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Abstract: This paper presents an improved consensus-based procedure to handle multi-person
decision making (MPDM) using hesitant fuzzy preference relations (HFPRs) which are not in normal
format. At the first level, we proposed a Łukasiewicz transitivity (TL-transitivity) based scheme to get
normalized hesitant fuzzy preference relations (NHFPRs), subject to which, a consensus-based model
is established. Then, a transitive closure formula is defined to construct TL-consistent HFPRs and
creates symmetrical matrices. Following this, consistency analysis is made to estimate the consistency
degrees of the information provided by the decision-makers (DMs), and consequently, to assign
the consistency weights to them. The final priority weights vector of DMs is calculated after the
combination of consistency weights and predefined priority weights (if any). The consensus process
concludes whether the aggregation of data and selection of the best alternative should be originated or
not. The enhancement mechanism is indulged in improving the consensus measure among the DMs,
after introducing an identifier used to locate the weak positions, in case of the poor consensus reached.
In the end, a comparative example reflects the applicability and the efficiency of proposed scheme.
The results show that the proposed method can offer useful comprehension into the MPDM process.

Keywords: consistency weights; fuzzy preference relation (FPR); hesitant fuzzy preference relation
(HFPR); Łukasiewicz consistency; normal hesitant fuzzy preference relation (NHFPR)

1. Introduction

Making decisions is an integral part of human life. Many of them require “rational” or “good”
decisions to be sought from decision makers (DMs), taking into account different criteria for evaluating
individual decision options [1,2]. A typical practical area where the choice of a decision option
requires consideration of a set of conflicting criteria is the domain of sustainability [3,4]. In such
situations, the evaluation of decision alternatives with consideration of ecological, economic and social
perspectives is carried out using multi-criteria decision support methods [5,6].

In modern society, multi-person decision making (MPDM) is an important process of getting
optimal decision results [7]. In any case, the evaluation contributed by DMs might well fluctuate
depending on different interpretation skills, experience and judgments of the DMs [8,9]. Therefore,
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it is difficult to achieve a unified consensus under this condition [10]. This is a significant issue for
the assessment of the outcomes of decisions that are generally appropriate to most DMs when the
decision-making process originates. However, a great challenge for the researchers is to achieve
unanimous and acceptable decision results and approach a strong consensus level [11]. Therefore,
different algorithms to reach a strong consensus level in a GDM process have been thoroughly
studied. For instance, Zhang et al. [12] established a maximum support degree consensus model
under hesitant information and linguistic assessments. Li et al. [13] introduced an interactive process
of reaching the consensus level at uncertain and minimum cost. Li and Wang [14] proposed
an automatic iterative algorithm to reach a consensus level in the context of probabilistic hesitant fuzzy
preference relations. Tian and Wang et al. [15] established signed distance-based consensus measures
on three levels with multi-granular hesitant unbalanced linguistic assessments to find the consensus
degree. Zhang et al. [16] developed a consensus model with heterogeneous large-scale GDM with
satisfaction and individual concerns. Furthermore, Herrera-Viedma et al. [17] studied analysis of
consensus-reaching models in fuzzy environments.

In MPDM processes, the consensus-building mechanism is commonly used as a tool based on
preference relations. The definition of hesitant fuzzy preference relation (HFPR) developed by Xia
and Xu [18], which is now being used as an efficient and easy method for communicating alternative
data for a group of DMs, e.g., while providing the decision degree to which an alternative x1 is
preferable to another alternative x2 for a group of three DMs. Suppose three DMs provide 0.3, 0.4
and 0.5, respectively. If all the DMs cannot establish a consensus to accept their assessment, then a set
comprising their combined decisions in the form of the hesitant fuzzy element (HFE) {0.3, 0.4, 0.5}
can be considered as the preference degree of x1 to x2. The HFPR proposed in [18] has been studied
by many researchers in the perspective of GDM [19–21] but despite all these extensive studies and
developments, certain disputes remain. The immediate benefit of the HFPR is that the DMs may have
a set of values that display the consequences of the assessment. However, the HFEs in the HFPR
will provide a specific number of elements that can cause difficulties in creating a consensus in the
decision-making process. For instance, most consensus models are focused on distance calculation
between two HFPRs, and it is very difficult to determine an effective distance between two unequal
HFEs [22]. As a result, DMs are confused in deriving the priority weight vectors from the HFPR having
unequal HFEs [23]. Based on this discussion, it raises a query that either a normalization-based method
is rational after reviewing all these controversies. However, some researchers focused on using the
normalization-based method, and others denied this idea [24].

The normalization-based method required any two HFEs to have an equal number of elements.
Various scholars in the decision-making process have greatly appreciated this method. In the case of
those HFEs having an unequal number of elements, the HFEs having an equal number of elements
can be obtained by inserting various elements to the shorter one or removing several elements in
the longer HFE. Zhu et al. [23] initially introduced α and β normalization methods. Based on
these two methods, many researchers have developed different methods of the extraction of priority
weight vector as well as the consensus reaching models [25,26]. Zhang and Wu [26] designed goal
programming models for incomplete hesitant multiplicative preference relation and determine the
priority weight vectors by using α and β normalization methods. Meng et al. [27] proposed a new
consistency concept for hesitant multiplicative preference relations and then derive the hesitant
fuzzy priority weight vector. Furthermore, Zhang [28] developed a goal-programming model for
an incomplete HFPR and derive priority weight vectors based on α and β normalization methods
respectively. Zhang et al. and Li et al. [29,30] defined some preference relations based on q-rung
orthopair fuzzy sets and investigated a technique to obtain the priority weights from individual
or group q-rung orthopair fuzzy preference relations. Since various scholars have continuously forced
on using these two methods, therefore, various new normalization methods have been constructed,
for example, Xu et al. [31] introduced an additive consistency-based normalization method and
developed a consensus model for solving water allocation management problems.
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Due to the limited expertise and experience of DMs, it can be difficult for them to establish
complete preference relations during pairwise decisions on alternatives [32,33]. Therefore, there is
a need for the development of some approaches which help to manage HFPRs with incomplete
information. Based on the additive consistency of HFPR, Zhang et al. [34] proposed a method to guess
missing elements of an incomplete HFPR. Zhang [28] further defined the multiplicative consistency of
an HFPR, and by using a normalization method, the missing elements of HFPR were estimated based
on the multiplicative consistency. Based on the additive consistency and multiplicative consistency
of incomplete HFPRs in local and group decision-making settings, Xu et al. [21] designed mixed 0–1
programming models to find a priority weight vector from incomplete HFPRs. To estimate the missing
elements for an incomplete HFPR, Khalid and Beg [35] proposed an algorithm by utilizing hesitant
upper bound condition for the DMs.

The stability of preference relations plays a critical role in the decision-making phase in the
pairwise assessments of DM’s preferences [36]. The idea of the consistency of fuzzy preference relation
was extended to establish the concept of consistency of HFPR. It is very important to measure the
consistency of fuzzy preference relations to get consistent results from a decision making process.
By using the α-normalization method, Zhu [37] introduced a regression method and established
a methodology to transform HFPR into a fuzzy preference relation having the highest level of
consistency measure. To measure the consistency level of HFPR, the distance measure between
normalized HFPR and consistent HFPR plays an important role. By using this idea, Zhang et al. [38]
constructed a consistent HFPR based on the concept of additive consistency and multiplicative
consistency of HFPR. Some feedback and automatic optimization algorithms were developed in
the same study to improve the consistency level of those HFPRs which are not of acceptable
consistency [39]. Liu et al. [40] derived some operational laws for fuzzy preference relations with
self-confidence. They presented an additive consistency index that reflects both the fuzzy preference
values and self-confidence to include their consistency levels.

A concise literature review shows that the consensus reaching process must be considered in
MPDM problems. As discussed in our previous works, while outstanding achievements in this field
have been made, very little work has been centered on consensus and consistency measures and,
therefore, the novelty of our paper is to establish a consensus model in the context of HFPRs, based on
another effective consistency measure approach called the TL-consistency. This research study is based
on two research questions. The first one is to propose a consensus-based method to handle MPDM
problem using consistent HFPRs, and the second one is to incorporate an enhancement mechanism to
accelerate the execution of a higher consensus level on an easy path. In this paper, the authors present
an improved technique for consensus proposing in group decision making based on TL-consistency
in HFPRs environment. As consistency is an important issue to accept when the experts provide
data, the proposed method can estimate more reasonable and consistent values when an FPR carries
missing preferences. Consistency is associated with the transitivity property for which several useful
forms or conditions have been suggested in the literature of FPRs [41]. The weakest of them is
TL-transitivity, i.e., rik ≥ max(rij + rjk − 1, 0), and it is the most appropriate notion of transitivity for
fuzzy ordering [42]. Therefore, the individual and collective FPRs obtained by this method are fully
consistent under the use of t-norm. At the first step, we evaluate the missing preferences of IFPRs using
TL-transitivity property. Then, we propose the changed consistency matrices of experts, which have to
satisfy the TL-consistency, and measure the level of consistency. The degree of significance is given to
the experts based on accuracy weights aggregated with confidence weights. The proposed approach
provides us with a powerful way to create consensus in group decision-making based on TL-transitivity
with IFPRs.

This manuscript is organized as follows: in Section 2, some basic definitions are provided to
facilitate the paper understanding. In Section 3, a new procedure to normalize the HFPRs is proposed
and further extended to the MPDM problem using consistency and consensus measures, respectively.
Section 4 is comprised of a comparative example to examine the efficiency of the proposed method.



Symmetry 2020, 12, 1957 4 of 19

Section 5 provides a comparison of the results obtained, using our proposed technique, with the ones
in the literature. The last section includes some conclusions.

2. Preliminaries

In this section, some basic information is given in order to better understand the article.
L. A. Zadeh introduced the notion of a fuzzy set [43] in 1965 and used it to illustrate how an entity is
more or less connected to a particular category that we want to conform to.

Definition 1. Fuzzy Set [43]: A set A on universe X associated with a mapping from X to [0, 1] is called fuzzy
set, symbolizes as A = {(x, A(x))}. The output A(x) for all x ∈ X is known as the degree to which x belongs
to A i.e., A(x) =Degree(x ∈ A) under the membership function A : X → [0, 1].

Definition 2. Hesitant Fuzzy Set [44]: A hesitant fuzzy set A on a fixed finite set X is associated with
a function hA(x) from X to a finite subset of [0, 1].

To have been properly described, Xia and Xu [45] articulate the HFS with following mathematical symbol:

E = {< x, hE(x) > | x ∈ X},

where hE(x) is a set of some values in [0, 1], denoting the possible membership degrees of the element x ∈ X to
the set E. For convenience, Xia and Xu [45] named hE(x) a hesitant fuzzy element (HFE).

Definition 3. Fuzzy Preference Relation [46]: A relation R on a finite set X = {x1, x2, x3, . . . , xn} of
alternatives characterized by law R : X × X → [0, 1], satisfying: rij + rji = 1 (additive reciprocity) for
1 ≤ i ≤ n and 1 ≤ j ≤ n, is called a fuzzy preference relation where rij denotes the degree of preference of
alternative xi to the alternative xj with R(xi, xj) = rij ∈ [0, 1]. If rij = 0.5, then there is no difference between
the alternatives xi and xj. If rij > 0.5, then alternative xi is preferred over the alternative xj, if rij = 1, then the
alternative xi is definitely preferred over the alternative xj.

Definition 4. Hesitant Fuzzy Preference Relation [31]: Let X = {x1, x2, . . . , xn} be a fixed set, and then
the HFPR on X is expressed by a matrix H = (hij)n×n ⊂ X × X, where hij = {h

β
ij | β = 1, 2, . . . , #hij} is

hesitant fuzzy preference value (HFPV) that indicates all the possible preference degrees of alternative xi over xj.
Moreover, hij must satisfy the following conditions:

hβ
ij + hβ

ji = 1, i, j = 1, 2, . . . , n
hii = {0.5}, i = 1, 2, . . . , n
#hij = #hji, i, j = 1, 2, . . . , n

,

where #hij is the number of values in hij, and hβ
ij is the βth element in hij.

Definition 5. Incomplete Fuzzy Preference Relation [47]: A FPR R = (rij)n× n is considered to be incomplete
if it includes at least one uncertain value of preference rij for which the expert has no idea of the degree of preference
of alternative xi over xj.

Definition 6. Consistent Fuzzy Preference Relation: A FPR R is said to be TL-consistent, if for i, k 6= j ∈
{1, 2, 3, . . . , n} : rik ≥ max(rij + rjk − 1, 0) (TL-transitivity) is satisfied.

3. Proposed Procedure

In this section, the authors presented an improved procedure to handle MPDM problems using
HFPRs, and comprising of: normalization process; consistency measures; consensus measures;
consensus improving process; assigning priority weights to decision makers and selection process
(aggregation and ranking process).
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3.1. Normalization Process

In this subsection, a new procedure to normalize HFPRs is proposed, because in most of
the cases for any two hesitant fuzzy preference values (HFPVs) hij and hlm,

∣∣hij
∣∣ 6= |hlm| for

i, j, l, m ∈ {1, 2, 3, . . . , n}where
∣∣hij
∣∣ and |hlm| represent the cardinalities of sets of pairwise comparisons

at ijth and lmth positions. In order to operate smoothly, Zhu et al. [23] presented a procedure known
as β-normalization to construct HFPRs with preference values having same cardinalities. This study
includes that if hij =

{
hβ

ij | β = 1, 2, . . . ,
∣∣hij
∣∣} is a HFPV with h+ij and h−ij as maximum and minimum

elements in hij, respectively, and let ξ (0 ≤ ξ ≤ 1) be a parameter, then the element hij to be added
can be estimated using hij = ξh+ij + (1 − ξ)h−ij . In particular sense, ξ = 1 implies that hij = h+ij ,

and hij = h−ij when ξ = 0, which are known as optimism and pessimism rules in Xu and Xia [48]’s
approach, respectively.

There are some restrictions that exist in both the techniques described above. In Zhu et al. [23]’s
technique, various possibilities exist to normalize the HFPVs, it is due to the different values of
parameter ξ. In Xu and Xia [48]’s approach, the estimated element is only the maximum or minimum
entry of HFPV and other intermediate values cannot be taken as an added element. Due to
these restrictions, Xu et al. [31] presented another scheme to normalize the given HFPRs based on
additive transitivity.

After getting motivation from Xu et al. [31]’s work, we put forward a new scheme to estimate the
elements to be added in HFPVs regarding the normalization of the given HFPRs. The proposed scheme
is based on TL-consistency in which we take the elements to be added as unknown preference values,
and construct the incomplete fuzzy preference relation(s) (IFPR(s)). It is to be noted that an IFPR can
only be completed based on the TL-consistency if each one of the alternatives is compared at least once
among the known preference values. Thus, the system needs to ask the expert to form an adequate
number of preferences in which each one of the alternatives is compared at least once to let the IFPR
become a complete FPR. The order of measuring the missing preference values affects the final result.
In order to determine the unknown preference values in an IFPR R = (rij)n×n, the following sets can
be defined to represent the pairs of alternatives for known and unknown preference values:

Ke = {(i, j) | rij is known}, (1)

Ue = {(i, j) | rij is unknown}, (2)

where rij ∈ [0, 1] shows the preference values of alternative ai over the alternative aj, rij + rji =

1 =⇒ rii = 0.5 ∀i ∈ {1, 2, . . . , n}. Therefore, the following set can be defined to estimate the
unknown preference value rij of alternative ai over alternative aj based on TL-transitivity rik ≥
max(rik + rkj − 1, 0):

Eij = {k 6= i, j | (i, k) ∈ Ke, (k, j) ∈ Ke and (i, j) ∈ Ue}, (3)

for i, j, k ∈ {1, 2, 3, . . . , n}. Based on Equation (3), final value of rij is estimated using:

rij =

 ave
k∈Eij

(max(rik + rkj − 1, 0)), if |Eij| 6= 0

0.5, otherwise
. (4)

To get satisfy the additive reciprocity (rij + rji = 1) of constructed complete preference relation R
in case of rij + rji > 1 or rij + rji < 1, following scaling condition helps us:

(rij − g) + (rji − g) = 1 such that g =
rij + rji − 1

2
. (5)
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Finally, a complete FPR R∗ = (r∗ij)n×n is obtained, where r∗ij = rij − g such that r∗ij + r∗ji = 1. Now,
two new sets K′e and U′e of known and unknown elements are defined as follows:

K′e = Ke ∪ {(i, j)}, and U′e = Ue − {(i, j)}. (6)

Consequently, a normalized hesitant fuzzy preference relation (NHFPR) H∗ = (h∗ij)n×n with

h∗βij + h∗βji = 1, h∗ij = {h
∗β
ij | β = 1, 2, . . . ,

∣∣∣h∗ij∣∣∣} for
∣∣∣h∗ij∣∣∣ = ∣∣∣h∗ji∣∣∣ , is constructed. In real world, there are

many decision-making processes which take place in multi-person settings because the increase of
complexity and uncertainty of the socio-economic environment makes it less possible for a single
decision maker to consider all related traits of a decision-making problem.

Example 1. Let H be the following HFPR:

H =


{0.5} {0.3} {0.5, 0.7} {0.4}
{0.7} {0.5} {0.7, 0.9} {0.8}

{0.5, 0.3} {0.3, 0.1} {0.5} {0.6, 0.7}
{0.6} {0.2} {0.4, 0.3} {0.5}

 .

To normalize H, first, we have to transform it into two FPRs as follows:

R1 =


0.5 0.3 0.5 0.4
0.7 0.5 0.7 0.8
0.5 0.3 0.5 0.6
0.6 0.2 0.4 0.5

 , R2 =


0.5 r12 0.7 r14

r21 0.5 0.9 r24

0.3 0.1 0.5 0.7
r41 r42 0.3 0.5

 .

Clearly, R2 is an IFPR. Now, we estimate the unknown preference values using TL-consistency
based procedure as follows:
(Round-i) The sets of pairs of alternatives for known and unknown preference values, respectively, are:

Ke = {(1, 3), (2, 3), (3, 1), (3, 2), (3, 4), (4, 3)},

Ue = {(1, 2), (1, 4), (2, 1), (2, 4), (4, 1), (4, 2)}.

Here, we neglect the diagonal entries. To find the value of r12, the set E12 of intermediate
alternatives ak is defined such that (1, k), (k, 2) ∈ Ke, as:

E12 = {3}.

Now, the value of r12 is estimated based on E12 as:

r12 = max(r13 + r32 − 1, 0) = max(0.7 + 0.1− 1, 0) = 0.

The new sets of known and unknown preference values are:

K′e = {(1, 2), (1, 3), (2, 3), (3, 1), (3, 2), (3, 4), (4, 3)},

U′e = {(1, 4), (2, 1), (2, 4), (4, 1), (4, 2)}.
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After repeating the process as in Round-i, we can easily estimate the remaining values
r14, r21, r24, r41 and r42. After evaluating all the missing values, we get:

R2 =


0.5 0 0.7 0.4
0.2 0.5 0.9 0.3
0.3 0.1 0.5 0.7
0 0 0.3 0.5

 .

The scaling condition (5) helps us to construct the following FPR R2 after getting the
complete form:

R2 =


0.5 0.4 0.7 0.7
0.6 0.5 0.9 0.65
0.3 0.1 0.5 0.7
0.3 0.35 0.3 0.5

 .

Hence, the NHFPR H∗ is constructed as:

H =


{0.5, 0.5} {0.3, 0.4} {0.5, 0.7} {0.4, 0.7}
{0.7, 0.6} {0.5, 0.5} {0.7, 0.9} {0.8, 0.65}
{0.5, 0.3} {0.3, 0.1} {0.5, 0.5} {0.6, 0.7}
{0.6, 0.3} {0.2, 0.35} {0.4, 0.3} {0.5, 0.5}

 .

3.2. Consistency Analysis

In this subsection, some consistency measures, such as consistency level of pair of alternatives,
consistency level of alternatives and the consistency level of HFPR, are defined. The term consistency
index (CI) stands for consistency degree whose value lies in [0, 1].

Let Hq be the HFPR associated to the decision maker Dq (1 ≤ q ≤ l), then after getting NHFPR
H∗q, TL-consistent HFPR H̃∗q can be obtained with the help of following transitive closure formula:

h̃∗qβ
ij = max

k 6=i,j
(h∗qβ

ij , max(h∗qβ
ik + h∗qβ

kj − 1, 0)), h̃∗qβ
ij + h̃∗qβ

ji = 1 (7)

where h∗qij = {h∗qβ
ij | β = 1, 2, . . . ,

∣∣∣hq∗
ij

∣∣∣}. Now, we can estimate the consistency level of HFPR H∗q

based on its similarity with the corresponding TL-consistency H̃∗q after evaluating distance between
them in the following manner.

1. TL consistency index (TLCI) for a pair of alternatives evaluated as:

TLCI(h∗qij ) = 1− 1∣∣∣h∗ij∣∣∣
∣∣∣h∗ij∣∣∣
∑
β=1

d
(

h∗qβ
ij , h̃∗qβ

ij

)
(8)

where d(h∗qβ
ij , h̃∗qβ

ij ) represents the distance obtained by d
(

h∗qβ
ij , h̃∗qβ

ij

)
=

∣∣∣∣h∗qβ
ij − h̃∗qβ

ij

∣∣∣∣. Usually,

the higher the level of TLCI(h∗qij ), the more consistent h∗qij is as compared to the rest of HFPVs
regarding alternatives ai and aj.

2. TLCI for alternatives ai, 1 ≤ i ≤ n, is determined as:

TLCI(ai) =
1

2(n− 1)

n

∑
j=1,j 6=i

(TLCI(h∗qij ) + TLCI(h∗qji )) (9)
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with TLCI(ai) ∈ [0, 1]. If TLCI(ai) = 1, then the preference values concerning alternative ai are
fully consistent, else the smaller TLCI(ai) the more inconsistent these preference values are.

3. At the end, TLCI against NHFPR H∗q is evaluated using average operator:

TLCI(H∗q) =
1
n

n

∑
i=1

TLCI(ai) (10)

with TLCI(H∗q) ∈ [0, 1]. If TLCI(H∗q) = 1, then NHFPR H∗q is fully consistent, else the smaller
TLCI(H∗q) the more inconsistent H∗q is.

The consistency index evaluated by Equation (10) is associated with DM Dq, while the global
consistency index CI can be measured using average operator and given as:

CI =
1
l

l

∑
q=1

TLCI(H∗q) (11)

with CI ∈ [0, 1]. Once, the TLCI is measured in three stages involving Equations (8)–(10),
it is expressible to assign higher weights to the experts which provided the HFPR with larger
consistency indices respectively. Therefore, consistency weights can be allocated to the experts using
following relation:

Cw(Dq) =
TLCI(H∗q)
l

∑
q=1

TLCI(H∗q)

(12)

with Cw(Dq) ∈ [0, 1] and
l

∑
q=1

Cw(Dq) = 1.

3.3. Consensus Analysis

In this subsection, some levels to estimate global consensus degree amongst decision makers are
defined. After evaluating NHFPRs H∗q, q = 1, 2, . . . , l, it is essential to estimate the consensus level
amongst the decision makers. In relation to this, a collective similarity matrix S = (sij)n×n can be
obtained, after aggregating the similarity matrices Sqr = (sqr

ij )n×n for every pair of decision makers
(Dq, Dr) (q = 1, 2, . . . , l − 1; r = q + 1, . . . , l), as follows:

S =
(
sij
)

n×n =

 2
l(l − 1)

l−1

∑
q=1

l

∑
r=q+1

1− 1∣∣∣h∗ij∣∣∣
∣∣∣h∗ij∣∣∣
∑
β=1

d
(

h∗qβ
ij , h∗rβ

ij

)


n×n

(13)

where 1− 1∣∣∣h∗ij∣∣∣
∣∣∣h∗ij∣∣∣
∑
β=1

d
(

h∗qβ
ij , h∗rβ

ij

)
= sqr

ij and d
(

h∗qβ
ij , h∗rβ

ij

)
=
∣∣∣h∗qβ

ij − h∗rβ
ij

∣∣∣, β = {1, 2, . . . ,
∣∣∣h∗ij∣∣∣}.

The following levels involve to estimate the global consensus degree amongst the decision makers:

1. At the first level, the consensus degree on a pair of alternatives (ai, aj), denoted by cdij is defined
to estimate the degree of consensus amongst all experts on that pair of alternatives:

cdij = sij (14)
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2. At the second level, the consensus degree on alternatives ai denoted by CDi, is defined to
determine the consensus degree amongst all the experts on that alternative:

CDi =
1

2(n− 1)

n

∑
j=1,j 6=i

(sij + sji) (15)

3. At the third level, the consensus degree on the relation denoted by CR, is defined to calculate the
global degree of consensus amongst all DMs:

CR =
1
n

n

∑
i=1

CDi (16)

If the global consensus level of all experts is reached, it needs a comparison with the threshold
consensus degree η, usually pre-determined based on the nature of the issue. If CR ≥ η is obtained,
this indicates that a sufficient degree of consensus has been achieved and the decision-making process
starts. Otherwise, the consensus degree is not stable, and experts are asked to revise their preferences.

3.4. Enhancement Mechanism

The enhancement mechanism plays the role of a moderator in the consensus-reaching process
and provides comprehensive information to decision makers in order to enhance their findings. In case
of insufficient consensus level, we have to identify the positions at which preference values are to be
modified, so as to reach the acceptable consensus degree amongst the decision makers. In this regard,
an identifier is defined as follow:

Iq = {(i, j) | cdij < CR and hqβ
ij is a known value} (17)

As soon as an identifier has determined the positions, the enhancement mechanism suggests the
respective DM Dq to increase the element hqβ

ij of HFPV hq
ij, if it is smaller than the mean value h∗qβ

ij, ave of
the opinions by the participants, or to decrease in case of higher than the mean, and remains the same
in case of equal to mean.

The advice made above only provides the direction to DMs for updating their preferences, but is
unable to suggest the values. In order to update the element(s) of HFPV, the DMs are suggested to
choose the new element hqβ

ij, new from the interval [min(hqβ
ij , h∗qβ

ij, ave), max(hqβ
ij , h∗qβ

ij, ave)].
In order to enhance the consensus automatically, the DMs would not have to provide their

updated elements in automatic mechanism. In such a situation, the following expression could be
used to evaluate the new element hqβ

ij, new for cdij < CR:

hqβ
ij, new = λhqβ

ij + (1− λ)h∗qβ
ij, ave, (18)

where λ ∈ [0, 1] is known as the optimization parameter. It is obvious that the new evaluated values
will be closer to mean values as compare to old ones, and hence the consensus degree enhances.

3.5. Rating of Decision Makers

The final priority rating of decision makers is evaluated by emerging consistency weights and
predefined priority weights as:

w(Dq) =
ωq × Cw(Dq)
l

∑
q=1

ωq × Cw(Dq)

(19)
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where ωq, 1 ≤ q ≤ l, represent the predefined priority weights of decision makers, while
l

∑
q=1

w(Dq) = 1.

If the decision makers do not carry a predefined priority weights, then their consistency weights will
be considered as the final priority rating.

3.6. Aggregated NHFPR

It may habitually occurs that the preference level associated to each DM is weighted differently.
After evaluating the priority rating of decision makers, their opinions are to be aggregated into global
one. We construct the collective consistent NHFPR H∗c using weighted average operator as:

H∗c = (h∗cij )n×n =

(
l

∑
q=1

w(Dq)× h̃∗qij

)
n×n

(20)

for 1 ≤ i ≤ n, 1 ≤ j ≤ n.

3.7. Ranking of Alternatives

As soon as the consensus amongst the decision makers is reached at an acceptable level, the process
to rank the alternatives initiates and chooses the best one. In this regard, we define the ranking value
v(ai) of alternative ai, i = 1, 2, . . . n, as follows:

v(ai) =
2

n(n− 1)

n

∑
j=1
j 6=i

 1∣∣∣h∗cij

∣∣∣
∣∣∣h∗cij

∣∣∣
∑
β=1

h∗cβ
ij

 (21)

with
n

∑
i=1

v(ai) = 1.

4. Comparative Example

In this section, we apply the proposed consensus-based procedure on a case study attempted by
Xu et al. [31] to allocate water in the Jiangxi Province, China.

The following four alternatives with specific traits are considered as water allocation alternatives:
(i) The first alternative a1 is associated to social factor. (ii) The economic factor is considered by second
alternative a2. (iii) The third alternative a3 considers the ecological factors to protect the local ecological
environment. (iv) The final alternative a4 thinks of the final output and return the local important scare
resources.

A team of four decision makers Dq, q = 1, 2, 3, 4, from different departments is organized to
provide assessments on the four alternatives ai, i = 1, 2, 3, 4. After pairwise comparisons, following
HFPRs Hq, q = 1, 2, 3, 4, are provided by the decision makers Dq, q = 1, 2, 3, 4, respectively.

H1 =


{0.5} {0.3} {0.5, 0.7} {0.4}
{0.7} {0.5} {0.7, 0.9} {0.8}

{0.5, 0.3} {0.3, 0.1} {0.5} {0.6, 0.7}
{0.6} {0.2} {0.4, 0.3} {0.5}

 ,

H2 =


{0.5} {0.3, 0.5} {0.1, 0.2} {0.6}
{0.7, 0.5} {0.5} {0.7, 0.8} {0.1, 0.3, 0.5}
{0.9, 0.8} {0.3, 0.2} {0.5} {0.5, 0.6, 0.7}
{0.4} {0.9, 0.7, 0.5} {0.5, 0.4, 0.3} {0.5}

 ,
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H3 =


{0.5} {0.3, 0.5} {0.7} {0.7, 0.8}
{0.7, 0.5} {0.5} {0.2, 0.3, 0.4} {0.5, 0.6}
{0.3} {0.8, 0.7, 0.6} {0.5} {0.7, 0.8, 0.9}
{0.3, 0.2} {0.5, 0.4} {0.3, 0.2, 0.1} {0.5}



H4 =


{0.5} {0.4, 0.5, 0.6} {0.3, 0.4} {0.5, 0.7}

{0.6, 0.5, 0.4} {0.5} {0.3} {0.6, 0.7, 0.8}
{0.7, 0.6} {0.7} {0.5} {0.8, 0.9}
{0.5, 0.3} {0.4, 0.3, 0.2} {0.2, 0.1} {0.5}


Normalization:

In order to normalize the given information, expressions (1)–(6) were used to construct NHFPRs
as (22)–(25).

H∗1 =


{0.5, 0.5, 0.5} {0.3, 0.4, 0.3} {0.5, 0.7, 0.7} {0.4, 0.7, 0.55}
{0.7, 0.6, 0.7} {0.5, 0.5, 0.5} {0.7, 0.9, 0.9} {0.8, 0.65, 0.8}
{0.5, 0.3, 0.3} {0.3, 0.1, 0.9} {0.5, 0.5, 0.5} {0.6, 0.7, 0.475}
{0.6, 0.3, 0.45} {0.2, 0.35, 0.2} {0.4, 0.3, 0.525} {0.5, 0.5, 0.5}

 (22)

H∗2 =


{0.5, 0.5, 0.5} {0.3, 0.5, 0.55} {0.1, 0.2, 0.45} {0.6, 0.4, 0.6}
{0.7, 0.5, 0.45} {0.5, 0.5, 0.5} {0.7, 0.8, 0.45} {0.1, 0.3, 0.5}
{0.9, 0.8, 0.55} {0.3, 0.2, 0.55} {0.5, 0.5, 0.5} {0.5, 0.6, 0.7}
{0.4, 0.6, 0.4} {0.9, 0.7, 0.5} {0.5, 0.4, 0.3} {0.5, 0.5, 0.5}

 (23)

H∗3 =


{0.5, 0.5, 0.5} {0.3, 0.5, 0.65} {0.7, 0.45, 0.7} {0.7, 0.8, 0.8}
{0.7, 0.5, 0.35} {0.5, 0.5, 0.5} {0.2, 0.3, 0.4} {0.5, 0.6, 0.575}
{0.3, 0.55, 0.3} {0.8, 0.7, 0.6} {0.5, 0.5, 0.5} {0.7, 0.8, 0.9}
{0.3, 0.2, 0.2} {0.5, 0.4, 0.425} {0.3, 0.2, 0.1} {0.5, 0.5, 0.5}

 (24)

H∗4 =


{0.5, 0.5, 0.5} {0.4, 0.5, 0.6} {0.3, 0.4, 0.4} {0.5, 0.7, 0.7}
{0.6, 0.5, 0.4} {0.5, 0.5, 0.5} {0.3, 0.425, 0.3} {0.6, 0.7, 0.8}
{0.7, 0.6, 0.6} {0.7, 0.575, 0.7} {0.5, 0.5, 0.5} {0.8, 0.9, 0.625}
{0.5, 0.3, 0.3} {0.4, 0.3, 0.2} {0.2, 0.1, 0.375} {0.5, 0.5, 0.5}

 (25)

Consistency measures:

Expressions (7)–(12) helped us to measure the consistency levels of the HFPRs provided by the
decision makers as (26)–(29).

H̃∗1 =


{0.5, 0.5, 0.5} {0.3, 0.4, 0.3} {0.5, 0.7, 0.7} {0.4, 0.7, 0.55}
{0.7, 0.6, 0.7} {0.5, 0.5, 0.5} {0.7, 0.9, 0.9} {0.8, 0.65, 0.8}
{0.5, 0.3, 0.3} {0.3, 0.1, 0.9} {0.5, 0.5, 0.5} {0.6, 0.7, 0.475}
{0.6, 0.3, 0.45} {0.2, 0.35, 0.2} {0.4, 0.3, 0.525} {0.5, 0.5, 0.5}

 (26)



Symmetry 2020, 12, 1957 12 of 19

H̃∗2 =


{0.5, 0.5, 0.5} {0.4, 0.45, 0.55} {0.15, 0.25, 0.45} {0.5, 0.4, 0.6}
{0.6, 0.55, 0.45} {0.5, 0.5, 0.5} {0.65, 0.75, 0.45} {0.2, 0.35, 0.5}
{0.85, 0.75, 0.55} {0.35, 0.25, 0.55} {0.5, 0.5, 0.5} {0.45, 0.55, 0.7}
{0.4, 0.6, 0.4} {0.8, 0.65, 0.5} {0.55, 0.45, 0.3} {0.5, 0.5, 0.5}

 (27)

H̃∗3 =


{0.5, 0.5, 0.5} {0.4, 0.5, 0.65} {0.6, 0.45, 0.7} {0.7, 0.8, 0.8}
{0.6, 0.5, 0.35} {0.5, 0.5, 0.5} {0.3, 0.3, 0.4} {0.5, 0.6, 0.575}
{0.4, 0.55, 0.3} {0.7, 0.7, 0.6} {0.5, 0.5, 0.5} {0.7, 0.8, 0.9}
{0.3, 0.2, 0.2} {0.5, 0.4, 0.425} {0.3, 0.2, 0.1} {0.5, 0.5, 0.5}

 (28)

H̃∗4 =


{0.5, 0.5, 0.5} {0.4, 0.5, 0.6} {0.3, 0.4, 0.4} {0.5, 0.7, 0.7}
{0.6, 0.5, 0.4} {0.5, 0.5, 0.5} {0.3, 0.425, 0.3} {0.6, 0.7, 0.8}
{0.7, 0.6, 0.6} {0.7, 0.575, 0.7} {0.5, 0.5, 0.5} {0.8, 0.9, 0.625}
{0.5, 0.3, 0.3} {0.4, 0.3, 0.2} {0.2, 0.1, 0.375} {0.5, 0.5, 0.5}

 (29)

(i). The consistency measures of pairs of alternatives in NHFPRs H∗q, q = 1, 2, 3, 4, are:

TLCI(h∗1ij ) =


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 , TLCI(h∗2ij ) =


1 0.9500 0.9667 0.9667

0.9500 1 0.9667 0.9500
0.9667 0.9667 1 0.9667
0.9667 0.9500 0.9667 1

 ,

TLCI(h∗3ij ) =


1 0.9667 0.9667 1

0.9667 1 0.9667 1
0.9667 0.9667 1 1

1 1 1 1

 , TLCI(h∗4ij ) =


1 0.9500 0.9667 0.9667

0.9500 1 0.9667 0.9500
0.9667 0.9667 1 0.9667
0.9667 0.9500 0.9667 1

 .

(ii). The consistency measures of alternatives a1, a2, a3 and a4 are:

TLCI(a1) = (1, 0.9611, 0.9778, 1), TLCI(a2) = (1, 0.9556, 0.9778, 1),

TLCI(a3) = (1, 0.9667, 0.9778, 1), TLCI(a4) = (1, 0.9611, 1, 1).

(iii). The consistency measures of NHFPRs are:

TLCI(H∗1) = 1, TLCI(H∗2) = 0.961125,

TLCI(H∗3) = 0.98335, TLCI(H∗4) = 1.

The global consistency index under the use of (11) is obtained as:

CI = 0.9861.

Now, the consistency weights of the decision makers D1, D2, D3 and D4 are estimated using (12) as:

Cw(D1) = 0.2535, Cw(D2) = 0.2437,

Cw(D3) = 0.2493, Cw(D4) = 0.2535.
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Consensus measures:

(i). The consensus measures on each pair of alternatives are shown in the following, collectively
aggregated, similarity matrix using (13):

S =


1 0.9000 0.7500 0.8361

0.9000 1 0.6486 0.7736
0.7500 0.6486 1 0.8083
0.8361 0.7736 0.8083 1

 .

(ii). Based on similarity matrix S, the consensus measures on the alternatives a1, a2, a3 and a4,
applying (14) are:

CD1 = 0.8287, CD2 = 0.7708,

CD3 = 0.7356, CD4 = 0.8060.

(iii). The consensus measure on the information provided by the decision makers is:

CR = 0.7853.

Final weights of decision makers:

The final weights of decision makers can be evaluated by using (19), but in this case the consistency
weights Cw(Dq), q = 1, 2, 3, 4, will be used as the final weights of the decision maker, because the
predefined weights are not involved. Therefore, we have

w(D1) = 0.2535, w(D2) = 0.2437,

w(D3) = 0.2493, w(D4) = 0.2535.

Construction of collective NHFPR:

The collective NHFPR H∗c is constructed after applying (20) and we get (30).

H∗c =

 {0.5, 0.5, 0.5} {0.3746, 0.4625, 0.5242} {0.3889, 0.4520, 0.5630} {0.5245, 0.6518, 0.6625}
{0.6254, 0.5375, 0.4758} {0.5, 0.5, 0.5} {0.4867, 0.5935, 0.5136} {0.5283, 0.5771, 0.6708}
{0.6111, 0.5480, 0.4370} {0.5133, 0.4065, 0.4864} {0.5, 0.5, 0.5} {0.6391, 0.7391, 0.6738}
{0.4755, 0.3482, 0.3375} {0.4717, 0.4229, 0.3292} {0.3609, 0.2609, 0.3262} {0.5, 0.5, 0.5}

 (30)

The final ranking of alternatives:

The expression (21) is used to get the final ranking order of the alternatives after evaluating the
ranking values as: v(a1) = 0.2558, v(a2) = 0.27825, v(a3) = 0.2808 and v(a4) = 0.18515. Hence,
the preference order of alternatives is

a3 � a2 � a1 � a4,

which leads us to the best alternative a3, ecological factor, and suggests that the ecosystem must be
protected primarily to ensure a healthy environment. While the economic factor is the second feasible
choice, and the social factor carries third place in the ranking. The least important factor in the ranking
order is the output and return.

The enhancement mechanism:

In order to incorporate the enhancement mechanism, we consider the threshold consensus level η

in the above example as 0.80, while, the obtained value is CR = 0.7853. Therefore, DMs have to change
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their preferences using (17), based on the mean values of the preferences provided by the expert shown
as follows:

Have =

 {0.5, 0.5, 0.5} {0.325, 0.475, 0.525} {0.4, 0.4375, 0.5625} {0.55, 0.65, 0.6625}
{0.675, 0.525, 0.475} {0.5, 0.5, 0.5} {0.475, 0.6062, 0.5125} {0.5, 0.5625, 0.6687}
{0.6, 0.5625, 0.4375} {0.525, 0.3938, 0.4875} {0.5, 0.5, 0.5} {0.65, 0.75, 0.675}
{0.45, 0.35, 0.3375} {0.5, 0.4375, 0.3312} {0.35, 0.25, 0.325} {0.5, 0.5, 0.5}

 .

Now the identifier (17) provides the following set of positions to enhance the respective
preference values

I = {(1, 3), (2, 3), (2, 4), (3, 1), (3, 2), (4, 2)}.

Suppose that the DMs welcomed the recommendations and improved their preference relations
appropriately, given as

H1
new =


{0.5} {0.3} {0.45, 0.5} {0.4}
{0.7} {0.5} {0.48, 0.62} {0.5}

{0.55, 0.5} {0.52, 0.38} {0.5} {0.6, 0.7}
{0.6} {0.5} {0.4, 0.3} {0.5}

 ,

H2
new =


{0.5} {0.3, 0.5} {0.38, 0.41} {0.6}
{0.7, 0.5} {0.5} {0.48, 0.63} {0.45, 0.55, 0.65}
{0.62, 0.59} {0.52, 0.37} {0.5} {0.5, 0.6, 0.7}
{0.4} {0.55, 0.45, 0.35} {0.5, 0.4, 0.3} {0.5}

 ,

H3
new =


{0.5} {0.3, 0.5} {0.45} {0.7, 0.8}
{0.7, 0.5} {0.5} {0.38, 0.58, 0.5} {0.5, 0.57}
{0.55} {0.62, 0.42, 0.5} {0.5} {0.7, 0.8, 0.9}
{0.3, 0.2} {0.5, 0.43} {0.3, 0.2, 0.1} {0.5}

 ,

H4
new =


{0.5} {0.4, 0.5, 0.6} {0.38, 0.55} {0.5, 0.7}

{0.6, 0.5, 0.4} {0.5} {0.45} {0.55, 0.57, 0.68}
{0.62, 0.45} {0.55} {0.5} {0.8, 0.9}
{0.5, 0.3} {0.45, 0.43, 0.32} {0.2, 0.1} {0.5}

 .

After normalizing these HFPRs using (1)–(6), and constructing consistent HFPRs using (7),
the consistency indices of new NHFPRs can be evaluated as:

TLCI(H∗1new) = 1, TLCI(H∗2new) = 1,

TLCI(H∗3new) = 1, TLCI(H∗4new) = 1.

We developed the collective similarity matrix Snew with (13), and is given as follows:

Snew =


1.0000 0.9233 0.9406 0.8433
0.9233 1.0000 0.9374 0.9456
0.9406 0.9374 1.0000 0.8151
0.8433 0.9456 0.8151 1.0000

 .
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The consensus measures on the alternatives a1, a2, a3 and a4 are estimated after applying (14) on
similarity matrix Snew as:

CD1new = 0.9024, CD2new = 0.9354,

CD3new = 0.8977, CD4new = 0.8680.

Hence, the consensus measure on the information provided by the decision makers is evaluated
by (16):

CRnew = 0.9009.

This shows that the enhancement mechanism clearly improves the consensus level amongst DMs
from CR = 0.7853 to CRnew = 0.9009 which is higher than the threshold level η = 0.80 i.e., CRnew > η.
Now, the collective NHFPR H∗cnew can be constructed using (19) and (20), given as below: The expression
(21) is used to get the final ranking order of the alternatives after evaluating the ranking values as:
v(a1) = 0.2473, v(a2) = 0.2719, v(a3) = 0.2876 and v(a4) = 0.1932. Therefore, the preference order of
alternatives is a3 � a2 � a1 � a4, and is same as before the application of enhancement mechanism.

H∗cnew =

 {0.5000, 0.5000, 0.5000} {0.3250, 0.4850, 0.4625} {0.4150, 0.4950, 0.4875} {0.5500, 0.6538, 0.5787}
{0.6750, 0.5150, 0.5375} {0.5000, 0.5000, 0.5000} {0.4475, 0.5650, 0.4794} {0.5000, 0.5675, 0.6075}
{0.5850, 0.5050, 0.5125} {0.5525, 0.4350, 0.5206} {0.5000, 0.5000, 0.5000} {0.6500, 0.7500, 0.6656}
{0.4500, 0.3463, 0.4213} {0.5000, 0.4325, 0.3925} {0.3500, 0.2500, 0.3344} {0.5000, 0.5000, 0.5000}

 (31)

5. Comparison

To clearly validate the proposed procedure, we compare our results to findings of Xu et al. [31]
based on consistency measure, consensus measure and the final ranking. The initial consistency
levels, consensus level and the final ranking of alternatives in Xu et al. [31]’s sense based on
additive transitivity are: cl1 = 0.9750, cl2 = 0.8833, cl3 = 0.9389, cl4 = 0.9847; CR = 0.7653
and a3 � a2 � a1 � a4, respectively.

In our proposed scheme, TL-transitivity is introduced to evaluate the unknown elements of
HFPVs in the normalization process and construct the consistent HFPRs, accordingly. Consequently,
the initial consistency indices, consensus level amongst DMs and final ranking order of alternatives
are: TLCI(H∗1) = 1, TLCI(H∗2) = 0.961125, TLCI(H∗3) = 0.98335, TLCI(H∗4) = 1; CR = 0.7853
and a3 � a2 � a1 � a4, respectively. Evidently, the consistency and consensus levels estimated by
the proposed method are higher than the levels obtained by Xu et al. [31]’s procedure, but the final
ranking order of both the methods are identical. This shows that TL-transitive property is much
useful to strengthen the consistency of data, and consensus amongst DMs, as well. To incorporate
the enhancement mechanism to improve the consensus level amongst DMs, we considered the case
with threshold consensus level η = 0.80 and estimated the new global consensus level. After applying
simple steps of enhancement mechanism, we evaluated the global consensus level CRnew = 0.9009
which shows a significant improvement when comparing to the threshold level. Most interestingly,
we obtained the same ranking order a3 � a2 � a1 � a4 of alternatives before the application of the
enhancement mechanism. Thus, it validates and strengthens the proposed scheme. In an easy manner,
the following Table 1 provides the information to observe and compare the values obtained in [31] and
proposed schemes:
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Table 1. Comparison of reference results and the proposed approach.

Methods
Consistency Levels of Consensus Level Ranking

H1 H2 H3 H4 (CR) Order

Xu et al. [31] 0.9750 0.8833 0.9389 0.9847 0.7653 a3 � a2 � a1 � a4

Proposed (Round 1) 1 0.9611 0.9834 1 0.7853 a3 � a2 � a1 � a4

Proposed (Round 2) 1 1 1 1 0.9009 a3 � a2 � a1 � a4

Here, Rounds 1 and 2 represent the evaluations before and after application of the enhancement
mechanism, respectively.

6. Conclusions

In this manuscript, a consensus-based method to handle the MPDM problem using consistent
HFPRs is proposed. In this regard, the definition of HFPRs has been borrowed from Xu et al. [31]’s
work, and an efficient TL-consistency-based procedure to normalize HFPRs is presented. A step by step
procedure to normalize the HFPR is shown in Example 1. The consistency weights have been assigned
to DMs after the consistency analysis made, it is rational to allocate higher weights to DMs with
a high level of consistency in order to carry more importance in the aggregation process. Furthermore,
an enhancement mechanism is incorporated to accelerate the execution of a higher consensus level on
an easy path. After reaching an acceptable consensus level amongst DMs, the entire process moves to
the selection phase, comprising of aggregation and ranking processes, to select the best alternative.
A comparative example is elaborated to highlight the practicality with the efficiency of the proposed
method. The results help us to have greater insight into the MPDM process.

A few of the main advantages of the setting method are: (1) In this article, Łukasiewicz transitivity
is used to determine the unspecified preference values in order to normalize the HFPRs. Compared to
some other approaches focused on consistency measures, Łukasiewicz transitivity generates better
values and consistency as well. (2) The priority weights are assigned to DMs after merging the
consistency weights, based on the information provided, and the predefined weights (if any) that
play a significant role in assessing the consistency indices of the DM opinions. (3) The enhancement
mechanism helps DMs to think in various directions in order to reach a consensus among them.
We believe that there are only a few techniques of this kind presented in the literature to deal with
MPDM in HFPRs’ setting. (4) There is no need to simulate proximity measures in the proposed method,
which decreases the computing workload while accelerating the speed at which consensus is achieved.
(5) The proposed method resulted in highly consistent NHFPRs as compare to the model given in [31].
(6) In the end, consistent NHFPRs are aggregated into collective consistent NHFPR in order to achieve
the ranking order of alternatives. Because it is quite often that the preference values provided by DMs
are weighted differently, if the DMs’ weights have been calculated, their views are to be aggregated
into a global one.

At the same time, there are certain limitations to be discussed in future study: (1) The GDM could
contain too many parameters in the decision-making process, including cognitive science, political
culture, people’s risk attitudes, etc., that certain variables need to be taken into account. (2) When
voicing their preferential relationships, experts can show some degree of reluctance. Thus in the case
of type-2 fuzzy preference relations, it would be interesting to establish processes to deal with GDM.
(3) The threshold consensus measure directly affects the consensus round but is normally decided in
advance. How this criterion will be calculated on the basis of multiple parameters, e.g., the number of
experts, the number of requirements, or alternatives, may be fascinating to see.

The traditional approach of consensus building fails to consider more uncertain factors and
limitations of the language scale. Therefore, it would be interesting to propose another approach
for consensus building in group decision making based on TL-consistency in clustering analysis
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and medical diagnosis in the framework of various linguistic settings like hesitant fuzzy linguistic
preference relation, hesitant intuitionistic fuzzy linguistic preference relation, etc. as future research.
The consensus-reaching process for complex linguistic information [49] is another interesting research
area for a future study.
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