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Abstract: Scene text detection is attracting more and more attention and has become an important
topic in machine vision research. With the development of mobile IoT (Internet of things) and deep
learning technology, text detection research has made significant progress. This survey aims to
summarize and analyze the main challenges and significant progress in scene text detection research.
In this paper, we first introduce the history and progress of scene text detection and classify the
traditional methods and deep learning-based methods in detail, pointing out the corresponding
key issues and techniques. Then, we introduce commonly used benchmark datasets and evaluation
protocols and identify state-of-the-art algorithms by comparison. Finally, we summarize and predict
potential future research directions.
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1. Introduction

Scene text detection (STD) is the process of detecting the presence and position of text in scene
images. STD not only acts as a detection and positioning tool but also plays a key role in extracting
important high-level semantic information from scene images. It has important applications in
intelligent transportation systems [1], content-based image retrieval [2], industrial automation [3],
portable vision systems [4,5], etc.

Evolution of STD. The concept of “scene text detection” first appeared in the 1990s [6–8]. With the
rapid development of Internet technology and portable mobile devices, more and more scenarios have
emerged where a need exists for extracting text from image information. At present, scene text detection
has become a significant aspect of computer vision and pattern recognition techniques, as well as a
research hotspot in the field of document analysis and recognition. Some top international conferences,
such as ICDAR (International Conference on Document Analysis and Recognition), ICCV (International
Conference on Computer Vision), ECCV (European Conference on Computer Vision), AAAI (AAAI
Conference on Artificial Intelligence), include scene text detection listed as a separate research topic.

Motivation for writing this review. In 1998, Lecun et al. designed the LeNet5 model [9],
which achieved a 99.1% recognition rate on the MNIST dataset. In recent years, deep learning (DL) has
attracted significant attention due to its success in various domains, and DL-based STD methods with
minimal feature engineering have been flourishing. A considerable number of studies have applied
deep learning to STD and successively advanced the state-of-the-art performance [10–17]. This trend
motivates us to conduct a review to report the current status STD technique research.

Contributions of this review. We thoroughly review the technological development of STD in
order to inspire and guide researchers and practitioners in the field. Specifically, in Sections 3 and 4,
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we categorize STD by technique into traditional detection methods and deep learning-based detection
methods and representative techniques from both categories. Then, in Sections 5 and 6, we provide a
comprehensive survey of STD benchmark datasets and evaluation methods. In addition, we summarize
and analyze the most representative approaches to DL techniques for STD in Section 6.2. Finally,
we introduce the challenges of STD and outline future directions for the field.

2. Background

In this section, we first introduce the definition of the STD and then summarize the important
features of scene text in natural images.

2.1. What Is STD?

Scene text detection is to locate text in complex scene images. Examples of STD include text
detection in various contexts, such as books, ID cards, tickets, intelligent traffic scenarios, such as road
signs, license plate recognition, etc. Figure 1 gives a formal overview of the text detection process.
We have summarized a unified three-stage framework that most existing models fit into. The three
stages as follows:

1. Transformation. In this stage, the input image is transformed into a new one using a spatial
transformation network (STN) [18] framework, while any text contained in it is rectified.
The rectification process facilitated subsequent stages. It is powered by a flexible thin-plate spline
(TPS) transformation, which can handle a variety of text irregularities [19] and diverse aspect
ratios of text lines [20].

2. Feature Extraction. This stage maps the input image to a representation that focuses on the
attributes relevant for character recognition while suppressing irrelevant features, such as font,
color, size, and background. With convolutional networks entering a phase of rapid development
after AlexNet’s [21] success at the 2012 ImageNet competition, Visual Geometry Group Network
(VGGNet), GoogleNet [22], RestNet [23], and DetNet [24] are often used as a feature extractor.

3. Prediction. Predicts the position of the text in the image, usually expressed as a coordinate point.
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Figure 1. Visualization of an example flow of scene text detection. The image sample is from
ICDAR2015 [25].

2.2. Features of Scene Text

Text detection in natural scene images is much more difficult than text detection in scanned
document images because of the diversity of the forms the text may occur in. The main features of the
scene text are summarized below:

1. Multiple languages may be mixed.
2. Characters may occur in different sizes, fonts, colors, brightness, contrast, etc.
3. Text lines may be horizontal, vertical, curved, rotated, twisted, or in other patterns.
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4. The text area in the image may also be distorted (perspective, affine transformation), suffer defects,
blurring, or other phenomena.

5. The background of scene images is extremely diverse, and text may appear on a plane, surface,
or folded surface; the text region may be near complex interference textures, or non-text areas
may have textures that approximate text, such as sand, grass, fences, brick walls, etc.

The rest of this paper is organized as follows. In Section 3, we take a look at the convolutional
methods before the DL era. In Section 4, we introduce DL-based algorithms. In Sections 5 and 6,
we describe the widely used benchmark datasets and evaluation protocols. Finally, we list the
challenges and prospects of STD tasks.

3. Traditional Methods for STD

Traditional scene text detection methods follow two main technical routes; a sliding detection
window (SDW)-based approach or a connected component analysis (CCA)-based approach.
Those methods first acquire text candidate regions and then use handcrafted features to validate the
candidate regions, and finally to obtain the text location information.

3.1. SDW Methods

Sliding detection window (SDW)-based methods use a top-down strategy to detect text.
These methods [26–29] scan the entire scene image using a sliding window, extract the candidate
text regions, and use a pre-trained classifier to identify whether the text is contained within the
sub-window. Those classified as positive are further grouped into text regions using morphological
operations [30,31], Support vector machines (SVMs) [32], Random Forests (RFs) [33,34], and artificial
neural processors (ANPs) [35]. To cope with variable text sizes and line lengths effectively, this class
of methods uses a multi-scale sliding window to obtain the text candidate area. In [36], a boosting
framework integrating feature and weak classifier selection was employed to build an efficient text
detector. In [31], a text detection method was proposed, which extracted six different feature classes
and used AdaBoost with a multi-scale sequential search. SDW does not have to extract geometric
features, such as edges and corner points of text from scene images, to obtain candidate text regions.
Generally speaking, in circumstances where the text scale is small, or the contrast is weak, this type of
approach is advantageous. However, it does not work well for skewed and curved text lines, and stride
selection for the sliding windows is also an issue.

3.2. CCA Methods

CCA-based methods use a bottom-up strategy to detect text, which first extracts candidate
components of similar properties (such as corner points [37], text texture [38,39], text boundary [40],
and font color [41,42]) from the image and then uses manually formulated rules or automatically
trained classifiers to filter out non-textual components [43].

Text in natural scene images is rich with edges and corner-point information. Therefore,
some methods detect these elements to obtain text candidate regions and then classify these regions
using rules or classifiers. In [44], a method based on edge-features for horizontally aligned artificial
text detection from video images was proposed. In [28], edge detection was applied to obtain four edge
maps, which represent the texture property of text, and then the k-means algorithm was used to detect
the initial text candidates. In [45–47], some edge detection operators (e.g., Sobel, Canny) were used
to detect the edge information of the image, and then morphological processing of the edge image
was performed to eliminate pseudo-text regions. In [46], the FASText detector was proposed, which is
based on an efficient pixel intensity comparison to surrounding pixels.

The most representative methods of this approach are the stroke width transform (SWT) [48] and
the maximum stable extremal region (MSER) [49]. The SWT was first proposed in [48] (Figure 2) in
2010 and takes advantage based on the assumption that strokes located in the same text area have
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approximately equal widths to obtain candidate text regions. The Canny algorithm was used to detect
the edges of the input image, then the gradient direction of the edge pixels was calculated, and the
algorithm searched for matching pixels along the path of the gradient direction. The sum of all pixels
on the search path between matching pixels p and q was taken as the stroke width w between the
two pixels. The method is simple, local, and data-dependent (see Figure 3), which makes it powerful
enough to detect text in multiple fonts and languages. In [50], a method based on feature vectors of
connected components generated through STW was proposed. For the formulation of the feature
vectors, some properties were used, such as the directionality of the text edge gradients, high contrast
with the background, and the geometry of the text components, jointly with the attributes found by the
stroke width transformation. In [51], text and non-text regions were analyzed on three levels: pixel,
component, and text-line levels. The stroke feature transform (SFT), which extends the SWT, was used
as a low-level filter to determine whether a pixel belongs to text or not. In [52], an algorithm was
proposed which used multiple low-level visual features to learn a model, which eventually provided a
text attention map indicating candidate regions of text in the image. During detection, the text detector
using SWT focused only on these selected image regions to reduce computation time and improve
detection performance. In [53], an algorithm based on SWT was used to extract arbitrary text in natural
scene images. References [54,55] involved a modified SWT for detecting scene text.
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In [49], the maximally stable extremal regions (MSER) [56] were leveraged to detect candidate
text regions in scene images. This approach offers robustness to geometric, noise, and illumination
conditions. The MSER method has been employed in several studies [16,57,58] that achieved excellent
text detection performance on complex scene images. In [50], a text detection method based on
color-enhanced contrast extremal regions (CERs) and neural networks was presented. The method
used CERs to extract candidate text regions using a six-component tree which was produced from
color images, and classify them into text regions and non-text regions using a neural network. In [59],
a text detection method that combines extremal regions (ER) and corner-HOG features was presented.
In [52], a novel method was proposed based on a conditional random field (CRF) pipeline, which used
a convolutional neural network (CNN) to estimate the confidence of the MSER being a candidate
text region. In [60,61], methods combining MSER and SWT were proposed to achieve better text
detection performance.

It is worth mentioning that the scene text detection methods based on CCA mainly deal with
extracting the connected regions in the image text candidate regions, thus reducing the search scope
of natural scene text effectively. However, this type of method relies heavily on the detection of
text-connected regions. In fact, in scene images with complex backgrounds, noise interference,
low contrast, and color variation, it is difficult to detect connecting regions of text accurately. At the
same time, it is also very difficult to design a reasonable analyzer for connected regions. In summary,
CCA-based detection methods are difficult to implement and not robust in detecting text from
scene images.

4. Deep Learning Approaches for STD

Deep learning methods automatically extract text features by training a model and are particularly
suitable for object detection, speech recognition, and other pattern recognition problems. Typical
deep learning networks include deep belief networks (DBN), convolutional neural networks (CNNs),
recurrent neural networks (RNNs), and capsule networks. Deep learning-based methods are more
effective, simple, and robust compared to manually designed algorithms for extracting and classifying
candidate text regions. The boom of deep learning has also led to the development of successful
techniques for scene text detection. In general, the main deep learning-based text detection methods can
be classified into three categories: region proposal-based methods, image segmentation-based methods,
and hybrid methods. Table 1 summarizes a comparison among some of the current state-of-the-art
techniques in this field.
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Table 1. Deep learning text detection methods, where S: Supervised, SS: Semi-Supervised, US: Un-Supervised, ST: Synthetic Text, IC13: ICDAR 2013, IC15: ICDAR
2015, M500: MSRA-TD500, IC17: ICDAR 2017 MLT, ToT: Total-Text, CTW: CTW-1500, COCO: COCO-Text.

Model_Based Work Source Code Backbone
Supervised Training

Datasets Contributions

S SS US First-Stage Fine-Tune

Convolutional Neural Network
(CNN)

RSTD [16] ECCV’14 - - X - - - IC11, IC15

DSOL [62] ICLR’15 - - X - - MJSynth -

FOTS [63] CVPR’18 X ResNet-50 X - - ST IC13, IC15, IC17

ABCNet [64] CVPR’2020 X ResNet-50 X - - ST, COCO ToT, CTW

Corner [65] CVPR’18 X VGG-16 X - - ST IC13, 1C15

DB [66] AAAI’20 X ResNet X - - ST M500, CTW, ToT, IC15, IC17

Fully Convolutional Neural
Network (FCN)

MOTD [13] CVPR’16 X VGG-16 X - - - IC13, IC15, M500

EAST [67] CVPR’17 X VGG-16 X - - - IC15, COCO, M500

STDH [68] 2016 X VGG-16 X - - - IC13, IC15, M500

E2ET [69] CVPR’18 X PVANet [70] X - - ST IC13, IC15

PixelLink [71] AAAI’18 X VGG-16 X - - IC15 IC13, IC15, M500

Textfield [72] 2019 X VGG-16 X - - ST IC15, M500, ToT, CTW

Feature Pyramid Network (FPN) PSENet [73] AAAI’20 X ResNet X - - IC17 IC13 or IC15

Faster R-CNN

CTPN [74] ECCV’16 X VGG-16 X - - - IC13

R2CNN [75] arXiv’17 X VGG-16 X - - IC15 -

RRPN [76] 2018 X VGG-16 X - - M500 IC13, IC15

Mask-RCNN

MTSpotter [77] ECCV’18 X ResNet-50 X - - ST IC13, IC15, ToT

PMTD [14] CoRR’19 X ResNet-50 X - - IC17 IC13 or IC15

MB [78] 2019 X ResNet-101 X - - ST IC15, IC17, M500

Single Shot Detector (SSD)

SegLink [79] CVPR’17 X VGG-16 X - - ST IC13, IC15 or M500

SSTD [80] CVPR’17 X VGG-16 X - - - IC13 or IC15

TextBoxes++ [81] 2018 X VGG-16 X - - ST IC15

RRD [82] CVPR’18 - VGG-16 X - - ST IC13, IC15, COCO, M500

U-Net
TextSnake [83] ECCV’18 X VGG-16 X - - ST IC15, M500, ToT, CTW

CRAFT [84] CVPR’19 X VGG-16 - X - ST IC13, IC15, IC17
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4.1. Region Proposal-Based Methods

Region proposal-based text detection methods adopt a general object detection framework,
often using regression text boxes to obtain regional text information. In [85], a method based on a
region proposal mechanism for text detection was proposed, while in [86], the Faster R-CNN [87]
was improved using the inception structure proposed by GoogleNet. This resulted in the inception
region proposal network (InceptionRPN), which obtains text candidate regions, uses a text detection
network to remove background regions, and finally, votes on the overlapping detected regions to
obtain the best results. In [75], a new method called the rotational region CNN (R2CNN) was proposed
for detecting arbitrarily-oriented text in scene images. In [74], a novel connectionist text proposal
network (CTPN) was proposed for localizing text lines in scene images, while a vertically-regressed
proposal network (VRPN) was proposed in [88], which could match text regions using multiple
neighboring small anchors. In [76], the rotation region proposal network (RRPN) was proposed to
detect arbitrarily-oriented text by rotating text region proposals.

Rectangle bounding boxes or quadrangles have been adopted to describe text. In [89], an end-to-end
trainable one-stage algorithm similar to a single shot multibox detector (SSD) [90] was proposed.
Reference [81] was also based on an SSD object detection framework, where the rectangular box
representation of conventional object detectors was replaced using a quadrilateral or rotated rectangle
representation. In [91], a quadrilateral window (not a rectangle) was used to detect text in arbitrary
orientations. A quadrilateral region proposal network (QRPN) was proposed in [92] for generating
quadrilateral proposals based on a novel quadrilateral regression algorithm. In [82], two separate
network branches were used to extract different text characteristics for text detection and oriented
bounding box regression. In [93], corners were employed to estimate the possible locations of
text instances, while an embedded data augmentation module inside a region-wise subnetwork
was employed.

To achieve high coverage of the target box, in [94], a learning mechanism was proposed that
integrates a two-stage R-CNN framework into a single-stage detector and uses the learned anchors
instead of the original anchors into the final prediction. Existing deep neural network-based text
detection methods use multi-scale filters and feature layers to detect multi-scale text. Reference [95]
proposed a text detector named the short path network (SPN) to use low-level semantic features to
complement the propagated loss of deep features. In [96], a multi-scale shape regression network (MSR)
was presented, which was capable of locating text lines of different lengths, shapes, and curvatures in
scenes. A scale-insensitive adaptive region proposal network (Adaptive-RPN) was proposed in [97] to
generate text proposals by focusing only on the intersection over union (IoU) values between predicted
and ground-truth bounding boxes. A scale-transfer module and a scale-relationship module were
proposed in [98] to handle the problem of scale variation. A novel text detector, namely Look More
than Once (LOMO), was presented in [99] to detect long text and arbitrarily shaped text in scene
images by considering the geometric properties of the text instance, including the area, text center line,
and border offsets to identify irregular text.

When trained with rigid word-level bounding boxes, the abovementioned methods exhibit
limitations in analyzing text regions of an arbitrary shape. In [100], a one-stage model named
convolutional character network (CharNet) was proposed, which predicts the bounding boxes of words
and characters directly. In [101], a two-stage method called omnidirectional pyramid mask proposal
text detector (OPMP) was proposed, which uses an effective pyramid sequence modeling method to
produce arbitrary-shaped proposals. In [64], a novel adaptive Bezier-curve network (ABCNet) was
presented to detect arbitrarily-shaped text in scene images.

This group of methods usually includes two parts: classification and regression of text candidate
regions. In one-stage detectors, these candidate regions are generated by sliding windows; in two-stage
detectors, the candidate regions are proposals generated by an RPN, but the RPN itself still classifies
and regresses proposals generated by sliding windows. To improve the accuracy of text detection, it is
often necessary to manually design anchors of various scales, aspect ratios, and even orientations to
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better surround the text area, which makes region proposals-based methods complicated and inefficient.
The anchor mechanism is not effective enough for scene text detection, which can be attributed to its
IoU-based matching criterion between anchors and ground-truth boxes.

4.2. Image Segmentation-Based Methods

Image segmentation is an important part of image processing and machine vision techniques
for image analysis and is a hot research topic today. Image segmentation is to classify images at
the pixel level, determine the category of each point, and divide the image area. It is currently
widely used in medical imaging, automated driving, UAV assistance, remote sensing, and other
applications. Scene text detection can also be regarded as a pixel-level text/non-text classification,
so image segmentation algorithms, such as semantic segmentation and instance segmentation, can be
used to handle this challenge. In [13,68], an image segmentation-based method was proposed that
used a fully convolutional network (FCN) [102] for pixel-level multi-oriented text detection. In [93],
an algorithm for word-level text detection consisting of two cascaded CNNs was presented. The first
network was fully convolutional and responsible for detecting regions containing text, while the
second network predicted directional rectangles containing single word regions. A novel progressive
scale expansion network (PSENet) approach was presented in [103], which gradually expanded the
detection region from small kernels to large, and complete text instances were detected through
multiple semantic segmentation maps. The system is robust, being able to detect arbitrarily shaped
text and independently attached text. In [79], the segment linking (SegLink) method was introduced,
which decomposed text into two components, namely segments and links. Instance aware component
grouping (ICG) for arbitrary-shape text detection was presented in [104], while in [71], an instance
segmentation-based method was proposed, which predicted text instances lying very close by linking
pixels within the same instance. In [84], a new scene text detection method was proposed to detect
text area effectively by exploring each character and affinity between characters. In [105], a mask
R-CNN-based text detector was used to suppress false detection caused by background noise more
effectively using the pyramid attention network (PAN) as a new backbone network. A novel framework
with the local segmentation network (LSN) was presented in [106], followed by the curve connection
to detect text in horizontal, oriented, and curved forms. An efficient and accurate arbitrary-shaped text
detector, named the pixel aggregation network (PAN), was proposed in [107], which was equipped
with a segmentation head made up of a feature pyramid enhancement module (FPEM) and a Feature
Fusion Module (FFM). The authors of this study proposed a method based on mask R-CNN, named
pyramid mask text detector (PMTD) [14], which used location-aware information to generate text
masks instead of binary text masks. In [66], a module named differentiable binarization (DB) was
proposed, which could perform the binarization process in a segmentation network. An FCN-based
method named TextEdge was proposed in [108], where the text-region edge map was used as a
segmentation mask. A segmentation-based detector named instance segmentation network (ISNet)
was introduced [12], which linearly combines a generation mask and mask coefficients for fast text
localization. A segmentation-based method that used polygon offsetting combined with border
augmentation to detect text in natural images was presented in [109], while in [110], a novel character
candidate extraction method based on super-pixel segmentation and hierarchical clustering was
introduced. A novel scene text detection technique making use of semantics-aware text borders
and bootstrapping-based text segment augmentation was presented in [111]. In [112], an instance
segmentation-based framework was presented, which extracted each text instance as a separate
connected component and introduced a shape-aware loss of adaptive multi-scale text instances when
training the detection model.

Image segmentation-based methods for text/non-text classification at the pixel level have become
mainstream for detecting text with multiple orientations and arbitrary shapes. However, this group of
methods often requires time-consuming and complex post-processing to deal with complicated cases
such as sticking or overlapping text.
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4.3. Hybrid Methods

To detect scene text under more complex situations more efficiently, some researchers have
combined the previous methods. In [113], a novel anchor-free region proposal network (AF-RPN)
was proposed to replace the original anchor-based RPN and speed up text detection. In [114], a new
framework for text detection named “Simple but Accurate” (SA-Text) was introduced, which utilizes
heatmaps to detect text regions in scene images effectively. SA-Text detects text that occurs in various
fonts, shapes, and orientations in scene images with complicated backgrounds. In [67], a new pipeline
that directly predicts arbitrary orientations and quadrilateral text or text lines from natural images
through a single network was proposed, eliminating unnecessary post-processing. A pixel-wise
method named TextCohesion for scene text detection was proposed in [115], which splits a text instance
into five key components: a text skeleton and four directional pixel regions. A novel conditional
spatial expansion (CSE) mechanism to improve the performance of text detection by using a region
expansion algorithm was introduced in [116]. CSE starts with a seed arbitrarily initialized within a text
region and progressively merges neighborhood regions based on local features extracted by a CNN
and contextual information of merged regions.

The advantages and disadvantages of the three kinds of methods for text detection are summarized
in Table 2.

Table 2. Comparison of different kinds of text detection methods.

Method Strength Weakness

Region proposal-based Higher detection accuracy and
recall rates

Rely on complex frame designs
and computationally intensive

Image segmentation-based Be insensitive to font variation,
noise, blur, and orientation

Weak detection of sticky or
overlapping text

Hybrid methods Can handle arbitrary strings and is
robust to detection

Need to design innovative
detection frameworks

5. STD Resources: Datasets

High-quality data and textual annotations are essential for both model learning and evaluation.
Below, we summarize the most widely used benchmark datasets. A comprehensive list is provided in
Tables 3 and 4.

Table 3. Benchmark datasets overview.

Datasets Year Language URL

SVT 2010 English http://vision.ucsd.edu/~kai/grocr/
KAIST 2011 Multi-lingual http://www.iapr-tc11.org/mediawiki/index.php?title=KAIST_Scene_Text_Database
IC11 2011 English http://www.cvc.uab.es/icdar2011competition/?com=downloads
M500 2012 English/Chinese http://pages.ucsd.edu/~ztu/Download_front.htm
IC13 2013 English http://dagdata.cvc.uab.es/icdar2013competition/?ch=2&com=downloads

USTB-SV1K 2015 English http://prir.ustb.edu.cn/TexStar/MOMV-text-detection/
IC15 2015 English http://rrc.cvc.uab.es/?ch=4&com=downloads

COCO-Text 2016 English https://vision.cornell.edu/se3/coco-text-2/
SynthText 2016 English http://www.robots.ox.ac.uk/~vgg/data/scenetext/

CTW 2017 Chinese https://ctwdataset.github.io/
RCTW-17 2017 English/Chinese http://rctw.vlrlab.net/dataset/

ToT 2017 English https://github.com/cs-chan/Total-Text-Dataset
CTW 2017 English/Chinese https://github.com/Yuliang-Liu/Curve-Text-Detector

MLT17 2017 Multi-lingual http://rrc.cvc.uab.es/?ch=8
ArTs19 2019 English/Chinese https://rrc.cvc.uab.es/?ch=14
MLT19 2019 Multi-lingual https://rrc.cvc.uab.es/?ch=15&com=downloads
LSVT19 2019 English/Chinese https://rrc.cvc.uab.es/?ch=16

http://vision.ucsd.edu/~kai/grocr/
http://www.iapr-tc11.org/mediawiki/index.php?title=KAIST_Scene_Text_Database
http://www.cvc.uab.es/icdar2011competition/?com=downloads
http://pages.ucsd.edu/~ztu/Download_front.htm
http://dagdata.cvc.uab.es/icdar2013competition/?ch=2&com=downloads
http://prir.ustb.edu.cn/TexStar/MOMV-text-detection/
http://rrc.cvc.uab.es/?ch=4&com=downloads
https://vision.cornell.edu/se3/coco-text-2/
http://www.robots.ox.ac.uk/~vgg/data/scenetext/
https://ctwdataset.github.io/
http://rctw.vlrlab.net/dataset/
https://github.com/cs-chan/Total-Text-Dataset
https://github.com/Yuliang-Liu/Curve-Text-Detector
http://rrc.cvc.uab.es/?ch=8
https://rrc.cvc.uab.es/?ch=14
https://rrc.cvc.uab.es/?ch=15&com=downloads
https://rrc.cvc.uab.es/?ch=16
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Table 4. Details of benchmark datasets.

Datasets Total Train Test
Arbitrary-

Shape
Multi-

Oriented

Annotation

Char Word Text-Line

IC03 509 258 251 × × × X ×

SVT 350 100 250 X × X X ×

KAIST 3000 - - × × × X ×

IC11 484 229 255 × × X X ×

M500 500 300 200 X × × × X
IC13 462 229 233 × × X X ×

USTB-SV1K 1000 500 500 X × × X ×

IC15 1500 1000 500 X × × X ×

COCO-Text 63,686 43,686 20,000 X × × X ×

SynthText 85,8750 - - × × X X ×

CTW 32,285 25,887 6398 X × X X ×

RCTW-17 12,514 15,114 1000 X × × × X
ToT 1525 1225 300 X X × X X

CTW 1500 1000 500 X X × X X
MLT17 18,000 7200 10,800 X × × X ×

ArTs19 10,166 5603 4563 X X × X ×

MLT19 20,000 10,000 10,000 X × × X ×

LSVT19 450,000 430,000 20,000 X X × X X

ICDAR 2003 (IC03) [117]. This is the first benchmark released for scene text detection and
recognition from the ICDAR Robust Reading Competition. There are 258 natural images for training
and 251 natural images for testing. All the text instances in this dataset are in English and are
horizontally placed.

Street View Text (SVT) [27]. This dataset consists of 350 images annotated with word-level
axis-aligned bounding boxes from Google Street View. It contains smaller and lower resolution text,
and not all text instances within it are annotated.

KAIST [118]. This dataset comprises 3000 images captured in different environments, including
outdoor and indoor scenes, under different lighting conditions (clear day, night, strong artificial lights,
etc.). The images were captured either using a high-resolution digital camera or a low-resolution
mobile phone camera. All images have been resized to 640 × 480 pixels.

ICDAR 2011 [119]. This dataset inherits from ICDAR 2003 and includes some modifications.
There are 229 scene images for training and 255 scene images for testing.

MSRA-TD500 (M500) [120]. This dataset contains 500 natural scene images in total, with 300
images intended for training and 200 images for testing. It provides text-line-level annotation and
polygon boxes for text region annotation. It contains both English and Chinese text instances.

ICDAR 2013 (IC13) [121]. This is also a modified version of ICDAR 2003. There are 229 natural
images for training and 233 natural images for testing.

USTB-SV1k [122]. It contains 1000 street images from Google Street View with 2955 text instances
in total. It provides word-level annotations, and it only considers English words.

ICDAR 2015 (IC15) [25]. It contains 1500 scene images, 1000 for training and 500 for validation/

testing. The text instances (annotated using four quadrangle vertices) are usually skewed or blurred
since they were acquired without users’ prior preference or intention. Specifically, it contains 17,548
text instances. It provides word-level annotations. IC15 is the first incidental scene text dataset, and it
is an English dataset.

COCO-Text [123]. It is the largest benchmark that can be used for text detection and recognition
so far. The original images are from the Microsoft COCO dataset, and 173,589 text instances from 63,686
images are annotated. There are 43,686 images for training and 20,000 images for testing, including
handwritten and printed, clear and blurry, English and non-English text.
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SynthText [124]. It contains 858,750 synthetic images, where text with random colors, fonts, scales,
and orientations are rendered on-scene images carefully to have a realistic look. The text in this dataset
is annotated at the character, word, and line level.

Chinese Text in the Wild (CTW) [125]. This dataset contains 32,285 high-resolution street view
images annotated at the character level, including its underlying character type, bounding box,
and detailed attributes, such as whether word art has been used. The dataset is the largest one to date
and the only one that contains detailed annotations. However, it only provides annotations for Chinese
text and ignores other scripts, e.g., English. It contains 32,285 high-resolution street view images of
Chinese text, with 1,018,402 character instances in total. All images are annotated at the character
level, including its underlying character type, bounding box, and six other attributes. These attributes
indicate whether the background is complex, whether it is raised, whether the text is hand-written or
printed, occluded, and distorted, or whether word art has been used.

RCTW-17 [126]. This dataset contains various kinds of images, including street views, posters,
menus, indoor scenes, and screenshots for competition on detecting and recognizing Chinese text
in images. The dataset contains about 8000 training images and 4000 test images, with annotations
similar to ICDAR2015.

Total-Text (ToT) [127]. This dataset contains a relatively large proportion of curved text, compared
to the few instances in the previous datasets. These images were mainly obtained from street billboards
and annotated as polygons with a variable number of vertices.

SCUT-CTW1500 [128]. This dataset contains 1500 images in total, 1000 for training and 500 for
testing, with 10,751 cropped word images. Annotations in CTW-1500 are polygons with 14 vertices.
The dataset mainly consists of Chinese and English words.

ICDAR 2017 MLT (MLT17) [129]. It is a large-scale multi-lingual text dataset, which contains
10,000 natural scene images in total, with 7200 training images, 1800 validation images, and 9000
testing images. It provides word-level annotation.

ICDAR 2019 Arbitrary-Shaped Text (ArT19) [130]. ArT consists of 10,166 images, 5603 for
training, and 4563 for testing. They were collected with text shape diversity in mind, and all text
shapes (i.e., horizontal, multi-oriented, and curved) have a high number of instances.

ICDAR 2019 MLT (MLT19) [131]. This dataset contains 18,000 images in total, with word-level
annotation. Compared to MLT, this dataset has 10 languages. It is a more real and complex dataset for
scene text detection.

ICDAR 2019 Large-scale Street View Text (LSVT19) [132]. This dataset consists of 20,000 testing
images and 30,000 training images with full annotations, and 400,000 training images with weak
annotations, which are referred to as partial labels.

6. Evaluations

6.1. Evaluation Metrics for STD

In this section, we summarize evaluation protocols for text detection algorithms. The task of
text detection is commonly evaluated using the ICDAR protocol, the AP-based protocol, and the
TloU-metric, analyzed in the following paragraphs. The evaluation methods mainly consider three
performance parameters, namely, Precision (P), Recall (C), and the overall evaluation index (F-measure,
F). Commonly, recall and precision are calculated before F-mean, while there are some differences in
the calculation methods. Determining whether two bounding boxes match or not is a straightforward
but not simple problem. There are four ways in which two bounding boxes can match, as shown in
Figure 4.
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Figure 4. Four match types between ground truth and detected rectangles: (a) one-to-one match;
(b) one-to-many matches with one ground truth rectangle; (c) one-to-many matches with one detection
rectangle; (d) many to many matches.

6.1.1. ICDAR Evaluation Protocols

ICDAR 2003(IC03) Evaluation metrics. We have a set of ground-truth targets G, and the set
of detection targets D. The IC03 metric calculates precision, recall, and the standard F-measure for
one-to-one matches, as shown in Figure 4a, as follows:

Recall(G, D) =

∑|G|
i=1 BestMatchG(Gi)

|G|
(1)

Precision(G, D) =

∑|D|
j=1 BestMatchD

(
D j

)
|D|

(2)

We adopt the standard F-measure to combine precision and recall into a single measure of quality.
The relative weights of these are controlled by α, which we set to 0.5 to give equal weight to precision
and recall:

f =
1

α/p′ + (1− α)/r′
(3)

where BestMatchG and BestMatchD indicate the result of the closest match between the detection and
ground truth rectangles, as defined below:

BestMatchG(Gi) = max
j=1...|D|

2 Area
(
Gi ∩D j

)
Area(Gi) + Area

(
D j

) (4)

BestMatchD
(
D j

)
= max

i=1...|G|

2 Area
(
D j ∩Gi

)
Area

(
D j

)
+ Area(Gi)

(5)

ICDAR 2013(IC13) Evaluation Metric. IC03 only considers one-to-one match types, which is
simple but cannot handle all the cases detected, so in IC13, a new evaluation method was used:
DetEval. The new method takes into account one-to-one, one-to-many, and many-to-one cases but does
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not handle many-to-many cases. The criteria of these two evaluations are based on mutual overlap
rates between detection ({Dj}j) and ground truth ({Gi}i):

A
(
Gi ∩D j

)
A
(
D j

) > tp (6)

A
(
Gi ∩D j

)
A(Gi)

> tr (7)

where tp and tr are the thresholds of precision and recall, respectively.

P′ =

∑
i MatchD

(
Di, G, tr, tp

)
|D|

(8)

R′ =

∑
j MatchG

(
G j, D, tr, tp

)
|D|

(9)

where MatchD and MatchG are functions that consider the different types of matches:

MatchD
(
Di, G, tr, tp

)
=


1 if Di matches against a single detected rectangle

0 if Di does not match against any detected rectangle
fsc(k) if Di matches against several (→ k) detected rectangles

(10)

MatchG
(
Gi, D, tr, tp

)
=


1 if G j matches against a sin gle detected rectangle

0 if G j does not match against any detected rectangle
fsc(k) if G j matches against several (→ k) detected rectangles

(11)

where fsc(k) is a parameter function that controls the amount of punishment, and it is often set to 0.8.
ICDAR 2015(IC15) IoU Metric. The IC15 metric [8] follows the same metric as the Pascal VOC.

To be considered a correct detection, the value of Intersection-over-Union (IoU) defined in equation 12
must exceed 0.5.

A
(
G j ∩Di

)
A
(
G j ∪Di

) > 0.5 (12)

6.1.2. AP-Based Evaluation Methods

To avoid fine-tuning the output detection confidence, datasets, such as RCTW-17 [26], have adopted
interpolated average precision as the main detection evaluation metric: For a given task and class,
the precision-recall curve is computed based on the method’s ranked output. Basically, this metric
relies on the IoU metric to calculate the precision and recall in advance.

6.1.3. Tightness-Aware Intersection-Over-Union (TIoU) Evaluation Protocol

The existing metrics exhibit some drawbacks: (1) They are not goal-oriented; (2) they cannot
recognize the tightness of detection methods; (3) existing one-to-many and many-to-one solutions
involve inherent loopholes and deficiencies. Previous metrics severely rely on an IoU threshold,
which will lead to unreasonable results in some cases, such as those shown in Figure 5. To improve
these shortcomings, the TIoU approach involves three annotation concepts to enhance the focus on
detecting text content: (a) The annotation does not cut the text instance; (b) annotation contains less
background noise, especially outlier text instances; (c) even if annotations do not match the text instance
perfectly, they should be as perfect as possible.
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Figure 5. (a–d) all have the same detection (blue) intersection over union (IoU) of 0.66 against the GT
(Ground Truth) (red).

The text instances detected in Figure 5a,b have the same value of IoU (0.66) against the ground
truth, while the former does not detect a few characters of the GT (Ground Truth). To solve this
issue, the cutting behavior can be penalized using the corresponding proportion of intersection in GT,
as shown in Equations (13) and (14):

TIoURecall =
A
(
Gi ∩D j

)
∗ f (Ct)

A
(
Gi ∪D j

) (13)

f (Ct) = 1− x, x =
Ct

A(Gi)
(14)

The proposed solution aims to penalize such types of detections for making detection compact
for avoiding including outlier-GTs in the same detected region. Nevertheless, as shown in Figure 5c,
if the outlier-GTs are inside the target GT region, even the perfect detection bounding box cannot avoid
containing these outliers. Therefore, only the outlier-GT region that is inside the detection bounding
box but outside the target GT region would be penalized. The area (Ot) of the union of all eligible
outlier-GTs is calculated using Equation (15):

TIoUPrecision =
A
(
D j ∩Gi

)
∗ f (Ot)

A
(
D j ∪Gi

) (15)

f (Ot) = 1− x, x =
Ot

A
(
D j

) (16)

6.1.4. Discussion

In this part, we briefly summarize the strengths and drawbacks of commonly used evaluation
methods for scene text detection. Details are shown in Table 5.
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Table 5. Evaluation methods for scene text detection.

Evaluation Protocols Match Type Strength and Weakness

IC03 Evaluation Protocol One-to-One

The IC03 metric calculates precision, recall, and the standard
F-measure for one-to-one matches. However, it is unable to
handle one-to-many and many-to-many matches between the
ground truth and detections.

IC13 Evaluation Protocol
One-to-One

One-to-Many
Many-to-one

This method takes into account one-to-one, one-to-many,
and many-to-one cases but cannot handle
many-to-many cases.

IC15 Evaluation Protocol
One-to-One

One-to-Many
Many-to-one

This method uses the ICDAR15 intersection over union (IoU)
metric and IoU ≥ 0.5 as a threshold for counting a correct
detection. This method is the most commonly used evaluation
method and is simple to calculate.

TIoU Evaluation Protocol

One-to-one
One-to-many
Many-to-one

many-to-many

This method can quantify the completeness of ground truth,
the compactness of detection, and the tightness of the
matching degree. However, it is relatively complex
to calculate.

6.2. Results on Benchmark Datasets

In this section, we present the results of representative text detection methods on some public
datasets. The evaluation uses the Precision (P), Recall (C), and F-measure (F) metrics. Since different
methods may involve experiments on different benchmark datasets, and even on the same dataset
they may adopt different training sets (such as using a synthetic dataset for pre-training or using
special data augmentation schemes to enlarge the number of training samples), it is impossible to
make an absolutely fair comparison. However, the analysis is useful for evaluating the development of
state-of-the-art methods in this field and establishing future directions.

Table 6 reports the text detection performance of different methods on a horizontal-text dataset.
As is shown in Table 6, on the IC13 dataset, the performance has increased drastically from 77% ([46])
to 92.1% ([133]) in terms of F-measure. In [133], a supervised pyramid context network (SPCNET)
(see Figure 6) is adopted, which can achieve better detection results. It can be observed that multiple
methods of general object detection and semantic segmentation have been extended to scene text
location, and the current trend is applying a deep learning framework to training an end-to-end
text detector.

Table 6. Horizontal text detection results. Dataset: IC13.

Work Source P R F

FASText [46] CVPR’15 84 69 77
FCRN [124] CVPR’16 93.8 76.4 84.2
CTPN [74] ECCV’16 93 83 88

WordSup [134] CVPR’17 93.3 87.5 90.3
DMPNet [91] CVPR’17 93 83 87
ArbiText [135] 2017 82.6 93.6 87.7

SSTD [80] CVPR’17 89 86 88
SegLink [79] CVPR’17 87.7 83 85.3

RTN [136] IAPR’17 94 89 91
EAST [67] CVPR’17 93 83 87

AF-RPN [113] ICDAR’17 94 90 92
PixelLink [71] AAAI’18 88.6 87.5 88.1

MCN [137] 2018 88 87 88
Border [111] 2018 91.5 87.1 89.2

TextBoxes++ [81] 2018 92 86 89
RRPN [76] 2018 95 89 91
RGC [138] ICIP’18 89 77 83

SPCNet [133] AAAI’19 93.8 90.5 92.1
MSR [96] 2019 91.8 88.5 90.1

Roy et al. [139] 2020 90.4 88 89.1
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Table 7 shows the text detection performance of different methods on irregular-text datasets.
The methods of [66,97] achieve relatively high performance, while in [97], ContourNet (Figure 7) was
proposed to train an accurate arbitrarily-shaped text detection model. In [66], a segmentation-based
network method was proposed, which can set the thresholds for binarization adaptively using a
module named differentiable binarization (Figure 8).

Table 7. Irregular text detection results. Dataset: Total-Text (ToT) and Chinese Text in the Wild (CTW).

Work Source
ToT CTW

P R F P R F

TextSnake [83] ECCV’18 82.7 74.5 78.4 67.9 85.3 75.6
CRAFT [84] CVPR’19 87.6 79.9 83.6 86 81.1 83.5

Liu et al. [116] 2019 81.4 79.1 80.2 78.7 76.1 77.4
Seglink++ [104] 2019 82.9 80.9 81.5 82.8 79.8 81.3

SAST [140] 2019 85.57 75.49 80.2 81.19 81.71 81.45
PAN [107] CVPR’19 89.3 81 85 86.4 81.2 83.7

SPCNet [133] AAAI’19 83 83 83 - - -
MSR [96] 2019 85.2 73 76.8 83.8 77.8 80.7

LOMO [99] CVPR’19 87.6 79.3 83.3 - - -
SLPR [141] 2018 - - - 80.1 70.1 74.8

CTD+TLOC [128] 2019 - - - 77.4 69.8 73.4
PSENet [73] AAAI’20 84 77.9 80.9 84.8 79.7 82.2

Tian et al. [112] CVPR’19 - - - 81.7 84.2 80.1
Wang et al. [97] 2020 86.9 83.9 85.4 83.7 84.1 83.9
Roy et al. [139] 2020 88 79 83.25 85 82 83.47

OPMP [101] 2020 - - - 85.1 80.8 82.9
DB [66] AAAI’20 87.1 82.5 84.7 86.9 80.2 83.4

Table 8 shows the text detection performance of different methods on arbitrary quadrilateral text
datasets. As is shown in Table 8, [11] achieves relatively high performance on the IC15 dataset by
applying the spatial binning positions in Position Sensitive ROI (PSROI) pooling (Figure 9). Besides,
the method of ContourNet [97] achieves state-of-the-art performance on the M500 dataset.



Symmetry 2020, 12, 1956 17 of 27

Symmetry 2020, 12, x FOR PEER REVIEW 16 of 26 

 

Table 7 shows the text detection performance of different methods on irregular-text datasets. 

The methods of [66,97] achieve relatively high performance, while in [97], ContourNet (Figure 7) was 

proposed to train an accurate arbitrarily-shaped text detection model. In [66], a segmentation-based 

network method was proposed, which can set the thresholds for binarization adaptively using a 

module named differentiable binarization (Figure 8). 

Table 7. Irregular text detection results. Dataset: Total-Text (ToT) and Chinese Text in the Wild 

(CTW). 

Work Source 
ToT CTW 

P R F P R F 

TextSnake [83] ECCV’18 82.7 74.5 78.4 67.9 85.3 75.6 

CRAFT [84] CVPR’19 87.6 79.9 83.6 86 81.1 83.5 

Liu et al. [116]  2019 81.4 79.1 80.2 78.7 76.1 77.4 

Seglink++ [104] 2019 82.9 80.9 81.5 82.8 79.8 81.3 

SAST [140] 2019 85.57 75.49 80.2 81.19 81.71 81.45 

PAN [107] CVPR’19 89.3 81 85 86.4 81.2 83.7 

SPCNet [133] AAAI’19 83 83 83 - - - 

MSR [96] 2019 85.2 73 76.8 83.8 77.8 80.7 

LOMO [99] CVPR’19 87.6 79.3 83.3 - - - 

SLPR [141]  2018 - - - 80.1 70.1 74.8 

CTD+TLOC [128] 2019 - - - 77.4 69.8 73.4 

PSENet [73] AAAI’20 84 77.9 80.9 84.8 79.7 82.2 

Tian et al. [112] CVPR’19 - - - 81.7 84.2 80.1 

Wang et al. [97] 2020 86.9 83.9 85.4 83.7 84.1 83.9 

Roy et al. [139] 2020 88 79 83.25 85 82 83.47 

OPMP [101] 2020 - - - 85.1 80.8 82.9 

DB [66] AAAI’20 87.1 82.5 84.7 86.9 80.2 83.4 

 

Figure 7. Pipeline of ContourNet [97]. Figure 7. Pipeline of ContourNet [97].

Figure 8. Differentiable binarization and its derivative. (a) Numerical comparison of standard
binarization (SB) and differentiable binarization (DB). (b) Derivative of l+. (c) Derivative of l− [66].
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Table 8. Arbitrary quadrilateral text detection results. Dataset: M500 and IC15.

Work Source
M500 IC15

P R F FPS P R F FPS

Kang et al. [142] 2014 71 62 66 - - - - -
Zhang et al. [13] 2016 83 67 74 - 71 43 54 -

CTPN [74] 1 ECCV’16 - - - - 74.2 51.6 60.9 7.14
STDH [68] 2016 - - - 1.61 72.26 58.69 64.77 1.61

WordSup [134] CVPR’17 - - - - 79.3 77 78.2 2
SSTD [80] 2017 - - - - 80 73 77 7.7

EAST-PVANet [67] 2 CVPR’17 87.28 67.43 76.08 13.2 83.27 78.33 80.72 13.2
TextBoxes++ [81] 3 2018 87.8 78.5 82.9 - - - - 11.6

Border [111] 2018 78.2 58.8 67.1 - - - - -
RRD [96] CVPR’18 59.1 77.5 67 10 - - - 6.5

TextSnake [83] 4 ECCV’18 83.2 73.9 78.3 1.1 84.9 80.4 82.6 1.1
IncepText [11] 2018 87.5 79 83 3.7 93.8 87.3 90.5 3.7
Corner [65] 5 CVPR’18 87.6 76.2 81.5 5.7 94.1 70.7 80.7 3.6

PixelLink [71] 6 AAAI’18 - - - 3 85.5 82 83.7 3
PMTD [14] 7 2019 - - - - 91.3 87.4 89.3 -
CRAFT [84] 8 CVPR’19 - - - 8.6 89.8 84.3 89.8 5.6
PSENet [73] AAAI’20 - - - - 86.9 84.5 85.7 -
LOMO [143] 2019 79.1 60.2 68.4 - 89 86 88 -

PuzzleNet [144] 2020 - - - - 88.9 88.1 88.5 -
DB-ResNet18 [66] 9 AAAI’20 90.4 76.3 82.8 62 84.8 77.5 81 55
DB-ResNet50 [66] 9 AAAI’20 91.5 79.2 84.9 32 86.9 80.2 83.5 22

Roy et al. [139] 2020 88 78 82.6 - 91.1 83.1 86.9 -
OPMP [101] 2020 86 83.4 84.7 1.6 - - - 1.4

Dasgupta et al. [145] 2020 81.6 88.2 84.7 - 91.3 89.2 90.2 -
ContourNet [97] CVPR’20 87.6 86.1 86.9 - - - - -
1 http://textdet.com/, 2 https://github.com/argman/EAST, 3 https://github.com/MhLiao/TextBoxes_plusplus, 4 https:
//github.com/princewang1994/TextSnake.pytorch, 5 https://github.com/lvpengyuan/corner, 6 https://github.com/
ZJULearning/pixel_link, 7 https://github.com/jjprincess/PMTD, 8 https://github.com/clovaai/CRAFT-pytorch, 9 https:
//github.com/MhLiao/DB.

Speedup: Current text detection methods place more emphasis on speed and efficiency, which is
necessary for real-time scene text detection. As shown in Figures 10 and 11, DB [66] achieves
state-of-the-art speed on MSRA-TD500 and ICDAR 2015 datasets. Specifically, with a backbone of
ResNet-18, our detector achieves an F-measure of 82.8, running at 62 fps, on the MSRA-TD500 dataset,
and running at 55 fps with an F-measure of 81 on the ICADAR 2015 dataset.
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7. Conclusions and Discussion

In this paper, we reviewed scene text detection methods proposed in recent years.
We comprehensively classified these methods into three types and highlighted the key techniques.
Furthermore, we analyzed three types of benchmarks and evaluation protocols. Finally, we reported
the results of several representative methods on benchmarks and compared their performance.

As discussed in Sections 3 and 4, from the manual design of text features to feature extraction
using deep learning, DL-based STD significantly improved the speed as well as the accuracy of text
detection. Deep learning-based methods for scene text detection have emerged with promising results.
However, there are still some in the field.

Benchmark Dataset. Scene text detection frameworks, including deep learning-based STD
methods, required large, annotated datasets for training. However, data annotation remains time-
consuming and expensive. It is a big challenge to create a very large benchmark dataset, such as
ImageNet, including plentiful scenarios, such as multi-scale, multi-lingual, and multi-orientation
text, etc.

Real-time Scene Text Detection. Text information in scene images is extremely helpful to
people’s daily activities. Therefore, applying scene text detection technology to smart terminal devices
(e.g., mobile phones, cameras, assistive devices, etc.) is a future development direction. However,
most of the current methods are limited by the performance of smart terminal devices, which cannot
achieve real-time levels while maintaining relatively good detection accuracy. Hence, real-time text
detection is another future development direction.

Special Scene Text Detection Methods. Most of the proposed text detection methods mainly
demonstrated their performance on some public datasets, and some of them simply accumulated some
domain knowledge and adjusted parameters repeatedly (e.g., using Faster R-CNN, SSD, FCN, RNN,
and other pattern recognition domain knowledge) to obtain higher testing performance, which leads to
a lack of innovation and deep thinking. This results in approaches by researchers with no specialization
in the field of document analysis.
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