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Abstract: The use of fractional models to analyse nonlocal behaviour of solids has acquired great
importance in recent years. The aim of this paper is to propose a model that uses the fractional
Laplacian in order to obtain the equation ruling the dynamics of nonlocal rods. The solution is found
by means of numerical techniques with a discretisation in the space domain. At first, the proposed
model is compared to a model that uses Eringen’s classical approach to derive the differential
equation ruling the problem, showing how the parameters used in the proposed fractional model can
be estimated. Moreover, the physical meaning of the model parameters is assessed. The model is then
extended in dynamics by means of a discretisation in the time domain using Newmark’s method,
and the responses to different dynamic conditions, such as an external load varying with time and free
vibrations due to an initial deformation, are estimated, showing the difference of behaviour between
the local response and the nonlocal response. The obtained results show that the proposed model can
be used efficiently to estimate the response of the nonlocal rod both to static and dynamic loads.

Keywords: nonlocal elasticity; fractional Laplacian operator; nonlocal dynamics; numerical
approximation of fractional models

1. Introduction

Classical elasticity theory assumes that the stress at a point depends only on the displacements
in the neighbourhood of the point itself. The results obtained are coherent and meaningful when
dealing with structural elements at the macro-scale, i.e., in which the dimensions are much larger
than the scale of elementary material particles. However, at the micro-scale, the classical theory of
elasticity may be not adequate to estimate the response of solids. In particular, when dealing with
elements at the micro-scale, and in order to avoid formulating the problem in the context of lattice
theory, several authors prefer to work within the framework of continuum mechanics by introducing
the theory of nonlocal elasticity, the roots of which can be traced to the work of Eringen and Edelen [1].
As an example, Bazant [2] showed how the damage may be considered a nonlocal phenomenon, while
in [3] it is shown that the effect of the micro-structure can be relevant in the case of wave dispersion in
one-dimensional solid. Moreover, in [4] it is shown that nonlocality can arise also at the meso-scale
when dealing with composite material.

The main assumption of the nonlocal approach is that, differently from the theory of local elasticity,
the stress at a point depends not only on the displacements around the point but also on displacements
of points further away. There are several approaches that can be used [5]; for example, the stress
may depend on the strains of the whole continuum in an integral form through an appropriate
kernel [6]. A differential equation involving the stress and its’ second derivative can be used [7],
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which can be enriched to deal with nanomaterials [8,9]. More recently, the peridynamic model has been
proposed [10], which relates the derivative of stress to an integral involving difference of displacements
through a (peridynamic) kernel. The nonlocal elasticity theory allows to study the behaviour of beams
at the nano-scale [11,12], also considering the Timoshenko model [13–15], the presence of viscoelastic
foundation [16], the response to stochastic actions [17–19], and allows considering plane elements
at the nano-scale [20,21]. A variational approach can also be used [22] and the effect of boundary
conditions on the vibration of the beam can be evaluated [23,24].

Another approach to deal with nonlocal elasticity is to use the fractional calculus [25,26].
Within this field, a model based on the fractional Laplacian operator has been proposed in [27],
which considered the response of a rod to external load in statics, with a sensibility analysis of the
parameter of the model performed in [28]. An application of the fractional calculus to the nonlocal
elasticity is in the field of the propagation of waves in nanostructures, for example, to model the
dispersion law [29]. A peculiar approach is to model the nonlocal effects by means of long-range
interactions of volume elements, as shown in [30,31].

In the present paper, we propose to model the dynamics of a rod by means of the fractional
Laplacian operator. In particular, the formulation of the problem is given in [32], where the response
in free vibration has been evaluated. In the present paper, we study the response in forced and
free oscillation. In Section 2, the main characteristics of the fractional Laplacian model and of
the local/nonlocal differential model are recalled. The latter is based on Eringen’s one and allows
finding a closed-form response, which is used to discuss the choice of parameters of the fractional
Laplacian model. Moreover, in Section 2.3 an approach, by means of fractional Laplacian model,
to estimate the response in dynamics is proposed, while Section 2.4 is dedicated to describing the
numerical approximation of fractional Laplacian problems. In Section 3 the response to an external
excitation is evaluated both for the fractional Laplacian model and the local/nonlocal differential model.
In Section 3.3 the solution in dynamics is evaluated by means of discretisation in time domain using
Newmark’s method, which allows a rather straightforward and costly effective solution. In Section 4,
a short discussion and conclusions are reported.

2. Materials and Methods

2.1. The Fractional Laplacian Model

In [27], a model for a nonlocal rod based on a fractional Laplacian was proposed. In the present
section, we recall briefly the main hypothesis and the results.

We consider a rod, defined as a one-dimensional (1D) solid, of length 2L, as shown in Figure 1.

Figure 1. Sketch of the rod with the reference axis.

We assume that the relation between the stress σ and the strain ε in the rod may be expressed
by [1,7]

σ(x) = E
(

β1ε(x) + β2k
∫ L

−L
ε(y)g(x− y)dy

)
, (1)

where x ∈ [−L, L], E is the Young’s modulus of the material, k is a positive constant typical of
the material, g is the attenuation function and the strain ε(x) can be derived from the longitudinal
displacement u(x) in the usual way through the compatibility equation



Symmetry 2020, 12, 1933 3 of 17

ε(x) =
du
dx

. (2)

It is noteworthy that the second term on the right side of Equation (1) is the convolution of classical
stress Eε with g. The attenuation function g characterises the nonlocal contribution of the elasticity
and it is assumed to be [31]

g(z) =
1

Γ(2− 2s) |z|2s−1 , (3)

where Γ denotes the Gamma function. In order to produce an attenuation it must be

1
2
< s < 1. (4)

The coefficients β1 and β2 have the physical meaning of denoting the importance of the local and
the nonlocal behaviour, respectively, and they must obey to the following relations:

β1 + β2 = 1, β1 ∈ [0, 1]. (5)

The balance equation is

σ′(x) + b(x) = 0, (6)

where b(x) it the distributed load applied to the rod
The fractional Laplacian operator (−∆)s is defined for 1D case as

(−∆)s ϕ(x) = F−1
(
|ξ|2sF (ϕ(ξ))

)
∀x, ξ ∈ R, (7)

where F and F−1 denote the direct and inverse Fourier transforms. The preceding is equivalent, for a
function ϕ(x) with x ∈ [−L, L] and 1

2 < s < 1, to [27]

(−∆)s ϕ(x) = −LD2s
x ϕ(x) + xD2s

L ϕ(x)
2 cos(sπ)

, (8)

where −LD2s
x ϕ(x) and xD2s

L ϕ(x) are the forward and backwards Riemann–Liouville fractional
derivatives of order 2s, defined as

−LD2s
x ϕ(x) =

1
Γ(2− 2s)

d2

dx2

∫ x

−L

ϕ(x)
(x− ξ)2s−1 dξ, xD2s

L ϕ(x) =
1

Γ(2− 2s)
d2

dx2

∫ L

x

ϕ(x)
(ξ − x)2s−1 dξ. (9)

With the approach employed in [27], using balance and compatibility equations together with
Equation (1) the following problem can be defined−c u′′ + κ (−∆)su =

b(x)
E

x ∈ [−L, L]

u(x) = u′(x) = 0 x = ±L,
(10)

where (−∆)s is the fractional Laplacian operator of order s, with 1
2 < s < 1, c = β1 ∈ [0, 1] and

κ = −2β2k cos sπ and β2 = −β1. Note that since k > 0 we have κ ≥ 0.

2.2. The Local/Nonlocal Differential Model

A different approach to model the behaviour of the rod taking into account both the local and
nonlocal effects has been proposed in [33], based on the model proposed in [1]. The relation between
the stress and the strain is given by the following (please note that in this case x ∈ [0, L])
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σ(x) = ξ1Eε(x) + ξ2E
∫ L

0
Kl(x, y)ε(y)dy, (11)

where Kl is a kernel function given by

Kl =
1
2l

e
−
|x− y|

l (12)

and l > 0 is the characteristic length. It is worth noting that as l >> L the rod can be
considered subjected to self-tension. Since both local and nonlocal effects are considered, the (11) is
denoted by the authors the local/nonlocal stress-strain law. Moreover, Equation (11), together with
Equations (2) and (6), constitutes the strong form of the problem, which can be reduced to a weak form
through test functions ṽ(z) with ṽ(−L) = ṽ(L) = 0 [34].

It is noteworthy that, even if ξ1 and ξ2 are similar to β1 and β2 since they are related to the fraction
of local and nonlocal behaviour, respectively, we maintained two different sets of symbols since their
use is slightly dissimilar.

The differential equation to be solved is found using the balance and compatibility equations
together with Equation (11) [33]

(ξ1 + ξ2)ε(x)− ξ1l2ε′′(x) =
1
E

(
f (x)− l2 f ′′(x)

)
, (13)

where

f (x) = −
∫

b(x)dx + C = σ(x) (14)

with C a constant to be determined.
An important part in [33] is devoted to establishing the boundary conditions (b.c.), which assure

the consistency of the formulation, and in particular it is found that they are

ϕ′(0)− 1
l

ϕ(0) = 0, ϕ′(L)− 1
l

ϕ(L) = 0, (15)

where

ϕ(x) =
f (x)
Eξ1
− ε(x). (16)

In the case of purely local models, i.e., with ξ1 = 1, the b.c. expressed by Equation (15) are
always satisfied. As observed by the authors, while considering the purely nonlocal problem, i.e.,
with ξ1 = 0, the b.c. may not be satisfied (as, for example, in the case of constant stress), in the case of
local/nonlocal behaviour, i.e., ξ1 6= 0 and ξ2 6= 0, the b.c. can be satisfied since they do not impose any
particular condition on the stress field.

Moreover, there is an important observation in [33] that we quote from

“Nevertheless, for a meaningful comparison between a nonlocal elasticity model and experimental size
effect data, two important conditions must be satisfied: (i) the classical continuum theory is recovered
for vanishing nonlocal length, and (ii) the nonlocal system is stiffer than the local one.”

In order to obtain that the nonlocal response is stiffer than the purely local one, it must be

ξ1 ≥ 1, ξ1 + ξ2 = 1. (17)

It is noteworthy that in this case the value of ξ2 is negative. Instead, in the fractional Laplacian
model, the value of β1 must be smaller than 1 and therefore β2 is greater than 0.
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2.3. Nonlocal Rod Dynamics by Means of Fractional Laplacian Model

The fractional Laplacian model for the nonlocal rod was extended to dynamics in [32].
In particular, the D’Alembert principle was used and therefore the equilibrium equation is

σ′ + f = ρü, (18)

where ρ = ρ(x) is the mass density. Since now σ and u depend both in space and in time,
partial derivatives denoted ′ = ∂

∂x and ˙ = ∂
∂t are used. For simplicity, it is assumed that the mass

density ρ is a positive constant.
By using the approach in [32] the following problem can be defined

−c u′′(x, t) + κ (−∆)su(x, t) +
1
v2 ü(x, t) =

b(x, t)
E

x ∈ [−L, L], ∀t

u(x, t) = 0 x = ±L, ∀t

u(x, 0) = u0(x)

u̇(x, 0) = u̇0(x)

, (19)

where v = (E/ρ)1/2.

2.4. Numerical Approximation of Fractional Laplacian Problems

Both in the case of statics, see Equation (10), and dynamics, see Equation (19), there are difficulties
in finding a closed-form solution. Therefore, a numerical approximation is sought. The main important
item is the estimation of the fractional Laplacian, for which the approach introduced in [35] is used.

We look for the solution defined in a discrete number of points xi with i = 1, 2, . . . , n

xi = −L + ih, i = 0, 1, . . . , n− 1, (20)

with h = 2L/(n− 1). The values of displacement u at xi is denoted by ui.
A central difference approximation is used for the second derivative u′′:

u′′i =
ui+1 − 2ui + ui−1

h2 . (21)

When i = 0 and i = n− 1, the second-order forward and backwards approximation, respectively,
are used to estimate the second derivative. Moreover, it is noteworthy that the central difference
approximation used for the second derivative is coherent with classical dynamic models, for example,
to express the wave equation of a series of masses connected by linear springs.

The fractional Laplacian operator (−∆)s is approximated as

(−∆h)
sui =

∞

∑
j=1

(
2ui − ui+j − ui−j

)
wj =

∞

∑
j=−∞

(
ui − ui−j

)
wj, (22)

where wj are weights, determined by a semi-exact quadrature rule, given in [35]. The formula in
Equation (22) is similar to the central difference approximation formula in Equation (21); anyway,
the sum is extended to all the points with weights that decrease with the difference |i − j|. It is
possible to prove that Equation (22) reduces to the finite differences approximation of Equation (21) as
s approaches unity.

The fractional Laplacian is estimated considering only M ≥ n− 1 terms in Equation (22)

(−∆h)
s
Mui =

M

∑
j=−M

(
ui − ui−j

)
wj +

C1,s

s(Mh)2s u(xi), (23)

and for Mh ≥ 2L the values of C1,s are given in [27]
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C1,s = s 22s Γ(s + 1/2)
π1/2Γ(1− s)

. (24)

Therefore, the discrete form of Equation (10) is−c
(

ui+1 − 2ui + ui−1

h2

)
+ κ (−∆h)

s
Mui =

bi
E

for i = 1, 2, . . . , n− 2

u0 = un−1 = 0
(25)

with bi = b(xi). In the first equation, i is in the range 1 . . . n− 2 since values 0 and n− 1 are included
in the second equation.

In dynamics, a discretisation of the problem in the time domain is also necessary. In particular m
time steps equally spaced are used

tj = j∆T, j = 0, 1, . . . , m− 1, (26)

with ∆T = T/(m− 1), T being the length of the time history.
To this aim the Newmark’s method is used [36], which allows estimating the velocity and

displacement at the time tj+1 as{
j+1u̇i =

ju̇i + [(1− γ)∆t] jüi + (γ∆t) j+1üi
j+1ui =

jui + (∆t)ju̇i +
[
(0.5− β) (∆t)2] jüi +

[
β(∆t)2] j+1üi

, (27)

where jui = u(xi, tj), ju̇i = u̇(xi, tj) and jüi = ü(xi, tj). Since the acceleration at time tj+1 is not known,
the Newmark’s method is implicit. With γ = 1

2 and β = 1
4 a constant average acceleration between tj

and tj+1 is assumed, while γ = 1
2 and β = 1

6 corresponds to assuming a linear variation of acceleration
between tj and tj+1. In order to ave numerical stability, γ = 1/2 and β = 1/4 have been used.

By means of Equation (27) the discrete form of (19) is

−c j+1
( j+1ui+1 − 2j+1ui +

j+1ui−1

h2

)
+ κ (−∆h)

s
M

j+1ui +
1
v2

j+1üi =
j+1bi

E
for i = 1, 2, . . . , n− 2

u0(t) = un−1(t) = 0
(28)

where j+1bi = b(xi, tj+1).
The problems to be solved are therefore: find the values of ui in statics and j+1üi for each j in

dynamics in order to find the zeros of the vectorial function g expressed by (25) and (28), respectively.
The problem has been solved numerically using the Python programming language and in

particular its procedure “fsolve”, based on the Powell hybrid method, as implemented in MINPACK,
see [37].

3. Results

3.1. The Local/Nonlocal Differential Model

The model proposed by [33] has been applied to the case of the rod having both a local and
nonlocal behaviour and subjected to a distributed load given by the following law

b(x) = 1 + cos
(

2π

L

(
x− L

2

))
(29)

where 0 ≤ x ≤ L. In this case, the stress field f (x) is given by

f (x) = −
∫

b(x)dx + C = −x− L
2π

sin
(

2π

L

(
x− L

2

))
+ C (30)
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and therefore

f ′′(x) =
2π

L
sin
(

2π

L

(
x− L

2

))
. (31)

The overall force acting on the rod is given by

B =
∫ L

0
b(x)dx =

∣∣∣∣x +
L

2π
sin
(

2π

L

(
x− L

2

))∣∣∣∣L
0
= L (32)

and, considering the symmetry of the problem, both in geometry and in the loading, the reaction at
both ends is equal to −L/2.

The value of the stress on the left end allows to evaluate the value of C

σ(0) = f (0) =
L
2
⇒ C =

L
2

(33)

and, as expected, the stress at the right end is

σ(L) = f (L) = − L
2

. (34)

The solution is given by solving Equation (13) and it is

ε(x) = C
E(ξ1+ξ2)

+ C1e−
x
√

1+
ξ2
ξ1

l + C2e
x
√

1+
ξ2
ξ1

l

+
L3 sin ( 2πx

L )
2πE(L2ξ1+L2ξ2+4π2ξ1l2)

+
2πLl2 sin ( 2πx

L )
E(L2ξ1+L2ξ2+4π2ξ1l2)

− x
E(ξ1+ξ2)

(35)

while to find the values of C1 and C2 the boundary conditions that assure the consistency of the
formulation, given by Equation (15), must be applied. The expressions for C1 and C2 are rather
cumbersome and are reported in Appendix A.

In the following the results for ξ1 = 1.4 and l = 0.25L, assuming L = 200 mm and
E = 1000 N/mm, are reported.

The values of b(x) are shown in Figure 2.

Figure 2. Values of b(x) = 1 + cos
(

2π
L

(
x− L

2

))
for L = 200 mm.
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The values of stress σ(x) and strain ε(x) are shown in Figure 3.

(a) (b)

Figure 3. Respone of the rod to load b(x): (a) stress σ(x), (b) strain ε(x).

In order to compare the results with those obtained with the purely local theory, the strain is
obtained from the balance Equation (6) and the relation between stress and strain given by the local law

ε(x) =
σ(x)

E
. (36)

The derivative of the strain is

ε′(x) =
σ′(x)

E
=

1
E
(−b(x)) (37)

from which the value of ε can be found as

ε(x) =
1
E

(
−
∫

b(x)dx + C
)
=

1
E
( f (x)) . (38)

The displacement at midspan is therefore

u(L/2) = u(0) +
∫ L/2

0 εdx = u(0) + 1
E
∫ L/2

0 f dx
= u(0) + 1

E
∫ L/2

0

(
−x− L

2π sin
(

2π
L

(
x− L

2

))
+ C

)
dx

= u(0) + 1
E

∣∣∣Cx− x2

2 + L2

(2π)2 cos
(

2π
L

(
x− L

2

))∣∣∣L/2

0
= u(0) + 1

E

[
C L

2 −
(L/2)2

2 + 2 L2

(2π)2

]
.

(39)

For comparison, since the displacement in the local/nonlocal case has not been estimated,
the difference of displacement between the midspan and the left end is used:

∆uloc = u(L/2)− u(0) =
1
E

[
C

L
2
− (L/2)2

2
+ 2

L2

(2π)2

]
. (40)

In the case of local/nonlocal behaviour, the difference is given by

∆uloc/noloc =
∫ L/2

0
ε(x)dx, (41)

where ε(x) is given by (35).
The comparison of midspan displacements between local and local/nonlocal behaviour for

various values of β1 and l are shown in Figure 4.
Since the solution of the local/nonlocal model is given in closed-form by Equation (35), we observe

that there are not any singularities or critical point, and therefore the model is robust in order to estimate
the behaviour of the rod under the given load. As can be appreciated, as l increases the local/nonlocal
midspan displacement decreases, as expected. Moreover, as the response is more influenced by the
nonlocal component, i.e., as the value of ξ1 increases, the ratio ulocal/nonlocal/ulocal decreases.
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Figure 4. Ratio uloc/nonloc/uloc for different values of l and ξ1.

3.2. Fractional Laplacian Model and Comparison

The response of the rod under the same load is also evaluated by means of the fractional Laplacian
approach, as recalled in Section 2.4. Nevertheless, since in the fractional Laplacian model −L ≤ x ≤ L
the applied load is

b(x) = 1 + cos
(

2π

L
x
)

. (42)

The same value of E = 1000 N/mm2 has been used. Moreover, n = 105 and M = 105.
In particular, the midspan displacement has been evaluated for several values of k and s,

using different values of β1. It is noteworthy that in the approach based on the fractional Laplacian the
value of β1 is always smaller or equal to 1, and therefore the value of β2 is always greater or equal to
zero, while in the approach of [33] the value of ξ1 (which has the same meaning of β1) must be greater
or equal 1 and therefore ξ2 (which has the same meaning of β2) is smaller or equal 0.

In order to present the results, the surface of the ratio of the midspan displacement for an assigned
value of β1 between the fractional model case and the local case is considered to be a function of k and
s as follows

ũ(β1, k, s) =
u f rac.Lap.(L/2)

ulocal(L/2)
. (43)

In Figure 5, the results for three different values of β1: 0.5, 0.7, 0.8 are shown.
The results are reported in Figure 6 in terms of level curves.
It is noteworthy that the same ratio for a fixed β1 can be obtained with two different sets of values

of k and s: for each of the set a different deformed shape is obtained.
As an example, in Figure 7 we compare the displacements obtained with the local/nonlocal

differential model with a value of l = 65 mm and ξ1 = 1.5 and the displacements obtained with the
fractional Laplacian model using k = 0.508 mm2s−2 and s = 0.930 in one case and k = 0.300 mm2s−2

and s = 0.522 in the other case; in both cases, β1 = 0.5. In all cases, the ratio of the nonlocal
displacement and the local displacement at midspan is equal to 0.75.
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Figure 5. Values of ρ0.5.

Figure 6. Contour levels for the values of ũ for different combinations of β1, k and s.

As can be appreciated, the deformed shape is slightly different, and moreover the local/nonlocal
differential model seems to give slightly smaller values of displacements between the rod end and
midspan; anyway, in this case, the mean relative difference, defined as

1
200

∫ 100

−100

u f rac.Lap.(x)− ulocal(x)
ulocal(x)

dx (44)

where u f rac.Lap.(x) are the displacements obtained with the fractional Laplacian model and ulocal(x)
are the displacements obtained with local/nonlocal differential model, is below 5%.
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(a) (b)

Figure 7. Response of the rod to load b(x): (a) displacements. (b) detailed view for −80 ≤ x ≤ −60.
Parameters for local/nonlocal differential model: l = 0.65 and ξ1 = 1.5. Parameters for fractional
Laplacian model: β1 = 0.5, k and s shown in legend.

3.3. Response in Dynamics

The rod is considered to be subjected to a distributed load given by

b(x, t) =
(

sin
(

2π

T0
t
))(

1 + cos
(

2π

2L
x
))

. (45)

We recall from [27] that in the local case the value of the first natural period is T1 = 2L/v and
therefore assuming ρ = 1 kg/mm3 it is T1 = 12.65 s. Moreover, the period of the nonlocal rod is always
smaller than the local one.

The period of the forcing function is assumed to be T0 = 5 s and the duration of the time history
is T = 80 s. The results are shown in Figure 8 both in the time domain and in the frequency domain
(through the magnitude of the discrete Fourier transform values) in terms of midspan displacement
for the local case and the nonlocal case, using the fractional Laplacian model with β1 = 0.5 and the
two different sets of values for k and s already used in the previous section.

From the figure we can appreciate that the nonlocal case is stiffer since the period decreases,
as indicated by the intersections with the time axis and more clearly by the peak values in the
frequency domain. Moreover, the difference in terms of displacement is also affected by the dynamical
amplification factor, since the ratio between the forcing frequency and the natural frequency decreases.

Moreover, in Figure 9 the effect of different values of β1 is shown. For β1 = 0.75 we calibrated the
values of k and s to give the same ratio of midspan displacement than β1 = 0.5.

In this case, the difference is much smaller between the two nonlocal cases, since the chosen
parameters determine the same ratio of midspan displacement and moreover the values of k and s are
very similar, so the deformation is almost the same.

Moreover, the dynamics in the case of an unloaded rod with an assigned initial shape and zero
initial velocity has been analysed. Assuming an initial shape given by

u(x, 0) = 1 + cos
(

2π

2L
x
)

(46)

we obtain the results shown in Figure 10 with the same parameters of the nonlocal rod considered
before. The results for the local case can also be obtained by means of superposition of classical wave
solutions to 1D Navier’s equation.
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(a)

(b)

Figure 8. Dynamic displacement in (a) time and (b) frequency domain for local case and the
local/nonlocal case with β1 = 0.75 and two different combination of k and s, which gives the same
midspan displacement ratio: k = 0.508 and s = 0.930; k = 0.300 and s = 0.522.

(a)

(b)

Figure 9. Dynamic displacement in (a,b) time and (b) frequency domain local case and the
local/nonlocal case with two combinations of β, k and s, which gives the same midspan displacement
ratio: β1 = 0.5, k = 0.508 and s = 0.930; β1 = 0.75, k = 0.300 and s = 0.522.
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Figure 10. Displacements in dynamics for local case and the local/nonlocal case with β1 = 0.5,
k = 0.508 and s = 0.930 at time instants t = 0 s and t = 2.08 s.

Since the local/nonlocal is stiffer, after an equal amount of time its deformed shape is closer to
the rest position, as expected.

4. Discussion and Conclusions

In the present paper, an approach to analyse the dynamics of a rod with a nonlocal elastic
behaviour is proposed. This is based on the fractional Laplacian model, and requires the estimation
of two parameters, k and s, where s is the order of the fractional Laplacian. Even if alternative
approaches exist, for example, the local/nonlocal differential one [33], which is based on Eringen’s
theory [7] and require only one parameter l, the present model can be useful in calibrating the estimated
response more adequately to experimental results, for example, to accommodate both the midspan
displacement and the mean displacement gradient of the rod. Moreover, the fractional Laplacian
model requires that both the parameters weighting the local and nonlocal relative behaviour, β1 and
β2, are positive, while in the local/nonlocal differential one the corresponding parameter, ξ1 and
ξ2, are positive and negative, respectively, in order to reproduce experimental results. Nevertheless,
the local/nonlocal differential model can be solved in closed-form for simple cases, while the fractional
Laplacian one must resort to numerical methods in all cases. Moreover, it can be extended in dynamics
in a rather straightforward way, and the solution can be approximated quite affordably by means
of the time domain discretisation techniques: in the present paper, we propose to use Newmark’s
method. This approach is very fast and appears to be suitable for analysing the rod under arbitrary
excitations. The proposed fractional Laplacian model could also be used to model the bending of
beams, plates, and in the same way it can be certainly extended to analyse waves in nonlocal elastic
3D solids; these are the topics of the ongoing research.
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List of Symbols

x position
u displacement
L half-length
σ stress
ε strain
E Young’s modulus
ρ mass density
β1 local fraction for fractional Laplacian model
β2 nonlocal fraction for fractional Laplacian model
ξ1 local fraction for local/nonlocal differential model
ξ2 nonlocal fraction for local/nonlocal differential model
k contant related to nonlocal behaviour in fractional Laplacian model
g attenuation function
s order of fractional Laplacian
(−∆)s fractional Laplacian operator
b distributed load
F ,F−1 direct and inverse Fourier transform

−LD2s
x ϕ(x), xD2s

L ϕ(x) forward and backwards Riemann–Liouville fractional derivatives of order 2s
Γ Gamma function
c parameter of fractional Laplacian model, c = β1
κ parameter of fractional Laplacian model, κ = −2β2k cos sπ

Kl kernel of local/nonlocal differential model
l nonlocal characteristic length for local/nonlocal differential model
n points used for discretisation in space
wj weight for term in approximation of fractional Laplacian
M number of terms in approximation of fractional Laplacian
m points used for discretisation in time
T length of time history
β, γ parameters of Newmark’s method
T0 period of dynamic load

Appendix A

The expressions for ξ1 and ξ2 are found by imposing the boundary conditions that assure the
consistency of the formulation, given by

ϕ′(0)− 1
L

ϕ(0) = 0, ϕ′(L)− 1
L

ϕ(L) = 0 (A1)

with

ϕ(x) =
f (x)
Eξ1
− ε(x) (A2)

where

ε(x) = C
E(ξ1+ξ2)

+ C1e−
x
√

1+
ξ2
ξ1

l + C2e
x
√

1+
ξ2
ξ1

l

+
L3 sin ( 2πx

L )
2πE(L2ξ1+L2ξ2+4π2ξ1l2)

+
2πLl2 sin ( 2πx

L )
E(L2ξ1+L2ξ2+4π2ξ1l2)

− x
E(ξ1+ξ2)

(A3)

and

f (x) = −x− L
2π

sin
(

2π

L

(
x− L

2

))
+ C (A4)

with
C =

L
2

(A5)
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We obtain the following values of C1 and C2

C1 = ξ2
E

CL2ξ1

√
ξ1+ξ2

ξ1
e

L
√

ξ1+ξ2
ξ1

l + CL2ξ1

√
ξ1+ξ2

ξ1
+ CL2ξ1e

L
√

ξ1+ξ2
ξ1

l − CL2ξ1

+CL2ξ2

√
ξ1+ξ2

ξ1
e

L
√

ξ1+ξ2
ξ1

l + CL2ξ2

√
ξ1+ξ2

ξ1
+ CL2ξ2e

L
√

ξ1+ξ2
ξ1

l − CL2ξ2 + 4π2Cξ1l2
√

ξ1+ξ2
ξ1

e
L
√

ξ1+ξ2
ξ1

l

+4π2Cξ1l2
√

ξ1+ξ2
ξ1

+ 4π2Cξ1l2e
L
√

ξ1+ξ2
ξ1

l − 4π2Cξ1l2 − L3ξ1

√
ξ1+ξ2

ξ1
+ L3ξ1 − L3ξ2

√
ξ1+ξ2

ξ1
+ L3ξ2

−4π2Lξ1l2
√

ξ1+ξ2
ξ1

+ 4π2Lξ1l2 + 4π2ξ1l3
√

ξ1+ξ2
ξ1

e
L
√

ξ1+ξ2
ξ1

l − 4π2ξ1l3
√

ξ1+ξ2
ξ1

+ 4π2ξ1l3e
L
√

ξ1+ξ2
ξ1

l

+4π2ξ1l3) e
L
√

ξ1+ξ2
ξ1

l ·

2L2ξ3
1

√
ξ1+ξ2

ξ1
e

2L
√

ξ1+ξ2
ξ1

l + 2L2ξ3
1

√
ξ1+ξ2

ξ1
+ 2L2ξ3

1e
2L
√

ξ1+ξ2
ξ1

l − 2L2ξ3
1

+4L2ξ2
1ξ2

√
ξ1+ξ2

ξ1
e

2L
√

ξ1+ξ2
ξ1

l + 4L2ξ2
1ξ2

√
ξ1+ξ2

ξ1
+ 5L2ξ2

1ξ2e
2L
√

ξ1+ξ2
ξ1

l − 5L2ξ2
1ξ2

+2L2ξ1ξ2
2

√
ξ1+ξ2

ξ1
e

2L
√

ξ1+ξ2
ξ1

l + 2L2ξ1ξ2
2

√
ξ1+ξ2

ξ1
+ 4L2ξ1ξ2

2e
2L
√

ξ1+ξ2
ξ1

l − 4L2ξ1ξ2
2 + L2ξ3

2e
2L
√

ξ1+ξ2
ξ1

l − L2ξ3
2

+8π2ξ3
1l2
√

ξ1+ξ2
ξ1

e
2L
√

ξ1+ξ2
ξ1

l + 8π2ξ3
1l2
√

ξ1+ξ2
ξ1

+ 8π2ξ3
1l2e

2L
√

ξ1+ξ2
ξ1

l − 8π2ξ3
1l2

+8π2ξ2
1ξ2l2

√
ξ1+ξ2

ξ1
e

2L
√

ξ1+ξ2
ξ1

l + 8π2ξ2
1ξ2l2

√
ξ1+ξ2

ξ1
+ 12π2ξ2

1ξ2l2e
2L
√

ξ1+ξ2
ξ1

l − 12π2ξ2
1ξ2l2

+4π2ξ1ξ2
2l2e

2L
√

ξ1+ξ2
ξ1

l − 4π2ξ1ξ2
2l2

−1

(A6)

C2 = − ξ2
E

−CL2ξ1

√
ξ1+ξ2

ξ1
e

L
√

ξ1+ξ2
ξ1

l − CL2ξ1

√
ξ1+ξ2

ξ1
− CL2ξ1e

L
√

ξ1+ξ2
ξ1

l + CL2ξ1

−CL2ξ2

√
ξ1+ξ2

ξ1
e

L
√

ξ1+ξ2
ξ1

l − CL2ξ2

√
ξ1+ξ2

ξ1
− CL2ξ2e

L
√

ξ1+ξ2
ξ1

l + CL2ξ2 − 4π2Cξ1l2
√

ξ1+ξ2
ξ1

e
L
√

ξ1+ξ2
ξ1

l

−4π2Cξ1l2
√

ξ1+ξ2
ξ1
− 4π2Cξ1l2e

L
√

ξ1+ξ2
ξ1

l + 4π2Cξ1l2 + L3ξ1

√
ξ1+ξ2

ξ1
e

L
√

ξ1+ξ2
ξ1

l + L3ξ1e
L
√

ξ1+ξ2
ξ1

l

+L3ξ2

√
ξ1+ξ2

ξ1
e

L
√

ξ1+ξ2
ξ1

l + L3ξ2e
L
√

ξ1+ξ2
ξ1

l + 4π2Lξ1l2
√

ξ1+ξ2
ξ1

e
L
√

ξ1+ξ2
ξ1

l + 4π2Lξ1l2e
L
√

ξ1+ξ2
ξ1

l

+4π2ξ1l3
√

ξ1+ξ2
ξ1

e
L
√

ξ1+ξ2
ξ1

l − 4π2ξ1l3
√

ξ1+ξ2
ξ1

+ 4π2ξ1l3e
L
√

ξ1+ξ2
ξ1

l + 4π2ξ1l3

2L2ξ3
1

√
ξ1+ξ2

ξ1
e

2L
√

ξ1+ξ2
ξ1

l + 2L2ξ3
1

√
ξ1+ξ2

ξ1
+ 2L2ξ3

1e
2L
√

ξ1+ξ2
ξ1

l − 2L2ξ3
1 + 4L2ξ2

1ξ2

√
ξ1+ξ2

ξ1
e

2L
√

ξ1+ξ2
ξ1

l

+4L2ξ2
1ξ2

√
ξ1+ξ2

ξ1
+ 5L2ξ2

1ξ2e
2L
√

ξ1+ξ2
ξ1

l − 5L2ξ2
1ξ2 + 2L2ξ1ξ2

2

√
ξ1+ξ2

ξ1
e

2L
√

ξ1+ξ2
ξ1

l + 2L2ξ1ξ2
2

√
ξ1+ξ2

ξ1

+4L2ξ1ξ2
2e

2L
√

ξ1+ξ2
ξ1

l − 4L2ξ1ξ2
2 + L2ξ3

2e
2L
√

ξ1+ξ2
ξ1

l − L2ξ3
2 + 8π2ξ3

1l2
√

ξ1+ξ2
ξ1

e
2L
√

ξ1+ξ2
ξ1

l + 8π2ξ3
1l2
√

ξ1+ξ2
ξ1

+8π2ξ3
1l2e

2L
√

ξ1+ξ2
ξ1

l − 8π2ξ3
1l2 + 8π2ξ2

1ξ2l2
√

ξ1+ξ2
ξ1

e
2L
√

ξ1+ξ2
ξ1

l + 8π2ξ2
1ξ2l2

√
ξ1+ξ2

ξ1

+12π2ξ2
1ξ2l2e

2L
√

ξ1+ξ2
ξ1

l − 12π2ξ2
1ξ2l2 + 4π2ξ1ξ2

2l2e
2L
√

ξ1+ξ2
ξ1

l − 4π2ξ1ξ2
2l2

−1

(A7)

The values of ξ1 and ξ2 have been obtained by means of the code Sympy [38].
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