singularity angle (see Figure 2b). True, it should be
noted that a special contribution of exchange effects occurs at low energies, of the order of Ep ~2 (a.u.)
atomic energy units, which is natural, since the de Broglie wavelength of an incident electron becomes
comparable to the wavelength of an atomic electron. Under such conditions, exchange effects become
dominant. Both exchange eigenvalues Ξexc1, Ξexc2, proportional to cosχ, give the same contribution
as shown in Figure 2c. Naturally, it makes the main contribution, only at low energies of incident
electrons, less than 3 eV. The third exchange term also proportional to cosχmakes the main exchange
contribution in this effect. It is shown in Figure 2d. Then, the total angle factor in the scattering
cross-section has the form shown in Figure 2e. Figure 2f,h show the shape of the peak for the incident
electron energy ~2 a.u. for the intrinsic contribution J0 (41), and its increasing exchange effects and for
the total factor in the cross-section taking into account the exchange terms. It can be argued that the
exchange effects do not change the shape and angular position of this peak. The peak size depends
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on the energy of the incident electrons due to the exchange effects associated with the ratio of the de
Broglie wavelength to the size of the atom, as mentioned above. Figure 3 shows all contributions to the
angle factor of the cross-section for the singlet state of the helium atom. Here, the intrinsic contribution
J0 (41) is the same, but the exchange coefficient differs from that shown in Figure 2b and is determined
by the exchange effects from the overlap of the wave function of freely falling electrons with the singlet
state of the helium atom. The exchange factor of the singlet state is shown in Figure 3a, and it is 1.5
times less then the triplet’s exchange factor. The eigent exchange contribution Ξexc1, proportional to
cosχ, presented by Equation (44), is shown in Figure 3b, and it has the same shape as the Ξexc3 of the
triplet state but is five times less compared with the last. The total angle factor to the cross-section,
including the exchange effects from the singlet state, is shown in Figure 3c.
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Figure 2. This is a figure of the contributions to the angular factor in the cross-section for electron
scattering by a helium atom in the triplet state. Here, one axis corresponds to the energy of the
incident electron, R, measured from the energy of the bound state in the atomic units (a.u.). The second
axis corresponds to scattering angle X, measured in radian (rad.). The third axis corresponds to the
measureless factor. (a) A contribution J0 from the usual weak localization of a new type, determined
by Equation (42), to the factor in the cross-section; (b) corresponds to the term Ξexc0, presented
by Equation (58); (c) Both exchange eigenvalues Ξexc1, Ξexc2, proportional to cosχ, give the same
contribution; (d) The third “exchange-exchange” term Ξexc3 is also proportional to cosχ. (e) The total
angle factor in the scattering cross-section; (f) The peak for the incident electron energy ~2 a.u. for the
intrinsic contribution J0 (42); (g) The increase of the peak by exchange effects; (h) The total factor in the
cross-section taking into account the exchange terms.
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Figure 3. This is a figure of the contributions to the angular factor in the cross-section for electron
scattering by a helium atom in the singlet state. Here, one axis corresponds to the energy of the incident
electron, R, measured from the energy of the bound state (in the atomic units (a.u.)) and the second
axis corresponds to scattering angle X, measured in radians (rad.). The third axis corresponds to the
measureless factor. (a) A contribution Ξ0exc from the usual weak localization of a new type, determined
by Equation (44), to the factor in the cross-section; (b) corresponds to the eigent exchange contribution
Ξexc1, proportional to cosχ and presented by the Equation (44); (c) The total angle factor in the scattering
cross-section; (d). The increase of the peak by exchange effects peak for the incident electron energy
~2 a.u. (42); (e) The total factor in the cross-section taking into account the exchange terms; (f) The
exchange contribution Ξexc1, proportional to cosχ.

4. Discussion

Investigation of the influence of exchange effects on the process of coherent backscattering of
electrons by disordered media is a very important task both for weak localization of the Anderson type
and for a new type of weak localization with an inelastic process. For a new type of weak localization,
this problem stood and was solved theoretically only for the case of hydrogen-like scatterers in metal
alloys [26], where an additional angular dependence was mentioned, proportional to cosχ in the
cross-section. It is now clear that this new dependence is not clearly visible, in contrast to the angular
dependence of the new weak localization, explained by the kinematic consideration. The latter has
a sharper peak and remains invariable even in the range of beam energies, where exchange effects
are strong. In this work, we investigated the exchange effects from the first principle consideration
for general case. We used the formulas for the S-matrix and scattering cross-section developed
generally [27] while taking into account the exchange contributions. We developed the Green function
(13), taking into account the wave function overlapping due to permutation symmetry. After analyzing
all exchange contributions in the example of helium-like scatterers in metallic alloys, we come to the
conclusion that exchange effects do not change the angle dependence in the new weak localization
but could change the size of the peak very dramatically. A detailed comparison of the influence of
exchange effects on the new weak localization for the singlet and triplet states of the helium atom
shows exactly that the role of exchange effects in the case of a singlet is negligible. While, for the triplet
state, it is decisive, especially for those values of the energy of incident electrons when de Broglie’s
waves are commensurate with the atomic.

5. Conclusions

In our work, we focused on two aspects of the theoretical description of non-Anderson weak
localization of electrons in disordered media. First, we made an attempt to create a general method
for taking into account the exchange of electrons between the incident beam and the belonging of
electrons to atomic scatterers, using the formalism of the invariant exchange perturbation theory.
We applied the general expressions for the scattering amplitude and scattering probability with the
allowance for permutation symmetry obtained in [27,28] to the problem of the process of electron
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scattering by disordered media under new weak localization. The result of this development of
the theory is expressed by Equations (27) and (28). Second, we applied the developed general
equations to a specific system: a scattering electron beam on disordered helium-like scatterers in
Zi-Ni alloys doped with helium. We performed a detailed analytical calculation of the angle factor in
the scattering cross-section for this system. We showed that the exchange contribution in the angle
dependence of the electrons’ cross-section under the “new weak localization” condition appears in
two apostasies, in the additional angle dependence, proportional to cosχ, and in the exchange factor to
the “kinematic” angle dependence. In our opinion, such consideration would also be useful for the
so-called anti-Anderson localization considered experimentally and theoretically in the works [33–36]
for the different disordered systems.
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Appendix A. Mathematical Additions

Appendix A.1. The Proof of Completeness Property of Antisymmetric Basis

It is easy to show this property by the acting operator (6) on to any antisymmetric vector
∣∣∣m, p′

〉
and by using Equation (5):
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Appendix A.2. Young Operators

ω
[21]
11 = 1

√
12
(2 + 2P12 − P23 − P13 − P123 − P132),

ω
[21]
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2 (P23 − P13 + P123 − P132),

ω
[21]
21 = 1
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(A2)

Appendix A.3. The Explicit Form of the Cross-Section Pre-Factor Ξ(χ) for Expression (52)

Here, we took into account the obvious relations:

Ep − Ep−Q+q = 1
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In this expression, we neglected by the second order small terms proportional to q2, while inelastic
momentum loss is q << p.

Appendix A.4. The Integrals Used to Derive the Expression for the Factor Ξ(χ)

Here are the integrals used to derive the expression for the factor Ξ(χ) ((39) and (57)), which contains
the angular dependence introduced into Expression (28) for the cross-section:
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Here, the c.c. complex conjugate expression is denoted:
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