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Abstract: The design of colloidal interactions to achieve target self-assembled structures has especially
been done for compact objects such as spheres with isotropic interaction potentials, patchy spheres and
other compact objects with patchy interactions. Inspired by the self-assembly of collagen-I fibrils and
intermediate filaments, we here consider the design of interaction patterns on semiflexible chains that
could drive their staggered assembly into regular (para)crystalline fibrils. We consider semiflexible
chains composed of a finite number of types of interaction beads (uncharged hydrophilic, hydrophobic,
positively charged and negatively charged) and optimize the sequence of these interaction beads with
respect to the interaction energy of the semiflexible chains in a number of target-staggered crystalline
packings. We find that structures with the lowest interaction energies, that form simple lattices,
also have low values of L/D (where L is chain length and D is stagger). In the low interaction energy
sequences, similar types of interaction beads cluster together to form stretches. Langevin Dynamics
simulations confirm that semiflexible chains with optimal sequences self-assemble into the designed
staggered (para)crystalline fibrils. We conclude that very simple interaction patterns should suffice to
drive the assembly of long semiflexible chains into staggered (para)crystalline fibrils.

Keywords: protein assembly; collagen; staggered assembly; protein design; self-assembly design;
coarse-graining; computer simulations

1. Introduction

The design of soft materials that self-assemble into programmable structures with physical
properties that can be precisely controlled, is now within reach thanks to technologies such as DNA
nanotechnology [1], and the computational design of sequences for small globular proteins that
self-assemble into precisely designed structures [2]. At larger length scales, and more coarse-grained
levels of description, interaction potentials for soft matter components can be designed that assemble to
stable target structures [3]. For example, isotropic interaction potentials have been designed that lead
to the assembly of colloidal particles into quasi-crystals [4]. A large body of work, both experimental
and theoretical, also deals with patchy colloidal particles, with anisotropic interaction potentials,
which can be designed for assembly into, e.g., into monodisperse icosahedral clusters [5] or specific
crystal structures [6].

Virtually no work has been carried out yet on patchy rods, or patchy semiflexible chains. No doubt
this is related to the fact that as of yet there are not many experimental examples of such systems
for which patterns on rods or semiflexible chains can be precisely controlled. However, in nature,
patchy semiflexible chains are abundant, a particularly important example being those that exhibit
staggered assembly into fibrils such as intermediate filaments and collagen-I. Both collagen fibrils
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and intermediate filaments form by the staggered assembly of long, rod-shaped, semiflexible protein
subunits. Presumably, some form of “interaction code” along the rod-shaped protein subunits directs
the staggered assembly into fibrils. Indeed a regular pattern of electrostatic and other interactions for
parallel triple helices has been implicated in the assembly of collagen-I triple helices [7,8], but only
at a qualitative level, leaving the possibility that very local and specific interactions may in fact
dominate the total driving force for the staggered assembly. The same holds for the staggered assembly
of intermediate filaments: patterns of electrostatic interactions have been implicated, but only at
a qualitative level [9]. An additional complication is that these fibrils assemble in the context of a
living organism, such that it is not clear whether indeed the assembly is fully encoded in the primary
sequence of these proteins, or that it is assembled under the influence of external forces. For example,
the staggered assembly of collagen-I triple helices into fibrils and fibers is a highly regulated process
that is influenced by a multitude of cellular processes. Indeed, while isolated collagen-I triple helices
have been shown to be able to assemble into staggered fibrils in-vitro, showing the familiar “banding”
pattern, structurally these fibrils are different from those formed in-vivo [10].

Nevertheless, the fact that the staggered assembly is also found for collagen-I in-vitro (albeit not
the same as in-vivo) does indicate that it is indeed encoded to some extent in the primary sequence.
Further evidence in this direction also comes from studies on the assembly of engineered concatemers
of (non-hydroxylated) fragments of collagen-I sequences, that form staggered fibrils, but with different
gap sizes than natural collagen-I fibrils [11–13].

Designed fibrillar systems have been explored widely as mimics of collagen-I fibrils of the
extracellular matrix. A number of systems have been developed that consist of sticky semiflexible
chains that bundle into fibrils and form dilute hydrogels [14–16]. These have shown great promise
as scaffolds for cell growth. However, semiflexible chains that exhibit precise staggered assembly
into (quasi) crystalline arrays have not been developed yet. For short, helical peptides, it has been
discovered that simple patterns of rather long-range interactions, such as electrostatic interactions,
suffice to direct staggered assembly into fibrils, showing the characteristic “banding” when imaged
using electron microscopy. This was shown both for collagen-like triple-helical peptides [17] and for
alpha-helical peptides [18].

The longer-ranged interactions that drive staggered assembly into fibrils for these short peptide
chains can be fairly well represented by coarse-grained force-fields. Therefore, we reason that when
aiming at the computational design of interaction patterns that lead to staggered self-assembly of long
semiflexible chains, a fair starting point would be the use of a coarse-grained representation of the
interaction patterns on the semiflexible chains. Needless to say, this leads to efficient computations for
which one can screen a very large number of interaction patterns and target crystalline arrangements,
even for long semiflexible chains. The resulting coarse-grained interaction patterns may be the starting
point for more refined sequence optimization at less coarse-grained levels of descriptions, or they may
be directly implemented using different kinds of chemistries such as collagen-like or alpha-helical
amino-acid sequences, or, in the near future, possibly using other sequence-defined synthetic polymer
chemistries [19]. With this in mind, we here consider the computational design of interaction patterns
on semiflexible chains for their spontaneous staggered assembly into (para)crystalline fibrils.

2. Materials and Methods

The coarse-grained model for the patterned semiflexible chains is formulated in terms of 4 types
of interaction beads, hydrophobic, uncharged hydrophilic, positively charged, and negatively charged.
Note that the use of interaction beads is an approximation of at least two levels. First, the molecular
structures that we have in mind such as peptide alpha-helices and triple helices are only approximately
semiflexible rods, and secondly, additional errors are introduced by approximating semiflexible rods
in terms of bead–spring models. Type numbers s associated with the bead types are: s = 1 (uncharged
hydrophilic), s = 2 (hydrophobic), s = 3 (positively charged) and s = 4 (negatively charged). We consider
M patterned semiflexible chains, each chain consists of N = 40 interaction beads, such that the total
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number of interaction beads is Ntot = M.N. All semiflexible chains have the same sequence of bead types,
S = {s1,s2, . . . ,sN}, and all beads have the same diameter σ. Electrostatic interactions are represented
by a screened Coulomb potential, hydrophobic attraction and excluded volume interactions by a
Lennard–Jones potential. Hence, the non-bonded interaction between two beads i and j with bead
types si and sj is:

Vsis j

(
ri j

)
= 4εsis j

((
σ/ri j

)12
−

(
σ/ri j

)6
)
+ qsiqs j

lB
ri j

exp
(
−κri j

)
kBT (1)

where lB = e2/4πε0εrkBT is the Bjerrum length, in terms of the elementary charge e, the absolute and
relative dielectric permittivities ε0 and εr, and the thermal energy kBT. The Debye screening length is
κ−1 = (8πlBns)

−1/2, where ns is the number density of (monovalent) ions. The effective bead charges
qsi (number of elementary charges e) are:

qsi =
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and the Lennard–Jones interaction parameters are:

εsis j =

εh si = s j = 2

ε0 otherwise
(3)

Bonded interactions used to describe the semiflexible chains are harmonic stretching- and bending
potentials, such that the total potential energy function for the M chains is:

U(r1, . . . , rNtot) =
∑

pairs i, j
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θ2
i jk (4)

The bending angle θijk is the angle between the (i) . . . (j) and (j) . . . (k) virtual bond vectors.
The linear chains are assumed to be straight at equilibrium hence the equilibrium bending angle is
zero, and j = i + 1, k = i + 2.

Parameter values are chosen such that they represent one of the possible chemistries that can be
used to implement patterned semiflexible chains, viz., the collagen triple helix. The bead diameter σ,
therefore, corresponds to the diameter of a collagen triple helix, of around 1.5 nm. Experimental values
reported for the persistence length lp of collagen triple helices cover a wide range of values [20,21].

We assume thermal bending fluctuations have a destabilizing effect on fibril assembly, therefore we
here use a value of lp ≈ 35 nm which is on the lower side of the reported values. We do so since
we would rather like to overestimate the effect of bending fluctuations on the fibril stability than to
underestimate it. Collagen amino acid sequences are repeats of G-Xaa-Yaa triplets, where Xaa is often
proline and Yaa often hydroxyproline. If we let each bead represent the helical rise 0.85 nm of a single
G-Xaa-Yaa triplet of amino acids, we arrive at a bond distance lb = 0.57σ. A single interaction bead then
represents 9 amino acids (3 strands, a G-Xaa-Yaa triplet on each strand). Given a persistence length lp
≈ 35 nm, we then arrive at a bending elastic constant kb = 10kBT. We assume a typical Debye length of
κ−1 = 1 nm, or κσ = 1.5, corresponding to an equivalent concentration of monovalent electrolyte of
approximately 0.1 M. Values for the effective charges of q of the positively and negatively charged
beads, and for the Lennard–Jones energy parameter εh for hydrophobic beads are chosen such that
the attraction between the beads (at a distance corresponding to the minimum of the Lennard–Jones
potential) is approximately equal to the thermal energy kBT. The Lennard–Jones energy parameter ε0

for the charged beads and for the uncharged hydrophilic beads is chosen to be small such that the
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Lennard–Jones attraction between these beads is negligible as compared to the thermal energy kBT.
Numerical values of all parameters are given in Table 1.

Table 1. Parameter values for the coarse-grained patterned semiflexible chain model.

Parameter Value Unit

κ 1.5 σ−1

lB 0.47 σ
q 2.0 −

εh 2.0 kBT
ε0 0.1 kBT
lb 0.57 σ
ks 100 kBT/σ2

kb 10 kBT

For energy minimalization of the total interaction energy Erod(S) of a central chain with the
surrounding chains in a staggered crystalline arrangement, we use a Metropolis Monte Carlo
search algorithm. Sequences S are assumed to be palindromic. The initial sequence is a random
(but palindromic) sequence with 30% hydrophobic, 30% uncharged hydrophilic and 40% charged
beads (half of which are positively and half of which are negatively charged). Two random beads are
selected in the first half of the sequence. Random selection is repeated until two beads are found of a
different type. A Monte Carlo trial move consists of exchanging these two beads in both halves of the
palindromic (symmetric) sequence, yielding a new sequence Snew. If ∆Erod = Erod(Snew) − Erod(S) < 0,
the trial move is accepted. If ∆Erod > 0, it is accepted with probability exp(−∆Erod/∆E). We choose
∆E = 2kBT. All sequences S and corresponding interaction energies Erod(S) produced by the runs
are stored for later analysis. To speed up the calculations, before the start of the minimalization,
neighbor lists are prepared and used for each packing, for a cut-off interaction radius of the beads of
rcutoff = 5σ.

Langevin Dynamics simulations of assembly into fibrils of optimized and a reference random
sequences S0 and Srand

S0 = {4,4,4,4,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,4,4,4,4}
Srand = {2,2,4,3,2,3,4,1,1,2,3,1,2,1,3,2,4,1,1,4,4,1,1,4,2,3,1,2,1,3,2,1,1,4,3,2,3,4,2,2}
(each having N = 40 beads) were performed using the LAMMPS software package [22,23] using

the Grønbech–Jensen–Farago time-discretization of the Langevin equation. [24,25]. Lennard–Jones
(LJ) units were used, with lengths in terms of the bead diameter σ, and energies in terms of a LJ
interaction energy scale ε. To connect to the parameter values of Table 1 used for sequence optimization
(which are not in LJ units), we choose ε = kBT*, where T* is a temperature on the order of the
temperature below which the chains start self-assembling. For the simulations, we take parameter
values from Table 1 with T = T*, such that the numerical parameter values in Table 1 are also the
parameter values in LJ units. With this convention, the dimensionless temperature T̃ in LJ units is
T̃ = T/T*. The simulation timestep was set to ∆t = 0.05τ (where τ is the LJ unit of time), the bead
friction constant was set to ζ0 = 100(m/τ), where m and t are the LJ units of mass and time. Numbers
of simulation steps are fairly arbitrary numbers, but the time in units of τ, or better yet, in units
of the rotational diffusion time τr of the rods, has physical meaning. For a rod consisting of N
beads of diameter σ, spaced at a distance lb, in the absence of bead–bead hydrodynamic interactions,
τr = ζ0N3lb2/12 kBT, where ζ0 is the hydrodynamic friction of a single bead. For our parameters
this gives τr = 8.67 × 104τ (at T̃ = 1). The cut-off for both the Lennard–Jones and Debye–Hückel
interactions was set to 5σ. Non-bonded interactions were only taken into account between beads on
different chains. For assembly simulations a rectangular simulation box was used with dimensions
(lx,ly,lz) = (20σ,20σ,120σ). Reflective rather than periodic boundary conditions were used in order to
enforce the formation of finite rather than infinite fibrils. Initially, M = 40 rods were placed regularly in
the box, with their long axis pointing in the z-direction. Particles were given random initial velocities
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corresponding to a LJ temperature T̃ = 5 and a simulation was run for 58τr (or 108 simulation steps).
Next, particles were given random initial velocities corresponding to a LJ temperature T̃ = 2.5 and a
simulation was again run for 58τr (or 108 simulation steps). Finally, particles were given random initial
velocities corresponding to a LJ temperature T̃ = 1.5 and a simulation was run for 46τr (or 8 × 107

simulation steps). During equilibration, temperatures for all Langevin dynamics runs, decreases
somewhat. For the run with T̃ = 1.5, the final equilibrium temperature was T̃ = 1.0. By running the
simulations for a large number of rotational diffusion times, we guarantee that thermal equilibrium
can indeed be reached during the simulations.

For cross-sectional assembly simulations, only those parts of the sequence S0 are used that together
form the non-gapped region. These are:

S0,A = {4,4,4,4,2,2,2,2,1,1,1,1}
S0,B = {3,3,3,3,2,2,2,2,3,3,3,3},
S0,C = {1,1,1,1,2,2,2,2,4,4,4,4}.
A 10 × 10 hexagonal array was prepared of A, B, and C chains, corresponding to the P1 packing

of the S0 sequence, with a lattice spacing lc = 1.3σ. For these simulations, a rectangular simulation
box was used with dimensions (lx,ly,lz) = (24σ,18σ,11.84σ). Again, reflective boundary conditions
were used. Particles were given random initial velocities corresponding to an LJ temperature T̃ = 1.4.
After equilibration, this leads to an average temperature during the simulations of T̃ = 1. The rotational
diffusion time for these much shorter rods with N = 12 is τr = 2.34 × 103τ. Simulations were run for
21τr (or 106 simulation steps).

3. Results

3.1. Coarse-Grained Model for Patterned Semiflexible Chains

Driving forces for self-assembly that are taken into account in the coarse-grained model are
electrostatic interactions, hydrophobic interactions, and excluded volume interactions. More specific,
shorter-ranged and directional interactions such as hydrogen bonds, can possibly be implemented
in later, more refined further sequence optimalizations, that start from patterns optimized at the
most coarse-grained level, as obtained here. Semiflexible chains are represented using a simple
bead–spring model (bead diameter σ, equilibrium bond length lb) with harmonic bond stretching
energy and harmonic bending energy. Electrostatic interactions are represented using a screened
Coulomb interaction potential, steric and hydrophobic interactions using a Lennard–Jones potential.
We focus on sequence variation and therefore choose a single set of interaction parameter values
representative for semiflexible collagen-like triple helices (see Section 2). Specifically, we assume a
persistence length of the semiflexible chains of lp = 20σ.

A difference with the helical peptide systems for which staggered assembly has already been
demonstrated [17,18] is that we focus on longer semiflexible chains that can have more complicated
interaction patterns. Specifically, for the numerical examples, we use chains of N = 40 interaction beads.
Taking collagen triple helices as an example, this would translate to a length of 40 G-Xaa-Yaa triplets or
120 amino acids per strand, much longer than typical collagen-like peptides, but still much shorter
than the triple-helical part of human collagen I, which would correspond to N ≈ 350. A shorter length
was chosen to ensure that we can still adequately sample the interaction patterns and perform the
Langevin Dynamics simulations of fibril assembly.

Interaction patterns are represented in terms of four characteristic bead types: hydrophobic
(type 1, represented as green beads), hydrophilic uncharged (type 2, represented as white beads),
positively charged (type 3, represented as red beads) and negatively charged beads (type 4, represented
as blue beads). Interaction patterns therefore correspond to coarse-grained sequences S = {s1,s2, . . . ,sN},
where the bead type si = 1 . . . 4. For the values of the non-bonded interaction parameters that we
use (Table 1), contact interactions between the different types of beads are on the order of the thermal
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energy kBT, such that multiple attractive contact interactions along the chains will be necessary to
stabilize the fibrillar state.

Numerical values of parameters are chosen to roughly match triple-helical collagen, with three
G-Xaa-Yaa triplets (one for each strand), making up a single bead in the coarse-grained model.
For collagen, a single bead would therefore correspond to nine amino acids. We do not attempt to
make an explicit mapping of the bead types to underlying microscopic chemistries here. The present
very coarse-grained approach is mainly meant to guide future more detailed computational design
approaches for specific microscopic chemistries, such as triple helical collagen. A qualitative mapping
however is still possible. For example, staying with the case of triple-helical collagen, GPO triplets
(where O is hydroxylated proline) that occur frequently in the sequence of triple-helical human
collagen-I would probably be best represented by hydrophilic uncharged beads, whereas GPR triplets,
known to occur at quite high frequencies in collagen sequences due to its stabilizing effect on collagen
triple helices [26], would be best represented by a positively charged bead. An example comparison of
a microscopic structure of a collagen-like triple-helical peptide and its coarse-grained representation is
shown in Figure 1.
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Figure 1. Illustration of coarse-graining of microscopic collagen triple-helical structure, to the
coarse-grained representation in terms of interaction beads. Shown is the ideal triple helical structure
for a (GPP)4-GPR-(GPP)4 homotrimer, with three GPP triplets (one in each strand) being represented
by a single hydrophilic (white) bead, and the three central GPR triplets (one in each strand) being
represented by a positively charged (red) bead.

3.2. Target-Staggered Crystalline Arrangements

While for some collagen-like peptides is was found that simple patterns of just electrostatic
interactions can lead to cubic arrangements of the helices inside fibrils and two-dimensional
membranes [17], we anticipate that for engineering stable fibrils using weak interactions, it is helpful to
allow for as many contacts as possible. For these reasons, we here focus on the staggered assembly of
semiflexible chains into hexagonal (para)crystalline arrays. For pattern design we focus on minimizing
the interaction energy Erod(S) of patterned rods arranged in staggered hexagonal lattices, with respect
to their sequence S. If the ground state that is found in this manner is sufficiently deep, we anticipate
it will be stable against the thermally excited shape fluctuations of the semiflexible chains. This will
be checked explicitly by verifying that semiflexible chains with the optimized sequences do indeed
assemble into the designed crystal structure, using Langevin Dynamics simulations. Similar ground
state design approaches are very successful for designing, e.g., de-novo designed self-assembling
proteins [2].

Target structures that we consider are a family of staggered crystalline arrangements of straight
chains with length L = N·lb, aligned with their long axis in the z-direction, with a hexagonal arrangement
in the x-y plane. The hexagonal lattice spacing is lc. In the x-z plane, neighbouring rods are shifted
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in the z-direction by the stagger D. The geometry of the family of lattices is illustrated in Figure 2.
The ratio L/D determines both the periodicity N‖ of the staggered arrangement and the gap width g:

N‖ = int(L/D) + 1 (5)

g = N‖D− L (6)
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in the numerical calculations. 
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Figure 2. Representative packing chosen from the family of simple hexagonal staggered packings
of (straight) chains considered. Shown is the packing P5, for (straight) chains of N = 40 interaction
beads and length L = 40lb, arranged with a stagger D = 12lb such that the periodicity of the lattice
is N‖ = 4 and the gap is g = 8lb. (a) Projection onto x-z plane, showing a single staggered layer of
rods. The rod length L, stagger D and gap width g are indicated, as well as the crystal spacing lc and
the bond length lb (separation between beads in the chains). (b) Three-dimensional representation of
cylindrical subsection of the crystalline lattice. Gapped and non-gapped regions of the fibril for which
y-x cross-sections are shown in (c), are indicated by (g) and (n). (c) Projections on the x-y plane for
non-gapped (n) and gapped region (g) indicated in (b). Additionally indicated is the shift of 3/2lc in the
x-direction, between successive layers of rods (in the x-z direction).

Positions rijk of the origins of the rods in the lattices are:

ri jk = i · ei + j · e j + k · ek (7)

where i, j and k are the lattice indices. The lattice vectors are:

ei = lc x̂ (8)

ej = −
3
2

lcx̂ +
1
2

√

3lc ŷ (9)

ek = Dẑ (10)

For a given value of k, only certain values of i and j correspond to the origin of a rod:

(i + j)mod N‖ = k mod N‖ (11)

Different lattices in the family have different values for the stagger D, the periodicity N‖ and the
gap width g. For the numerical calculations, we choose the stagger D to be an integer number of times
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the equilibrium bond length lb. Furthermore, we restrict ourselves to values of the gap g, 2 ≤ g/lb ≤ 8,
and lattice periodicities up to N‖ = 6. This allows for eight distinct staggered hexagonal crystalline
packings of rods to be used in the numerical calculations P1–P8, and these are listed in Table 2. As an
example, Figure 2 shows the three-dimensional structure of the P5 packing.

Table 2. Parameters for the target-staggered hexagonal packings P1–P8 of (straight) chains considered
in the numerical calculations.

Packing L/lb D/lb N‖ g/lb

P1 40 14 3 2
P2 40 15 3 5
P3 40 16 3 8
P4 40 11 4 4
P5 40 12 4 8
P6 40 9 5 5
P7 40 8 6 8
P8 40 7 6 2

3.3. Sequence Optimization

For the staggered hexagonal packings P1–P8 that we consider here, each chain has the same
environment. Hence, as the objective function for the sequence design we can use the interaction
energy Erod(S) of the central rod with lattice indices (i,j,k) = (0,0,0), with all the other chains in the
crystalline arrangement:

Erod(S) =
∑

(i, j,k),(0,0,0)

V(i jk)
rod−rod(S) (12)

The potential of the interaction of the central chain at (0,0,0) with another chain at lattice position
(i,j,k) is a sum of bead–bead interactions:

V(i jk)
rod−rod(S) =

∑
n,m=1,N

Vsnsm

(
ri jk

nm

)
(13)

ri jk
nm = ri jk + (m− n)lbẑ (14)

where Vsnsm

(
ri jk

nm

)
is the interaction potential for two beads: bead n on the central rod and bead m

on the rod at lattice position (i,j,k), with bead types sn and sm, and for a bead–bead distance ri jk
nm

(see Section 2). For sequence optimization, we minimize the rod interaction energy Erod(S) with respect
to the sequence S, for each of the packings P1–P8. We do so for a fixed composition in terms of bead
types. Bead compositions we choose do not reflect natural collagen-like sequences, but rather reflect
our expectations as to a typical bead composition that would readily form fibrils. We expect fibril
assembly will be opposed by a net charge, while both charged and hydrophobic beads are necessary
to drive assembly into staggered hexagonal packings. Too many hydrophobic beads could lead to
kinetically trapped assembly into off-target packings. These considerations lead us to choose, for the
study here, a composition of 30% of hydrophobic beads, 30% uncharged hydrophilic beads, and 40%
charged beads (half of which are positively and half of which are negatively charged).

We search for sequences S with a minimal rod interaction energy Erod(S) using a Metropolis Monte
Carlo search algorithm that generates random sequences S with probability:

p(S) ∼ exp(−Erod(S)/∆E) (15)

For a value of ∆E that we set to ∆E = 2. We run the Metropolis Monte Carlo search for a large
number of steps, and save the list of generated sequences and associated rod interaction energies,
for later analysis. The Monte Carlo move that is used to generate a new sequence from a previous



Symmetry 2020, 12, 1926 9 of 17

sequence is a simple swap of the two beads in the sequence, provided the two bead types are different.
For simplicity, we restrict ourselves to palindromic sequences, such that the orientation of the rods in
the lattice does not matter.

First, for each of the crystal packings P1–P8 we search for sequences S with minimal interaction
energy Erod(S) in runs of 105 Monte Carlo steps (per packing). Results are shown in Figure 3. The lowest
energy sequences are found for packings P1–P3 with the lowest periodicity, N‖ = 3. Differences in
results between these lattices are very small. We choose the P1 lattice for a more detailed investigation.
Next, to get a complete histogram of the distribution of Erod(S) for all possible sequences S arranged
in a P1 lattice, we performed a simple random sampling search of 106 steps. The resulting energy
distribution is shown in Figure 4a. For the bead compositions that we chose, we find that the most
probable value for Erod is negative. Even random sequences with this bead type composition might
therefore have a tendency to stick to each other and bundle up, albeit probably not in an ordered array.
This we will check later using Langevin Dynamics simulations for a sequence Srand was randomly
chosen from the set of sequences with interaction energy close to the peak of the energy distribution
(given in Figure 5a).
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Figure 4. Sequence optimization for staggered hexagonal packing in P1 lattice. (a) Distribution of rod
interaction energies Erod (units of kBT) from simple random sequence search (106 steps). A representative
random sequence Srand is selected randomly from the sequences with energy for which the distribution
peaks (vertical dotted line). (b) Low energy tail of the distribution of rod interaction energies,
obtained with Metropolis Monte Carlo sequence search (106 steps).
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Figure 5. (a) Lowest rod interaction energy sequences S0–S10 from Metropolis Monte Carlo sequence
search. Additionally shown is the representative random sequence Srand drawn from sequences with
the rod interaction energy for which the probability distribution peaks, see Figure 4a. (b,c) Packing
of optimized sequence S0 into the staggered hexagonal P1 target lattice. (b) Cylindrical subsection of
crystal lattice. (c) slice in x-z plane: single layer of the lattice of chains, with staggered arrangement
and perpendicular slices, in the x-y plane, demonstrating the three different perpendicular packings,
one gapped and two non-gapped. Color code for interaction beads: green = hydrophobic (type 1),
white = hydrophilic uncharged (type 2), red = positively charged (type 3), blue = negatively charged
(type 4).

For finding the tail of the distribution at the side of low interaction energies, the simple random
search is not efficient enough, and we need the Monte Carlo sampling, which zooms in on all sequences
up to a certain energy above the minimum, as controlled by the parameter ∆E. The tail of the distribution
found from a Monte Carlo search of 106 steps is shown in Figure 4b, the 22 lowest energy sequences
are illustrated in Figure 5a. The interaction energy is invariant with respect to exchange of the positive
and negative beads, so in fact there are only 11 distinct minimum sequences for packing the chains into
the P1 packing, that we label in order of ascending rod interaction energy, S0–S10 The striking feature
of these minimum sequences, compared to the random sequence, is that all show clustering of similar
bead types. The two lowest energy sequences, S0 and S1, exhibit the most regular and simple patterns
of stretches of bead types. The packing of chains with the sequence S0 in the P1 lattice is illustrated in
Figure 5b,c.

Many of the low energy sequences S0–S10 might correctly assemble into the designed P1 structure
also in the presence of thermal motion. A possible reason for exploring multiple sequences might
be that the physical properties of P1 fibrils, such as the mechanical properties, need not be the same.
This, however, we leave as a topic for further research. Here, we restrict ourselves to establishing that
designed sequences indeed assemble into the designed structures even if thermal motion is switched
on. This we do for the lowest energy sequence S0.

3.4. Langevin Dynamics Simulations

Sequence optimized sequences S are those which have the lowest rod interaction energy Erod(S)
for a given target packing P. This “ground-state” approximation for sequence design is shown to be
very powerful in other cases, such as the de-novo computational design of protein sequences [2], but it
cannot guarantee that the target structure will be adopted by the optimized sequence. First of all,
entropy competes with ordering and may preclude the ordered packing from being actually realized at
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finite temperatures. Furthermore, the optimized sequence may have yet lower rod interaction energies
in arrangements other than the target packing. Finally, kinetic barriers may prevent the target structure
from being adopted. Therefore, we check using Langevin Dynamics simulations, whether semiflexible
chains with the optimized sequences indeed spontaneously assemble in the target packing or not.
We do so for the S0 sequence, which was computationally optimized to assemble into the P1 structure,
and compare with a typical random sequence, Srand. Random non-assembled initial states for M = 40
semiflexible chains were prepared at a temperature T̃ = 1.4 by stepwise cooling from still higher
temperatures. A rectangular, closed simulation box was employed. To start assembly, the system was
cooled to T̃ = 1, and simulated for t = 46τr (or 8 × 107 simulation steps).

Results are shown in Figure 5. For the random sequence Srand we observe clustering of the chains
into a very loosely associated anisotropic aggregate, but no clear fibril formation (Figure 6a). This is
associated with just a small decrease in the total interaction energy Eint per interaction bead (Figure 6c).
On the other hand, for the S0 sequence, we observe rapid staggered assembly into fibrils (Figure 6b),
associated with a large decrease in the interaction energy Eint per interaction bead (Figure 6c). A zoom
of the final fibril structure for the optimized S0 sequence is shown in Figure 6d. How close is this to the
target P1 packing it was designed to assemble into, and which is shown in Figure 5b,c?

The staggered assembly in the parallel direction clearly matches that of the P1 target structure.
For the cross-sectional order, in the plane perpendicular to the long axis of the fibril, it is more difficult
to establish whether this matches the P1 packing or not, because of the relatively low number of chains
in the cross-sections. Representative cross-sections are shown in Figure 6d. The left cross-section,
through the charged part of the chains, is expected to show the structure indicated in Figure 5c (top):
positively charged beads should have a surrounding consisting of alternating negatively charged
and neutral beads, etc. This can indeed be qualitatively recognized, but the numbers of chains in
the cross-section are too low to be sure about the regularity of the pattern. Both this cross-section
and the other cross-section, through the hydrophobic part of the chain, should show hexagonal order,
but again, the numbers of chains in the cross-sections are too low to be absolutely sure.

As an additional test to establish whether the preferred cross-sectional order for the S0 sequence is
indeed the hexagonal P1 packing, we performed Langevin-Dynamics simulations for the subsequences
of the S0 sequence, which together form the non-gapped part of the fibril. These were arranged in
a 10 × 10 hexagonal lattice, and Langevin-Dynamics at T̃ = 1 was used to establish the stability of
this lattice against the thermal motion. Results are shown in Figure 7. The 10 × 10 hexagonal starting
lattice is shown in Figure 6a. The final configuration, at t = 23τr (or 106 simulation steps) is shown
in Figure 7b. The top view shown in Figure 6c more clearly shows the ordering that remains in the
presence of thermal fluctuations. The interaction energy per bead during the simulation run is shown
in Figure 7d. During the simulation, the initial hexagonal lattice contracts somewhat, lowering the
interaction energy per bead, and then remains constant. Especially from Figure 7d, it is evident that
at T̃ = 1, thermal motion does not destroy the initial hexagonal ordering for these larger 10 × 10
cross-sectional lattices. Some disorder is observed at the edges, but not in the central part of the lattice.
We conclude therefore that at to T̃ = 1, the S0 sequence indeed spontaneously assembles into the
target-staggered hexagonal P1 structure, as designed.
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Figure 6. Langevin Dynamics simulation of assembly of chains with sequences S0 and Srand after quench
from T̃ = 1.4 to T̃ = 1. (a) Initial (t = 0) and final (t = 75τr) configurations for sequence Srand, where τr

is the rotational diffusion time of the corresponding rigid rods. (b) Initial (t = 0) and final (t = 75τr)
configurations for sequence S0, where τr is the rotational diffusion time of the corresponding rigid
rods. (c) Chain–chain interaction energy Eint (per bead, in Lennard–Jones units, ε) during the assembly,
for chains with sequences Srand (red symbols) and S0 (blue symbols), as a function of the simulation
time in Lennard Jones units, t, scaled by the diffusional rotation time τr. (d) Zoom-in of the final
structure for the chains with sequence S0, with cross sections at the two different non-gapped regions.
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Figure 7. Langevin Dynamics simulation of hexagonally packed assembly of chains with sequences
S0,A, S0,B, S0,C, which are the subsequences of S0 that together make up the non-gapped regions of
fibrils assembled from chains with the sequence S0. The simulation demonstrates that the hexagonal
cross-sectional structure expected for the P1 packing, is stable against thermal fluctuations for the
S0 sequence. (a) 10 × 10 hexagonally packed initial configuration. (b) relaxed final configuration
at t = 190τr. (c) relaxed final configuration, top view, which more clearly shows that the hexagonal
ordering is maintained in the presence of thermal fluctuations. (d) Chain–chain interaction energy Eint

(Lennard Jones units, ε) versus simulation time t scaled by rotational diffusion time τr of the rods.

4. Discussion

We found that in optimal sequences for assembly into staggered hexagonal packings, interaction
beads of the same type tend to occur in stretches. Furthermore, the lowest interaction energy sequences
were found for the simplest staggered hexagonal packings, with the lowest periodicity and L/D values.

Bead–bead interactions were chosen to be of the order of the thermal energy such that multiple
favorable bead–bead contacts would be necessary to stabilize the chains in the target staggered
hexagonal arrangement. Most likely the range of the interaction of the beads plays an important
role in this observation: each bead not only interacts with its nearest neighbor (contact interactions),
but also with next-nearest neighbors and beads that are still further away (non-contact interactions).
Non-contact interactions will be enhanced for stretches of similar bead types, for example hydrophobic,
or parallel stretches of charged beads with opposite charge sign, thus explaining our result.

For real systems such as helical peptides or proteins, the range of the hydrophobic interactions
may not be as long as in our coarse-grained model, but the electrostatic interactions will have the same
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long-range as in our model. Hence, we expect that the patterns of electrostatic interactions that we
found will certainly be helpful in driving staggered fibrillar assembly also in experimental systems
such as helical peptides or proteins.

It should be noted again that the translation of the coarse-grained model to real systems such as
collagen-like helices is non-trivial. For example, the contact energy of pairs of oppositely charged ions
is a very sensitive function of the distance of the charged groups and the number of intervening water
molecules. Here we simply took a single average value for the contact energy of ion-pairs whereas in
reality there will most likely be quite a broad spread of the contact energies of different ion-pairs.

The pattern of the S0 sequence can also be considered as a more general pattern for staggered
assembly into hexagonal (quasi) crystalline fibrils, independent of the specific type of bead interactions.
This is illustrated in Figure 8. The S0 sequence is palindromic (non-polar) and consists of two elements:
a polar α domain, and a non-polar β domain, as shown in Figure 8a,b. Favorable interactions for the
domains are antiparallel interactions of α-domains, and interactions of β-domains with α domains
in any orientation. Real systems such as helical peptides and proteins are polar. A possible domain
structure for a generic polar interaction pattern for driving staggered assembly into a hexagonal lattice
immediately follows from the non-polar case of Figure 8b, and is shown in Figure 8c. It is a sequence of
three polar domains, α, β and γ. Staggered assembly into a hexagonal lattice will ensue if interactions
of the domains are such that the individual parallel α, β and γ domains form a hexagonal sheet with
a pattern of alternating α, β and γ domains. This will happen, for example, if the only attractive
interactions are α–β, β–γ and γ–α.
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on Xaa and Yaa side-chain choice and conformation in designing sets of short collagen-like helices, 
with well-defined interaction interfaces. G-Xaa-Yaa triplets could, for example, be chosen to be those 

Figure 8. Generalization of the patterned chain. (a) For chains with the S0 sequence, which have
the simple staggered P1 lattice as their lowest interaction energy state, the sequence is composed
of two polar α-domains and a non-polar β-domain, separated by inert gap sequences (g). (b) The
non-polar β-domain interacts with two of the polar α-domains, in the opposite orientation, forming a
two-dimensional hexagonal lattice (c) generalization to polar chains with α, β, γ domains putatively
assembling into hexagonal staggered P1 lattices if there is a preference of the α, β, and γ domains for
assembly in a two-dimensional hexagonal lattice in which the α, β and γ domains alternate.

The most likely experimental system for which interaction patterns on semiflexible chains such
as those we discussed here can be realized are collagen-like proteins. Indeed, short collagen-like
peptide sequences have already been designed, that make use of the kind of charge complementarity
that we also discuss here, for driving staggered fibrillar assembly [17,18]. Our results suggest that a
fruitful starting point for designing novel self-assembling collagen-like proteins would be the design
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of sets of short collagen-like helices with controlled mutual interactions. These can then be used as
elements in longer collagen-like helices to drive self-assembly. This is very similar to the notion of sets
of orthogonal coiled coil-peptides and other peptide building blocks [27,28], that are being used to
construct larger assemblies [29,30].

Successful de-novo design of self-assembling collagens is currently also hampered by our limited
understanding of the thermal stability of collagen triple helices, such that a priori we do not know
which G-Xaa-Yaa sequences will give stable triple helices and which will not. Only limited data and
models are available, and are based on the substitution of single Xaa or Yaa residues in sequences
that are otherwise composed of only G-P-P or G-O-P triplets [31–33]. These models fail to predict the
stability of collagen-like triple helices for which the majority of triplets are not G-P-P or G-O-P, such as
for example, collagen-like triple helices found in bacteria [34,35].

Given this limitation, a reasonable starting point to start exploring the atomistic-level computational
design of self-assembling collagen-like proteins with current protein design software such as Rosetta [36],
would therefore be to fix a triple-helical main-chain conformation, and to focus on Xaa and Yaa side-chain
choice and conformation in designing sets of short collagen-like helices, with well-defined interaction
interfaces. G-Xaa-Yaa triplets could, for example, be chosen to be those that are most frequent in
natural collagen-like helices. These shorter sequences can then be used to drive self-assembly in longer
designed collagen-like helices.
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