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Abstract: The effect of non-Newtonian biomagnetic power-law fluid in a channel undergoing external
localised magnetic fields is investigated. The governing equations are derived by considering
both effects of Ferrohydrodynamics (FHD) and Magnetohydrodynamics (MHD). These governing
equations are difficult to solve due to the inclusion of source term from magnetic equation and the
nonlinearity of the power-law model. Numerical scheme of Constrained Interpolation Profile (CIP) is
developed to solve the governing equations numerically. Extensive results carried out show that this
method is efficient on studying the biomagnetic and non-Newtonian power-law flow. New results
show that the inclusion of power-law model affects the vortex formation, skin friction and heat
transfer parameter significantly. Regardless of the power-law index, the vortex formation length
increases when Magnetic number increases. The effect of this vortex however decreases with the
inclusion of power-law where in the shear thinning case, the arising vortex is more pronounced than
in the shear thickening case. Furthermore, increasing of power-law index from shear thinning to
shear thickening, decreases the wall shear stress and heat transfer parameters. However for high
Magnetic number, the wall shear stress and heat transfer parameters increase especially near the
location of the magnetic source. The results can be used as a guide on assessing the potential effects
of radiofrequency fields (RF) from electromagnetic fields (EMF) exposure on blood vessel.
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1. Introduction

Biological fluid such as blood includes protein, cell membrane and, haemoglobin molecules
that contribute to its paramagnetic behaviour, while the content of hydrogen, oxygen, nitrogen and
carbon atoms in vessel tissues contribute to its diamagnetic property [1,2]. Biofluid that has magnetic
characteristics and able to interact with an applied magnetic field is called biomagnetic [3]. When an
external magnetic field is imposed on the biomagnetic fluid, there are two body forces acting on
the fluid, magnetisation force and Lorentz force. These two forces correspond to the principle of
Ferrohydrodinamics (FHD) and Magnetohydrodynamics (MHD) respectively. The interplay between
its hydrodynamics and magnetic properties when external magnetic field gradient is applied has been
the topic of great interest [4]. Motivation in these studies are driven by the biomedic application such as
in magnetic drug targeting in tumor treatment, hyperthermia, reduction of bleeding during surgeries,
and magnetic separation of cells [5–11]. However, at the same time, there are some drawbacks of
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magnetic fields toward human bodies. Being exposed to electromagnetic field (EMF) have deleterious
effects to living organism [12]. In the last decade, over three billions people are exposed to EMF
daily from wireless phone, wi-fi, transmitting towers and base stations [13]. Moreover, there are
150 million patients annually used Magnetic Resonance Imaging(MRI) for clinical examinations [14].
Magnetic field intensity from phone, refrigerator, wireless etc are measured up to 1 T (Tesla) [15],
while the MRI is at 1.5 T, 3 T, 7 T [16] and about to be boost up to 14 T [17]. The EMF has biological
impact on thermal effect occurs via an alteration in temperature from radiofrequency (RF) fields.
There is a possibility that every interaction between RF fields and living tissues causes an energy
transfer resulting in a rise in temperature [12]. Therefore, more studies need to be done in order to
understand the thermal effects associated with RF exposure.

Several existing studies have examined the effect of applying high magnetic field intensity on
the cellular components of the biological fluids. Ichioka et al. [18] reported that the static magnetic
field of 8 T significantly decreased the skin blood flow and the body temperature in anaesthetised rat.
Similar results have been reported by Haik et al. [19] who studied the effect of magnetic field up to
10 T on human blood. They found that the Reynolds number is decreased when the magnetic field is
increased. Motta et al. [20] investigated the effect of magnetic field up to 18 T on light absorption of
blood and reported that there is an increase on light absorption level due to paramagnetic orientation
of heme group. Higashi et al. [21] studied the effect of applying high static magnetic field up to 8 T on
the orientation of normal erythrocytes and found that even at 1 T, the magnetic field influenced the
erythrocytes to be oriented with their disk plane parallel to the magnetic field direction.

Mathematical model for biomagnetic fluid flow with an external magnetic field has been
introduced by Haik et al. [19], where the arising force due to magnetisation depends on the existence
of a spatially varying magnetic field and the biofluid is considered to be electrically poor conductors.
This mathematical model is known as Biomagnetic Fluid Dynamics (BFD) [22]. Tzirtzilakis and
Loukopoulos [2,23,24] extended this model by considering that blood also exhibit strong electrical
conductivity which eventually interacts with the magnetic fields when it flows and give rise to Lorentz
force. The mathematical model developed for the biofluid flow under the influence of an applied
magnetic field is consistent with the principles of FHD and MHD of ferrofluid [25]. In addition,
ferrofluid can exhibit non-Newtonian behaviour [26–29]. However, most of the available works
reported only on the effect of FHD on Newtonian fluid [2,23,30–43]. Even if the magnetic field
effect is included in power-law fluid flow, the works only used magnetic field effect of MHD [44–49].
Research on the magnetic fluid flow undergoing external magnetic field are extensive. For the research
specifically on flow in a channel, Loukopoulos and Tzirtzilakis [23] studied the biomagnetic channel
flow where the magnetic field is spatially varying linearly with temperature and magnetic intensity
and found that a vortex is arising near the lower plate below of which the magnetic source is placed.
This vortex increased in the size depending on the magnitude of applied the magnetic field. Goharkhah
and Ashjaee [30] reported the works of using alternating nonuniform magnetic field on ferrofluid flow
and heat transfer in a channel. The works on uniform localised magnetic field effect in a channel has
been studied by Tzirtzilakis and Loukopolous [2] in laminar flow and Tzirtzilakis et al. [31] in turbulent
flow. They found that the effect of magnetic field is decreased in the turbulent flow. Siddiqa et al. [32]
studied the effect of including thermal radiation on energy equation in the biomagnetic fluid flow
in a channel. A great deal of works have been done on the magnetic field undergoing external
magnetic field in geometry other than straight channel. Biomagnetic fluid flow in stenosed channel
has been studied by Tzirtzilakis [33], Xenos and Tzirtzilakis [34], and Türk et al. [35]. Türk et al. [36]
studied the biomagnetic fluid flow in a channel with multiple stenoses. Flow in aneurysm channel has
been studied by Tzirtzilakis [37], and recently by Sharifi et al. [38] on drug targeting using magnetic
particles. Tzirakis [39] studied biomagnetic fluid flow in circular ducts. For the works on magnetic
fluid flow in lid driven cavity, it has been studied by Tzirtzilakis and Xenos [40], Marioni et al. [41],
Bozkaya et al. [42] and by Senel and Tezer-Sezgin [43].
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However, most of the works mentioned are concerned with biomagnetic of Newtonian fluid.
When blood flows through larger arteries, it behaves according to Newtonian model, but in small
blood vessels such as narrow arteries, it behaves according to non-Newtonian flow model at low shear
rates [50–54]. Unlike Newtonian fluid, non-Newtonian are a broad class of fluid where the relation
between the shear rate and shear stress is nonlinear. Hence, no single constitutive equation can be
used to single handedly predict all the flow of non-Newtonian models in various condition. There are
several models characterizing flow of blood such as Walburn-Schneck, Casson, Carreau-Yasuda,
Quemada, and power-law, where each has its own importance in theoretical and experimental of flow
phenomena [55–59]. The power-law model is the simplest form and commonly used for modelling
shear-thinning or shear-thickening behaviour of non-Newtonian fluids on certain range.

On the study of purely hydrodynamics power-law flow, Bell and Surana [60] investigated the
flow of non-Newtonian power-law in lid driven cavity using p-version least squares finite element
formulation and provided the benchmark results for shear thinning and shear thickening flow in
lid driven cavity. Their results on power-law lid driven cavity were validated by Neofytou [61],
who also carried out simulations for Bingham plastics, Casson and Quemada fluid flow. There are
many works that have been reported on magnetic field effect on power-law fluid flow. Kefayati [44]
studied the effect of MHD magnetic field on power-law in cavity with two-square concentric duct.
Kefayati [45] studied the effect of magnetic field on mixed convection on shear thinning fluids in a
cavity with sinusoidal boundary conditions. Adıgüzel and Atalık [46] investigated the effect of MHD
magnetic field on power-law ferrofluid flow past a circular cylinder. Jahanbakshi [47] reported the
MHD magnetic field effects on natural convection using power-law fluid in an L-shaped enclosure.
Ikbal et al. [48] and Sankar et al. [49] investigated the effect of MHD magnetic field on power-law in a
stenosed artery. All of these works conclude that the vortex formation decreases under the action of
MHD magnetic field. A number of investigations reported works on MHD effect on non-Newtonian
flow other than power-law model. Misra et al. [62] studied the works of MHD viscoelastic fluid in
a channel with stretching walls and reported that increasing the strength of the magnetic field will
have the fluid velocity profile decreases but the temperature profile increases. Liu [63] performed
an analysis of electrically conducting fluid of second grade in a porous medium over a stretching
sheet subject to a transverse magnetic field and found that when the Eckert number is large, the heat
flow transferred from the fluid to the wall rather than from the wall to the fluid when Eckert number
is small.

The works that combine both biomagnetic and power-law fluid flow has not been investigated.
The reason is that the mathematical model of Navier Stokes with FHD and MHD is difficult to solve
due to the magnetisation term FHD introduced in the governing equation. This source term can be
very large and will result in instability and divergence of the numerical method without the use of
a proper technique. Additionally, in contrast to the Newtonian case, the non-Newtonian fluid flow
is generally more complicated to be solved due to its complexity contributed from the constitutive
equation to the Navier-Stokes equations. This is due to the fact that the effective viscosity diverges to
infinite shear rates and zero shear rates for shear thinning and shear thickening fluid. When solving
non-Newtonian flow numerically, it may result in significantly time step constraint when explicit
schemes are used, and disrupt the solution technique usually used to solve implicitly the viscous terms
in the momentum equation [64]. Several methods have been used to solve the problem analogous
in this work. Stream function-vorticity finite difference method (FDM) with stretched grid has been
used in [33,65]. FDM central difference has also been used in [48]. In [44,45], finite difference lattice
Boltzmann method (FDLBM) is used, while in [35,36] finite element method (FEM) has been applied.
In [42,43], dual reciprocity boundary element method (DRBEM) has been used. Lattice Boltzmann
method (LBM) has been used in [66,67] while control volume finite element method (CVFEM) is
applied to solve the flow problem in [68–70]. More detailed review of numerical method on solving
FHD and MHD problems are given by Rashidi et al. [71].
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An explicit CIP (Constrained Interpolation Profile) with FDM scheme was developed in this
work. This scheme is a very stable finite difference technique that can solve generalised hyperbolic
equations with third order accuracy in space. Unlike the conventional schemes such as Lax Wendroff
and Upwind, this scheme approximated the values of the advection term with its spatial derivative by
cubic polynomials interpolation and attains high-accuracy by being less diffusive [72]. The CIP method
was introduced by T.Yabe et al. [73,74] and has since been used to solve many various problems [75–77].
This method can be combined with other methods [78] as well since CIP is efficient in solving the
hyperbolic equation.

As far as we know, no previous research has investigated the works on biomagnetic and
non-Newtonian fluid flow using CIP scheme. Therefore the aim of this work is to study the extent
of using non-Newtonian power-law on biomagnetic flow in terms of heat transfer, skin friction
and flow characteristics where the governing equations are solved numerically using CIP scheme.
For non-Newtonian power-law fluid, the viscosity µ̄a is assumed to be a shear dependent fluid given as

µ̄a = m(I2)
(n−1)/2, (1)

where m is the fluid consistency, I2 is the second invariant of the rate of strain tensor and n is the
power-law index. For two-dimensional flow, I2 is defined as

I2 = 2

[(
∂ū
∂x̄

)2
+

(
∂v̄
∂ȳ

)2
]
+

(
∂ū
∂ȳ

+
∂v̄
∂x̄

)2
, (2)

where ū is the velocity along x̄-coordinate, and v̄ is the velocity along ȳ-coordinate. For values of
n < 1, the viscosity is shear thinning, while for n > 1, the viscosity is shear thickening and n = 1 refers
to the Newtonian viscosity model where µ̄a = m. Biological fluids have shear thinning properties
as blood has a power-law index at n = 0.6 and synovial fluid has a power-law index at n = 0.2 [46].
In addition, this study may give valuable information on the thermal and hydrodynamics effects on
blood associated with RF exposure.

2. Problem Formulation

The continuity, momentum and energy equations for biomagnetic fluid flow are given as [24,71]

∇ ·~v = 0, (3)

ρ

(
∂~v
∂t̄

+~v · ∇~v
)
= −∇ p̄ +∇ ·~τ + (~J × B̄) + µ̄0(M̄.∇)H̄, (4)

ρcp

(
∂T̄
∂t̄

+~v · ∇T̄
)
= κ∇2T̄ +~τ · ∇~v− µ̄0T̄

∂M̄
∂T̄

~v · ∇H̄ +
~J ·~J

σ̄
, (5)

where ~v is the dimensional velocity vector, t̄ is the dimensional time, ρ is the fluid density, p̄ is the
dimensional pressure, ~τ is the stress tensor, ~J is the current density, B̄ is the magnetic field, µ̄0 is
magnetic permeability, H̄ is the magnetic field intensity, T̄ is the dimensional temperature, cp is the
specific heat at constant pressure, κ is the thermal conductivity, and σ̄ is the electrical conductivity.

The fluid is considered to be magnetic non-Newtonian and the flow is two-dimensional, laminar,
incompressible and under the influence of an applied magnetic field. The body force terms incorporated
are from the principles of Magnetohydrodynamics and Ferrohydrodynamics. The flow is considered
to be taking place in between two walls. It is assumed that the flow is dominated by the viscous force
and the convection is due to temperature gradient, hence the effect of gravity is insignificant. The flow
at the entrance is assumed to be fully developed and the walls are kept at a constant temperature
T̄w, while the fluid is at temperature T̄f such that T̄w < T̄f . The configuration of the flow is shown
in Figure 1.
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(0, L̄)

(L̄, h̄)

(0, 0)

(0, h̄)

ū = v̄ = 0

ū = v̄ = 0

∂ū

∂x̄
= 0

∂v̄

∂x̄
= 0

∂T̄

∂x̄
= 0

Magnetic source at (a, b)

v̄ = 0

T̄ = T̄ (ȳ)

ū = ū(ȳ)

Figure 1. Flow domain and contours of magnetic field strength H.

With these assumptions, the governing equations in Cartesian form are given as

∂ū
∂x̄

+
∂v̄
∂ȳ

= 0, (6)

ρ̄

(
∂ū
∂t̄

+ ū
∂ū
∂x̄

+ v̄
∂ū
∂ȳ

)
= −∂ p̄

∂x̄
+ µ̄a

(
∂2ū
∂x̄2 +

∂2ū
∂ȳ2

)
+ 2

∂µ̄a

∂x̄
∂ū
∂x̄

+
∂µ̄a

∂ȳ

(
∂v̄
∂x̄

+
∂ū
∂ȳ

)
+ µ̄0M̄

∂H̄
∂x̄
− σ̄B̄2

yū + σ̄B̄x B̄yv̄, (7)

ρ̄

(
∂v̄
∂t̄

+ ū
∂v̄
∂x̄

+ v̄
∂v̄
∂ȳ

)
= −∂ p̄

∂ȳ
+ µ̄a

(
∂2v̄
∂x̄2 +

∂2v̄
∂ȳ2

)
+ 2

∂µ̄a

∂ȳ
∂v̄
∂ȳ

+
∂µ̄a

∂x̄

(
∂v̄
∂x̄

+
∂ū
∂ȳ

)
+ µ̄0M̄

∂H̄
∂ȳ
− σ̄B̄2

x v̄ + σ̄B̄x B̄yū, (8)

ρ̄cp

(
∂T̄
∂t̄

+ ū
∂T̄
∂x̄

+ v̄
∂T̄
∂ȳ

)
= κ

(
∂2T̄
∂x̄2 +

∂2T̄
∂ȳ2

)
+ µ̄a

(
2

[(
∂ū
∂x̄

)2
+

(
∂v̄
∂ȳ

)2
]
+

[
∂ū
∂ȳ

+
∂v̄
∂x̄

]2
)

− µ̄0T̄
∂M̄
∂T̄

(
ū

∂H̄
∂x̄

+ v̄
∂H̄
∂ȳ

)
+ σ̄(ūB̄y − v̄B̄x)

2. (9)

In the above equations, ~v = (ū, v̄) is the velocity, p̄ is the pressure, T̄ is the temperature, ū(ȳ) and
T̄(ȳ) is the parabolic velocity profile and temperature profile respectively for fully developed flow, σ̄ is
the electrical conductivity, µ̄0 is the magnetic permeability vacuum, cp is the specific heat at constant
pressure, κ is the thermal conductivity, H̄ = (H̄x, H̄y) is the magnetic field strength, M̄ represents the
magnetisation, and B̄ is the magnetic induction where B̄ = µ̄0H̄ ⇒ (B̄x, B̄y) = µ0(H̄x, H̄y). The bar
symbol on u, v, T, t, x and y denote the dimensional form of these quantities.

The components of magnetic field intensity H̄x and H̄y along the x̄ and ȳ coordinates ~H = (H̄x, H̄y)

are given by [40]

H̄x(x̄, ȳ) =
γ

2π

x̄− a√
(x̄− a)2 + (ȳ− b)2

, H̄y(x̄, ȳ) = − γ

2π

ȳ− b√
(x̄− a)2 + (ȳ− b)2

, (10)

and the magnitude H̄ is given by

H̄(x̄, ȳ) =
√

H̄2
x + H̄2

y =
γ

2π

1√
(x̄− a)2 + (ȳ− b)2

, (11)
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where γ is the magnetic field strength at the coordinate point of (a, b) where the magnetic source
is located. In the magnetic force terms, magnetisation and magnetic field intensity H̄ derived
experimentally and is given as

M̄ = K̄H̄(T̄c − T̄), (12)

where K̄ is a constant and T̄c is the Curie temperature.

The terms µ̄0M̄
∂H̄
∂x̄

and µ̄0M̄
∂H̄
∂ȳ

in Equations (7) and (8) respectively represent the component

of magnetic force per unit volume and dependent on the existence of magnetic gradient. The term

µ̄0T̄
∂M̄
∂t̄

(
u

∂H̄
∂x̄

+ v
∂H̄
∂ȳ

)
in Equation (9) refers to the thermal power unit per unit volume due to

the magnetocaloric effect. These three terms arise due to the principles of FHD. The terms σ̄B̄2
yū +

σ̄B̄x B̄yv̄ and σ̄B̄2
x v̄ + σ̄B̄x B̄yū in Equations (7) and (8) respectively represent the Lorentz force per

unit volume and included due to the electrical conductivity of the fluid. The term σ̄(ūB̄y − v̄B̄x)2

in Equation (9) represents the Joule heating. These three terms arise due to the principles of MHD.
Therefore the principle of FHD and MHD are combined in the mathematical model with the application
of non-Newtonian fluid.

The non-Newtonian fluid considered here can be represented by the Oswald-de Waele power-law
model. The relationship between velocity field and shear stress may be expressed in terms of the
effective viscosity as

µ̄a = m

(
2

[(
∂ū
∂x̄

)2
+

(
∂v̄
∂ȳ

)2
]
+

[
∂ū
∂ȳ

+
∂v̄
∂x̄

]2
) n−1

2

, (13)

where m is the fluid consistency and n is the power-law index.
The boundary conditions of the problem are

Inflow ū(0, ȳ) = ū(ȳ), v̄(0, ȳ) = 0, T̄ = T̄(y),

Outflow
∂ū(L̄, ȳ)

∂x̄
= 0,

∂v̄(L̄, ȳ)
∂x̄

= 0,
∂T̄(L̄, ȳ)

∂x̄
= 0,

Lower wall ū(x̄, 0) = 0, v̄(x̄, 0) = 0, T̄(x̄, 0) = T̄w,

Upper wall ū(x̄, h̄) = 0, v̄(x̄, h̄) = 0, T̄(x̄, h) = T̄w. (14)

3. Numerical Formulation and Solution Procedure

3.1. Non-Dimensionalisation and Transformation to Stream Function-Vorticity

Equations (7)–(9), with the boundary conditions of Equation (14) are transformed into
dimensionless form using the following dimensionless variables

x =
x̄
L̄

, y =
ȳ
L̄

, t =
t̄ū
L̄

u =
ū
ūr

, v =
v̄
ūr

,

p =
p̄

ρ̄ū2
r

, Hx =
H̄x

H̄0
, Hy =

H̄y

H̄0
, µa =

µ̄aLn−1

mun−1
r

, T =
T̄ − T̄w

T̄f − T̄w
, (15)

where H̄0 = H̄(a, 0) and ur is the maximum velocity at the inflow.
To solve the governing equation, stream function-vorticity approach is used and the velocity

~v = (u, v) is transformed into dimensionless stream function ψ(x, y) and vorticity w(x, y) by
the relation
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w =
∂v
∂x
− ∂u

∂y
, (16)

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (17)

Using these transformation, the pressure p is eliminated, and Equation (6) is automatically
satisfied and hence only the nondimensional variables ψ, w and T need to be solved numerically.
The transformation results to the following system of equations

∂2ψ

∂x2 +
∂2ψ

∂y2 = −w, (18)

∂w
∂t

+ u
∂w
∂x

+ v
∂w
∂y

=
µa

Re

(
∂2w
∂x2 +

∂2w
∂y2

)
+

1
Re

(
∂2µa

∂x2 −
∂2µa

∂y2

)(
∂v
∂x

+
∂u
∂y

)
− 2

Re
∂2µa

∂x∂y

(
∂u
∂x
− ∂v

∂y

)
+

2
Re

(
∂µa

∂x
∂w
∂x

+
∂µa

∂y
∂w
∂y

)
+ MnF

(
∂H
∂x

∂T
∂y
− ∂H

∂y
∂T
∂x

)
+ N

(
∂

∂y
(H2

yu− Hx Hyv)− ∂

∂x
(H2

xv− Hx Hyu)
)

, (19)

∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

=
1

RePr

(
∂2T
∂x2 +

∂2T
∂y2

)
+

Ecµa

Re

(
2

[(
∂u
∂x

)2
+

(
∂v
∂y

)2
]
+

[
∂u
∂y

+
∂v
∂x

]2
)

+ MnFEcH(ε + T)
(

u
∂H
∂x

+ v
∂H
∂y

)
+ EcN(uHx − vHy)

2. (20)

The effective viscosity is nondimensionalised to be

µa =

(
2

[(
∂u
∂x

)2
+

(
∂v
∂y

)2
]
+

[
∂u
∂y

+
∂v
∂x

]2
) n−1

2

. (21)

The magnetic field intensity is also nondimensionalised by using Equation (15) and is given by

H(x, y) =
b√

(x− a)2 + (y− b)2
. (22)

The boundary configuration for the flow problem is also nondimensionalised using Equation (15)
where the length of the horizontal wall is considered to be 10 times the length of the vertical inlet and
outlet. The boundary conditions are non-dimensionalised and transformed according to Equations (16)
and (17), and given as

Inflow (x = 0, 0 ≤ y ≤ 1), ψ = 2y2 − 4
3

y3, w = 8y− 4, T = 4y(1− y),

Outflow (x = 10, 0 ≤ y ≤ 1)
∂ψ

∂x
=

∂w
∂x

=
∂T
∂x

= 0,

Lower wall (y = 0, 0 ≤ x ≤ 10) ψ =
2
3

, −w =
∂2ψ

∂y2 , T = 0,

Upper wall (y = 1, 0 ≤ x ≤ 10) ψ = 0, −w =
∂2ψ

∂y2 , T = 0. (23)
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3.2. Constrained Interpolated Profile (CIP) Based Finite Difference Method

To solve Equations (18)–(23) numerically, the Constrained Interpolated Profile (CIP) method is
implemented. In this method, a cubic polynomial is used to interpolate the spatial profile of the value
f and its spatial derivative∇ f . In this case, f is f = (w, T). Once the values of f and∇ f are calculated,
the same values for the next time step are simply obtained by shifting the cubic polynomial.

To implement the CIP algorithm, the governing equations of Equations (19) and (20) are split into
two categories [79] which are non-advection phase and advection phase.

Advection Phase:

∂w
∂t

+ u
∂w
∂x

+ v
∂w
∂y

= 0, (24)

∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

= 0. (25)

Non-advection Phase:

∂w∗

∂t
=

µa

Re

(
∂2w
∂x2 +

∂2w
∂y2

)
+

1
Re

(
∂2µa

∂x2 −
∂2µa

∂y2

)(
∂v
∂x

+
∂u
∂y

)
− 2

Re
∂2µa

∂x∂y

(
∂u
∂x
− ∂v

∂y

)
+

2
Re

(
∂µa

∂x
∂w
∂x

+
∂µa

∂y
∂w
∂y

)
+ MnF

(
∂H
∂x

∂T
∂y
− ∂H

∂y
∂T
∂x

)
+ N

(
∂

∂y
(H2

yu− Hx Hyv)− ∂

∂x
(H2

xv− Hx Hyu)
)

, (26)

∂T∗

∂t
=

1
RePr

(
∂2T
∂x2 +

∂2T
∂y2

)
+

Ecµa

Re

(
2

[(
∂u
∂x

)2
+

(
∂v
∂y

)2
]
+

[
∂u
∂y

+
∂v
∂x

]2
)

+ MnFEcH(ε + T)
(

u
∂H
∂x

+ v
∂H
∂y

)
+ EcN(uHx − vHy)

2. (27)

The computation of advection phase, Equations (24) and (25) is conducted by the CIP method
while the non-advection phase, labeled with superscript (*) is solved numerically using finite difference
method. In order to adopt this method, the Poisson equation of Equation (18) need to be solved first,
then followed by the non-advection phase and finally the advection phase.

Equation (18) is solved by using Successive Overrelaxation (SOR). The iterative procedure
is carried out until the residue between two consecutive iteration converges to desired tolerance.
The tolerance for SOR is suggested to be smaller than the tolerance for the steady state solution in
which |ψnew − ψold| < 10−7, and the relaxation factor used is 1.7.

For the non-advection phase, the explicit scheme is used. The central finite difference discretisation

is implemented on first order and second order spatial derivatives terms. The magnetic terms
∂H
∂x

,
∂H
∂y

, Hx and Hy are computed analytically from Equation (22). It should be noted that the method has

also been tested to be solved using Crank-Nicolson scheme and no significant difference is observed.
However using the implicit scheme will require solving the two matrices equation in every time step
for each Equations (19) and (20), and inadvertently it is time consuming due to exhaustive computer
power required.
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Once the non-advection phase are computed, the spatial derivative are calculated for both w∗

and T∗. Hence by denoting f = (w∗, T∗), the spatial derivative
∂ f
∂x

∗
= ∂x f ∗ and

∂ f
∂x

∗
= ∂y f ∗ can be

calculated as

∂x f ∗i,j − ∂x f k
i,j

∆t
=

f ∗i+1,j − f ∗i−1,j

2∆x
−

f k
i+1,j − f k

i−1,j

2∆x

−
ui+1,j − ui−1,j

2∆x
· ∂x f k

i,j −
vi+1,j − vi−1,j

2∆x
· ∂y f k

i,j , (28)

∂y f ∗i,j − ∂y f k
i,j

∆t
=

f ∗i,j+1 − f ∗i,j−1

2∆y
−

f k
i,j+1 − f k

i,j−1

2∆y

−
ui,j+1 − ui,j−1

2∆y
· ∂x f k

i,j −
vi,j+1 − vi,j−1

2∆y
· ∂y f k

i,j . (29)

The terms f k, ∂x f k
i,j, and ∂y f k

i,j refer to the values of previous time step. The spatial derivatives of
u and v in Equations (28) and (29) are approximated by using central order finite difference.

Once f ∗ = (w∗, T∗) and their respective spatial derivative are obtained, they will be used in CIP
algorithm. Hence f k+1 = (wk+1, Tk+1) are advanced to the new time level after the interpolation of
CIP via shifting such that f k+1 = f (xi − u∆t, yj − v∆t). Similarly in non-advection phase, the spatial
gradient for the new time iteration is also required. The CIP scheme to solve Equation (24) and (25) is
given as

f k+1
i,j =C30∆x3 + C20∆x2 +

∂ f ∗i,j
∂x

∆x + f ∗i,j + C03∆y3 + C02∆y2

+
∂ f ∗

∂y
∆y + C21∆x2∆y + C12∆x∆y2 + C11∆x∆y, (30)

∂ f k+1
i,j

∂x
= 3C30∆x2 + 2C20∆x +

∂ f ∗i,j
∂x

+ 2C21∆x∆y + C12∆y2 + C11∆y, (31)

∂ f k+1
i,j

∂y
= 3C03∆y2 + 2C02∆y +

∂ f ∗

∂y
+ C21∆x2 + 2C12∆x∆y + C11∆x. (32)

The term C is the coefficient for the interpolation function Equation (30), and for ease of reference,

the subscript on C denotes the power of its multiplication with ∆x and ∆y respectively. Since
∂ f ∗i,j
∂x

and
∂ f ∗i,j
∂y

are already known from the non-advection phase at all grid points, only the coefficients C are

needed to complete the calculation of Equations (30)–(32), and they can be determined as [79]

C30 =
(

∆x[∂x f k
i+1,j + ∂x f k

i,j]− 2[ f k
i+1,j − f k

i,j]
)

/∆x3,

C20 =
(
−∆x[∂x f k

i+1,j + 2∂x f k
i,j] + 3[ f k

i+1,j − f k
i,j]
)

/∆x2,

C03 =
(

∆y[∂y f k
i,j+1 + ∂y f k

i,j]− 2[ f k
i,j+1 − f k

i,j]
)

/∆y3,

C02 =
(

∆y[∂y f k
i,j+1 + 2∂y f k

i,j] + 3[ f k
i,j+1 − f k

i,j]
)

/∆y2,

C21 =
(

∂x f k
i+1,j+1 − ∂x f k

i+1,j − ∂x f k
i,j+1 + ∂x f k

i,j

)
/(2∆x2∆y),

C12 =
(

∂y f k
i+1,j+1 − ∂y f k

i+1,j − ∂y f k
i,j+1 + ∂y f k

i,j

)
/(2∆x∆y2),

C11 =
(

f k
i+1,j+1 − f k

i+1,j − f k
i,j+1 + f k

i,j

)
/(∆x∆y)− C21∆x− C12∆ y.
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The above equations are only for u < 0 and v < 0. For the case of u ≥ 0 , the pointer i + 1 is to be
changed to i− 1 and ∆x is changed to −∆x. Similarly, when v ≥ 0, j− 1 and −∆y are used instead
of j + 1 and ∆y. The calculated f k+1 = (wk+1, Tk+1) and their respective spatial gradients are then
updated to be f k and will be used for the new time level. The whole procedure is repeated until a
steady state flow is achieved in which the tolerance is set to be

max
i,j
|φk+1

i,j − φk
i,j| < 10−6, (33)

where φk is the estimation of φk = (ψk, wk, Tk) at iteration k.

3.3. Boundary Conditions

For the numerical solutions for the system of Equations (18)–(20), boundary conditions for flow
variables w, ψ and T are discretised according to Equation (23). The boundary conditions for w, ψ,
and T on the entrance and the exit are easily implemented. On the walls, the boundary conditions for
ψ and T are also implemented according to Equation (23). However, the boundary condition for w on
the walls are not straightforward.

The boundary conditions for the velocities on the lower and upper walls are set as

ui,J = 0, vi,J = 0, (34)

where J refers to the index of the lower and upper walls. By using boundary conditions of Equation (34)
and central differences of Equation (17), we obtained

ui,J = 0 =
∂ψ

∂y

∣∣∣∣
(i,J)

=
ψi,J+1 − ψi,J−1

2∆y
+ O

(
∆y2

)
⇒ ψi,J+1 = ψi,J−1 + O

(
∆y3

)
, (35)

vi,J = 0 = − ∂ψ

∂x

∣∣∣∣
(i,J)

=
ψi−1,J − ψi+1,J

2∆x
+ O

(
∆x2

)
⇒ ψi+1,J = ψi−1,J + O

(
∆x3

)
. (36)

Equation (18) is then discsretised using second order central difference, and substituting the
relations from Equations (35) and (36), the boundary conditions for the vorticity on the lower and
upper walls are then proved to be [33]

wi,J = −
2(ψi−1,J − ψi,J)

∆x2 +
2(ψi,J − ψi,J−1)

∆y2 + O
(

∆x2
)
+ O

(
∆y2

)
, (37)

where fictitious points are to be used accordingly. The discretisation of boundary conditions used for
w, ψ, and T during the advection phase and non-advection phase are similar.

The procedure for CIP-Finite Difference method is summarised as follows:

• Set the initial and boundary conditions according to Equation (23).
• Compute Equation (18) by using SOR.
• Calculate the velocities u and v by using Equation (17).
• Using the new u and v, calculate effective viscosity Equation (21).
• Solve numerically the non-advection phase of Equations (26) and (27).
• Calculate the spatial gradient of the non-advection phase from Equations (28) and (29).
• Advance the time iteration by solving numerically the advection phase and their spatial gradient

of Equations (24) and (25) by using the CIP algorithm from Equations (30)–(32).
• Repeat the above steps until the steady state is achieved by using the convergence criterion

in Equation (33).
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3.4. Dimensionless Parameters

To implement the numerical method, it is necessary to assign the values of parameters in the
governing equation. Other than the power-law index n, the nondimensional parameters appear in the
governing equations are

Re =
ρu2−n

r Ln

m
(Reynolds number),

Pr =
cpm

κ

(ur

L

)n−1
(Prandtl number),

MnF =
µ̄0H̄0K̄(T̄f − T̄w)

ρur
(Magnetic number arising from FHD),

N =
σ̄µ2

0H̄2
0 L

ρur
(Stuart number),

Ec =
u2

r
cp(T̄f − T̄w)

(Eckert number),

ε =
T̄w

(T̄f − T̄w)
(Temperature number).

The special definition of parameters Pr and Re above can be converted to conventional Newtonian
fluid by taking the power-law index n = 1. The parameter MnF is the Magnetic number that arises
due to FHD, whereas the parameter N is the Stuart number, defined as the ratio of magnetic to
inertia effects.

As in the works of [23,33,65], the magnetic fluid is considered to be blood as blood can
be paramagnetic, diamagnetic and non-Newtonian fluid. The parameters are calculated by
considering that ρ = 1050 kg m−3, m = µa = 3.2 × 10−3 kg m−1 s−1, with maximum velocity
ur = 1.524× 10−2 ms−1. The distance of the plates are L = 2.0× 10−2 m. Hence, the Reynolds number
is at Re = 100. The location of the magnetic wire for applying the localised magnetic field is set to
be (a, b) = (2.5,−0.05), where the maximum intensity occurred on H0 = H(2.5, 0). The temperatures
of the plate is assumed to be T̄w = 37 ◦C while the temperature of the fluid is T̄f = 41 ◦C, in which
making the temperature number ε to be 77.5. The Prandtl number is considered constant at Pr = 25 by
taking Cp = 3.9× 103 J kg−1 and κ = 0.5 J m−1 s−1. From these values, the Eckert number is set to be
Ec = 1.49× 10−8.

The important dimensionless parameter for this work is the Magnetic number MnF and it can be
written as

MnF =
µ̄0H̄0K̄(T̄f − T̄w)

ρur
,

=
B̄0M̄0

ρu2
r

,

=
B̄0M̄0L2ρ

µ̄2
aRe2 , (38)

where B̄0 and M̄0 = 40 A m−1 are the magnetic field induction and the magnetisation at the point
(a, 0) respectively. The Stuart number N is calculated subsequently using the parameters assigned as
in MnF, hence
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N =
σ̄µ2

0H̄2
0 L

ρur

=
µ̄a

Lρur

L2σ̄B̄2
0

µ̄a

=
L2σ̄B̄2

0
Reµ̄a

. (39)

Equations (38) and (39) show the relationship of MnF and N with Re, where increasing the
magnitude of Magnetic number is the same as lowering the Reynolds number. Hence, the Reynolds
number Re is fixed to be Re = 100 throughout the numerical experiment, as varying the value of
MnF and N are sufficient. The parameter for MnF and N assigned are dependent on the reference
magnetic field induction of B̄0 in Tesla (T) unit. The values of B̄0 are chosen to be 1 T, 4 T and 8 T and
the corresponding values for MnF and N are given in Table 1.

Table 1. Value of reference magnetic field B̄0 and the corresponding values of MnF and N for Re = 100.

B̄0 (Tesla) MnF N

0 0 0
1 164 0.0008
4 656 0.014
8 1316 0.056

This variation of Tesla number was implemented to study the effect of applied magnetic field
on power-law flows, in the case of shear thinning (n < 1), Newtonian (n = 1) and shear thickening
(n > 1). Another important parameter in this study is the power-law index, that determine whether
the fluid is Newtonian or non-Newtonian. The power-law index n is varied from n = 0.6 for shear
thinning fluid, to n = 1 and n = 1.4 for shear thickening fluid. This scenario is apt for the magnetic
fluid such as blood since its power-law index is varied in the human biological system. This can be
also interpreted as using different class of non-Newtonian magnetic fluid for the flow in a channel.

Flow and heat characteristics that are being compared in this study are the local skin friction and
the local rate of heat transfer coefficients. These quantities are defined as

C f =
2ψ′′(x, y)

Re

∣∣∣∣
y=0,1

, Nu =
∂T
∂y

∣∣∣∣
y=0,1

, (40)

where C f is the local skin friction coefficient and Nu is the Nusselt number that describes the local rate
of heat transfer coefficient. These coefficients are calculated both on the lower wall (y = 0) and upper
wall (y = 1) with different Magnetic number MnF and power-law index n number.

3.5. Grid Independence and Method Validation

Numerical solution of the system of Equations (18)–(20) has been developed using Matlab R©.
An extensive grid independence test is performed to check for the grid independent solution. The test
is based on the u-velocity profile along the various x location of the channel, where the focus is
emphasised near the location on the magnetic source. Five different size of grids configuration have
been performed on the case flow problem n = 1, MnF = 1312 and N = 0.056. The magnetic source
is located at (a, b) = (2.5,−0.05). As shown in Figure 2, when the grid size is refined from 400× 40
to 500× 100, there is a significant change on velocity profile, particularly near the magnetic source
and in the interval of the vortex size. The numerical simulation is sensitive on the vertical grid,
while no significant change occurred when refining the horizontal grid. For the temperature profile,
the local heat transfer on the lower wall of the channel has been used as a reference to test the grid
independence. Only the lower wall is shown since most of the significant changes occurred near the
magnetic source. The same grid independence test result is observed as seen in Figure 3, where the
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grids size have reached grid independence for temperature profile. These grids sizes have also been
tested with smaller time step and no significant changes is accounted. It is observed that the grid size
configuration of 400× 80 is sufficient to capture the velocity profile change near the magnetic location.

0 0.5 1
0

0.2

0.4

0.6

0.8

1
x = 0

0 0.5 1

x = 2

-2 0 2

x = 2.5

-5 0 5

x = 3.5

-2 0 2

x = 5

-2 0 2
0

0.2

0.4

0.6

0.8

1
x = 6

0 1 2

x = 7.5

0 1 2

x = 8

0 1 2

x = 9

0 1 2

x = 10

400 × 40

400 × 80

400 × 100

500 × 50

500 × 100

u

y

y

Figure 2. Grid independence test for u-velocity profile at different locations x of the channel.

1 2 3 4 5 6 7 8 9 10
x

-1

-0.5

0

0.5

1

1.5

N
u

400× 40

400× 80

400× 100

500× 50

500× 100

2 2.5 3 3.5
-0.1

0

0.1

0.2

0.3

Figure 3. Grid independence test of local heat transfer parameter on the channel’s lower wall.

The performance and the validation of present numerical method, are done separately on the
benchmark cases for non-Newtonian flow in lid driven cavity, and for the flow in a channel undergoing
the localised magnetic field. The results validation regarding the flow in a channel under the action of
localised magnetic field is performed as in [33]. From Figure 4, it can be seen that the present numerical
method developed is in good agreement with the compared studies.
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0 1 2 3 4 5 6 7 8 9 10
0

1

0 1 2 3 4 5 6 7 8 9 10
0

1

Figure 4. Stream function and vorticity contour for Re = 10, MnF = 131,250 obtained by using present
method and comparable with [33].

The second validation of the code is based on the non-Newtonian comparison. The computation
involving non-Newtonian of power-law model in a lid driven cavity is validated with the works of Bell
and Surana [60] and Neofytou [61]. In accordance with these works, simulations have been performed
for Re = 100 with different values of the power-law index. For Newtonian flow case, the comparison is
made with the benchmark works of Ghia et al. [80]. The grid size used is 150× 150, with the dimension
of the wall is 1× 1 where the top wall is moving with velocity u = 1. Figure 5a shows the results for
u-velocity along the vertical centreline and the Figure 5b v-velocity along the horizontal centreline.
The non-Newtonian cases for n = 0.5 and n = 1.5 show very good agreement when compared with
the results by Bell and Surana [60] and Neofytou [61]. For n = 1, the result is in very good agreement
with the result by Ghia et al. [80].

-0.5 0 0.5 1
u

0

0.2

0.4

0.6

0.8

1

y

Present results(n = 0.5)

Present results(n = 1)

Present results(n = 1.5)

Ghia et al(Newtonian)

Bell and Surana

Neofytou

(a)

0 0.2 0.4 0.6 0.8 1
x

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

v

Present results(n = 0.5)

Present results(n = 1)

Present results(n = 1.5)

Ghia et al(Newtonian)

Bell and Surana

Neofytou

(b)
Figure 5. Comparison between present results and the results by Bell and Surana [60], Neofytou [61]
for non-Newtonian power-law at various values of power-law index n, and Newtonian fluid flow by
Ghia et al. [80]. (a) u-velocity profiles along the vertical centreline of the cavity. (b) v-velocity profiles
along the horizontal centreline of the cavity for Re = 100.

4. Results and Discussion

The time step is chosen to be ∆t = 10−4 for Newtonian and shear thickening cases while for shear
thinning cases, the value of ∆t = 10−5 is required for the numerical method to converge. For shear
thinning fluid the lowest number of power-law index in this work that converged is n = 0.6 while
the shear thickening cases were tested until n = 1.5, although only the results for n = 0.6, n = 1 and
n = 1.4 are shown.

The flow is purely FHD by setting N = 0, and will be purely MHD if MnF = 0. When both MnF
and N are zero, there is no magnetic source and the flow is purely hydrodynamics hence the flow in
the channel has horizontal streamline corresponds to the parabolic profile for u-velocity. When the
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magnetic source is applied, a vortex arises near the area of the magnetic source. This phenomenon of
how the flow is affected by the applied magnetic source with the variation of the power-law index is
the main interest of this work. When the flow is tested on pure MHD, the effect of the magnetic field
is not significant as the value of Stuart number N that is required to induced the vortex in the area
of magnetic source has to be in the order of hundreds and the change is negligible even when N is
increased into the order of thousands.

Figure 6 shows the streamlines contours for variations of power-law index n = 0.6, 1.0 and n = 1.4,
with variation of reference magnetic field B̄0 = 1 T, B̄0 = 4 T, and B̄0 = 8 T. The notable effect of
applying magnetic field on the flow is the formation of arising vortex near the location of magnetic field.
As discussed in previous literature, this vortex extension increases with the increment of magnetic
field from 1 T to 8 T. Interesting results are observed when the power-law index is increased from
n = 0.6 to 1.4, the disturbance in the flow field is also affected. For the case of shear thinning fluid
n = 0.6 it can be seen that the extension of the vortex is large and extended towards the downstream,
compared to the case of when n = 1.0 and n = 1.4. Additionally when n = 1.4, the vortex formation is
smaller although its size increases when the Magnetic number is increased. The measured range of
sizes of the vortex for each cases summarised in Table 2.

Table 2. Range of vortex for different Magnetic numbers at various power-law index.

n B̄0 = 1 T B̄0 = 4 T B̄0 = 8 T

n = 0.6 2 < x < 5.66 2 < x < 7.61 2 < x < 8.42
n = 1.0 2 < x < 4.69 2 < x < 5.59 2 < x < 5.94
n = 1.4 2 < x < 4.04 2 < x < 4.61 2 < x < 4.87

Figure 7 shows the corresponding temperature contours for variations of power-law with variation
of reference magnetic corresponds to the case presented in Figure 6. It is shown that in the area of
magnetic source, the maximum temperature is displaced towards the upper plate. The effect is more
pronounced when the Magnetic number is increased, regardless the power-law index. The region of
the lower vortex is shown to be kept cooler and this region is extended towards the downstream when
the Magnetic number is increased for all the cases of different power-law index.

From the previous discussion, it can be seen that the influence of increasing power-law index
number n has the opposite effect to the increasing Magnetic numbers on the flow field. Table 3 shows
the minimum velocity for different Magnetic numbers at various power-law index. The negative
symbol indicates the direction of the velocity and the reverse flow of the vortex region near the
magnetic source. From Magnetic number 1 T to 8 T the minimum u-velocity is increased for every
n. Overall, the shear thickening flow has the highest velocity followed by Newtonian and shear
thinning flow.

Table 3. Minimum u-velocity for different Magnetic numbers at various power-law index.

B̄0 = 1 T B̄0 = 4 T B̄0 = 8 T

n = 0.6 umin = −0.1792 umin = −0.2831 umin = −0.4106
n = 1.0 umin = −0.2258 umin = −0.3783 umin = −0.4848
n = 1.4 umin = −0.2357 umin = −0.4068 umin = −0.5093
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Figure 6. Streamline plot for power-law index: (a) n = 0.6 (shear thinning). (b) n = 1.0 (Newtonian).
(c) n = 1.4 (shear thickening).
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Figure 7. Temperature plot for power-law index: (a) n = 0.6 (shear thinning). (b) n = 1.0 (Newtonian).
(c) n = 1.4 (shear thickening).

The variation of wall shear stress and heat transfer parameters of various Magnetic numbers
for n = 0.6, n = 1.0 and n = 1.4 are shown in Figures 8–10 respectively. The wall shear stress are
shown to have more influence on the lower plate, particularly at the location of the magnetic source.
The variation of this parameter is qualitatively the same as magnetic field are varied from 1 T to 8 T,
where the higher magnetic field results in greater variation of the wall shear stress irrespective the
value of n. The variation of wall shear for the upper wall (Figures 8a, 9a and 10a) for all cases changes
smoothly from increasing to decreasing near the area of the magnetic source, and its sign does not
change. For the upper wall, the lower values of this parameter indicates the higher rates of skin friction.
For the case of the lower wall (Figures 8c, 9c and 10c), the rapid changes of this parameter is largest for
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the case of shear thinning flow, followed by Newtonian and shear thickening flow as shown by the
difference of the extrema values. For the lower wall, the negative values of the wall shear stress refers
to inversion of the flow, and when wall shear stress reach its original value at x = 0, it refers to fully
developed flow. This indicator is used to verify that all the flow cases managed to revert back to fully
developed flow when it reaches downstream.
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Figure 8. Variations of wall shear stress and heat transfer parameter for n = 0.6 with different intensity
of magnetic field number.

The heat transfer parameters for the upper wall (Figures 8b, 9b and 10b) and lower wall (Figures 8d,
9d and 10d) similarly shows the same qualitative variation when magnetic fields are varied from 1 T
to 8 T, for each case flow. On the lower wall, it is shown that the rate of heat transfer increases when
Magnetic number increases, regardless the power-law index. For the case of n = 0.6, the overall heat
transfer to lower wall is greater than the case of n = 1.0 and n = 1.4. The heat transfer coefficient
is relatively high near the location of magnetic source, and another second region reaching the
downstream due to the disturbance of the temperature field is extended far downstream. These second
location of high heat transfer coefficient are observed at region 5.5 < x < 8.5, 4.5 < x < 6 and
4 < x < 5 for n = 0.6, n = 1.0 and n = 1.4 respectively. On the upper wall, the lower values of this
coefficient refers to higher rates of heat transfer to the wall and it exhibits a similarity with the case of
the lower wall.
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Figure 9. Variations of wall shear stress and heat transfer parameter for n = 1 with different intensity
of magnetic field.
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Figure 10. Variations of wall shear stress and heat transfer parameter for n = 1.4 with different intensity
of magnetic field.

Another quantitative comparison can be made from Figure 11, for different power-law index n
and magnetic field at 8 T, where it shows that the wall shear stress and heat transfer parameters are
highest for the case of shear thinning flow, followed by Newtonian and shear thickening.
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Figure 11. Variations of wall shear stress parameter C f and heat transfer parameter Nu for MnF = 1312,
N = 0.056 for different power-law index n.
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5. Conclusions

In this paper, the effect of magnetic field on non-Newtonian biomagnetic power-law flow in a
channel has been studied numerically by Constrained Interpolated Profile Finite Difference Method
(CIP-FDM). This study has been conducted for the parameters B̄0 = 1 T, B̄0 = 4 T and B̄0 = 8 T
for power-law index n = 0.6 (shear thinning), n = 1 (Newtonian) and n = 1.4 (shear thickening).
The investigation is performed based on the study of the streamline, temperature, vorticity contours,
wall shear stress and heat transfer parameters. A good agreement validated with previous numerical
investigation demonstrates that the CIP-FDM is an appropriate method for the power-law flow in
a channel under an applied magnetic field. The enhancement of Magnetic number increases the
length of vortex formation regardless the power-law index. The consideration of power-law index,
causes the size of vortex formation to expand in shear thinning flow, and shrink in shear thickening
flow. The amplification of Magnetic number increases both the wall shear stress and the heat transfer
parameters dominantly near the location of magnetic source. The opposite effect is observed when the
power-law is included as the wall shear stress and heat transfer parameters are decreased. The work
reported here shows the severe drawbacks associated with RF radiation to blood vessel locally on
the displacement of the high temperature and the blockage due to back flow. For future research,
it is recommended to perform an analysis on fluid structure interaction by calculating the elastic
deformation of the vessel.
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Abbreviations

The following abbreviations are used in this manuscript:

FHD Ferrohydrodynamics
MHD Magnetohydrodynamics
EMF electromagnetic field
MRI Magnetic Resonance Imaging
T Tesla
RF radiofrequency field
CIP Constrained Interpolation Profile
FDM Finite Difference method
FEM Finite Element method
FDLBM Finite Difference Lattice Boltzmann method
DRBEM Dual Reciprocity Boundary Element method
LBM Lattice Boltzmann method
CVFEM Control Volume Finite Element method
SOR Successive Overrelaxation
CIP-FDM Constrained Interpolation Profile Finite Difference Method

nomenclatures
µ̄a viscosity
m fluid consistency
I2 second invariant of the rate of strain tensor
n Power-law index
~v velocity vector
ρ density
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p pressure
~τ stress tensor
~J current density
M̄ magnetisation
B̄ magnetic field
µ̄0 magnetic permeability
H̄ magnetic field intensity
cp specific heat
κ thermal conductivity
σ̄ electrical conductivity
T̄w temperature of the wall
T̄f temperature of the fluid
x, y Cartesian coordinates
T temperature
u x-velocity
v y-velocity
t time
(a, b) coordinate of magnetic source
ψ stream function
w vorticity
Re Reynolds number
MnF Magnetic number
N Stuart number
Pr Prandtl number
Ec Eckert number
ε temperature number
C f local skin friction coefficient, wall shear stress
Nu Nusselt number, heat transfer coefficient
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