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Abstract: Optimization by refinement of linguistic contexts produced from an output variable in
the construction of an incremental granular model (IGM) is presented herein. In contrast to the
conventional learning method using the backpropagation algorithm, we use a novel method to
learn both the cluster centers of Gaussian fuzzy sets representing the symmetry in the premise part
and the contexts of the consequent part in the if–then fuzzy rules. Hence, we use the fundamental
concept of context-based fuzzy clustering and design with an integration of linear regression (LR)
and granular fuzzy models (GFMs). This GFM is constructed based on the association between the
triangular membership function produced both in the input–output variables. The context can be
established by the system user or using an optimization method. Hence, we can obtain superior
performances based on the combination of simple linear regression and local GFMs optimized by
context refinement. Experimental results pertaining to coagulant dosing in a water purification
plant and automobile miles per gallon prediction revealed that the presented method performed
better than linear regression, multilinear perceptron, radial basis function networks, linguistic model,
and the IGM.

Keywords: refinement of contexts; incremental granular model; granular fuzzy models;
optimization method

1. Introduction

Owing to the rapid growth of various application problems, several studies have been conducted
on fuzzy models. It is now acknowledged that real-world problems require intelligent methods that
integrate the methodology of different models. To solve various application challenges, it is important
to design complementary hybrid intelligent systems by integrating multiple computing technologies
in a synergistic rather than exclusive manner. A representative method is neuro-fuzzy inference
modeling [1,2]. Neural networks adapt to changing environments, whereas fuzzy models deal with
fuzzy inference and knowledge-based decision making.

The basic concept of fuzzy clustering has been used in several studies to focus on fuzzy modeling,
resulting in the concept of granular fuzzy models (GFMs) [3–8]. These models is based on information
granules. These information granules (IG) comprise linguistic information produced from both
input–output variables. The IG in the design of GFMs are obtained using specialized context-based
fuzzy c-means clustering. Unlike context-free clustering, the fuzzy c-means clustering without context
produces clusters. When the contexts are generated, then clustering occurs within a specified context.
A system modeling method using a context-based fuzzy clustering algorithm has been successfully
applied. Yeom [6] proposed a performance evaluation method based on the concept of coverage and
specificity in developing a GFM. The performance is typically measured by the root mean square error
(RMSE). Byeon [7] designed a Takagi–Sugeno–Kang (TSK) linguistic model. In that study, an intelligent
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predictor was designed to predict the direction of dinghy booms. Park [8] applied a linguistic model to
water quality prediction. The main characteristics of the presented model are that it is user-centric and
dwells upon the collection of user-oriented entities. Several studies have been conducted using the
GFM [9–18].

In addition to several studies related to information granules [19–24], an incremental granular
model (IGM) based on an integration of linear regression and a linguistic model has been proposed
by Kwak. First, after performing a linear regression (LR), the error caused by the LR was predicted
by the local granular model. Yeom [21] proposed an improved IGM based on granular networks
with the compensation of error. Li [22] applied a patch-type sensor model based on a radial basis
function network (RBFN) with incremental concept to estimate energy expenditure. Lee [23] presented
a design method for a RBFN with incremental concept by linear regression and local RBFN for
predicting the heating and cooling load in residual buildings problem. Kwak [24] proposed an IGM
designed by context-based fuzzy c-means clustering with interval type-2 concept. This model possesses
unique characteristics that preserve the homogeneity and includes uncertainties associated with the
fuzzification factor. Several studies have been conducted using the IGM [25–27].

Although the IGM has been applied successfully in several studies, a method to adjust the premise
and consequent parts using the learning method in the IGM has not been considered. Thus, the purpose
of this paper is to perform the systematic design of an IGM based on a hybrid learning method.
The design process comprises several important steps involving the adjustment of linguistic contexts
in the design of local GFMs, estimation of cluster centers of Gaussian fuzzy sets representing the
symmetry in context-based fuzzy clustering, and optimization of premise and consequent parameters.
Here, the contexts are adjusted by a derivative-based optimization method. In contrast to the
conventional derivative-based optimization method, the advantages of the proposed method is
that the only linguistic contexts with weight information are adjusted by gradient descent method.
After adjusting the contexts, the premise parameters are automatically updated by context-based fuzzy
clustering. This method has unique characteristics in comparison to the conventional method.

The remainder of this paper is organized as follows. Section 2 presents the IGM constituents,
including linear regression, context-based fuzzy c-means clustering, and a local GFM. Furthermore,
this section includes the architecture and design procedure of the IGM. Section 3 provides the refinement
of linguistic contexts in the development of the IGM. In Section 4, experiments performed on a coagulant
dosing process in a water purification plant and automobile miles per gallon (mpg) prediction are
described [28,29]. Finally, conclusions are provided in Section 5.

2. IGM

The components of the IGM include linear regression as the global part, a GFM as the local part,
and context-based fuzzy c-means clustering for generating if–then rules. This section highlights the
tendency of system modeling in proceeding to the simplest possible model, evaluating its performance,
and then completing a series of necessary improvements.

2.1. Linear Regression

The experimental data under discussion are assumed to comprise 2D input–output data pairs.
These data pairs are provided in the following format:

{
xk, yk

}
, k = 1, 2, · · · , N. Here, xk is the k-th input

vector and yk is the k-th output. Linear regression is expressed in the following standard form:

zk = aTxk + a0, (1)

where the regression coefficients are expressed by a and a0. The coefficients are obtained using the
standard least-squares error method. Here, aT consists of two coefficients [a1, a2]T. The improvement
of the model occurs in which the local part is based on the input-error data {xk, ek}, where the error is
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ek = yk − zk. Subsequently, the if–then fuzzy rules and contexts of triangular membership functions
are obtained by the context-based fuzzy clustering approach.

2.2. Context-Based Fuzzy C-Means Clustering

The context-based fuzzy clustering algorithm is an approach for estimating the clusters to maintain
the association characteristics [30–32]. The following reiterates the nature of context-based fuzzy
clustering. This clustering is realized for each context W1, W2, · · · , Wp through the statistical distribution
of the output space. The contexts in the traditional GFM are created by a set of triangular fuzzy sets
spaced equally along the output. It can be difficult to estimate the clusters because some contexts are
associated with data scarcity.

It can be difficult to produce if–then fuzzy rules in context-based fuzzy clustering approach.
To create flexible contexts, we used a characteristics of probabilistic distribution for the output in
shown in Figure 1. Figure 1 shows the generation of linguistic contexts obtained by probability density
function (b) and conditional density function (c) based on the statistical distribution of error (a) obtained
by linear regression. Finally, contexts with a triangular fuzzy set were generated.
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Figure 1. Generation of contexts by statistical distribution from error obtained by linear regression.
(a) Error histogram (b) probability density function (PDF) (c) conditional density function (CDF)
(d) six linguistic contexts.

As shown in Figure 1d, the generated contexts are represented as a linguistic label of error.
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The partitioning matrix obtained by the t-th context is introduced as follows:

U(Wt) =

uik ∈ [0, 1]|
c∑

i=1

uik = wtk ∀k

, (2)

where wtk is the membership grade of the k-th data point in the t-th linguistic context; uik is the grades
corresponding to the k-th data point in the i-th cluster center. The loss function can be defined as

J =
c∑

i=1

N∑
k=1

um
ik ||xk − vi||

2, (3)

where vi is the cluster’s center of the i-th cluster. ‖xk − vi‖ is computed by distance between the k-th
input and the i-th center. Here, the fuzzification factor m is 2. The objective function is accomplished
by adjusting the partition matrix and the cluster center’s membership grades. The update of the
membership matrix is computed as [30–32]:

utik =
wtk

c∑
j=1

(
‖xk−vi‖
‖xk−v j‖

) 2
m−1

i = 1, 2, . . . , c, k = 1, 2, . . . , N, (4)

where utik denotes the i-th center and the k-th data point corresponding the t-th linguistic context.
The cluster center vi is computed as follows:

vi =

N∑
k=1

um
tikxk

N∑
k=1

um
tik

(5)

Figure 2 shows the estimation of cluster centers corresponding to six contexts. After generating
the contexts as shown in Figure 1, the cluster centers are obtained by context-based fuzzy c-means
clustering. As shown in Figure 2, the data points (dot mark) included in each context and cluster
centers (square mark) are distributed.
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Figure 2. Cluster estimation corresponding to six contexts.

2.3. Local GFM

Figure 3 shows the architecture of the local GFM and the association between the cluster center
and context. In Figure 3, the circle nodes represents the computation of membership degrees obtained
in Equation (4). The GFM’s output is obtained as a triangular fuzzy membership function representing
a fuzzy set. In other words, the GFM output Ê is fully represented by three parameters, Ê =

〈̂
e−, ê, ê+

〉
.

These parameters denotes lower bound, modal value, and upper bound, respectively.
Assuming a triangular fuzzy membership function for the contexts, the GFM’s output is expressed

as [4,8]
Ê= W1 ⊗ ξ1 ⊕W2 ⊗ ξ2 ⊕ . . .⊕Wp ⊗ ξp, (6)

Equation (6) marked by ⊗ and ⊕ are used to compute that the basic calculations are performed
by fuzzy numbers. ξk is the summation value of the activation values generated in the k-th linguistic
context. Here, activation level denotes the summation of membership degrees corresponding to each
context. That is, the three points of triangular fuzzy sets representing contexts and the activation values
are multiplied, respectively. Thus, the output includes the lower value, modal value, and upper value
with interval prediction.
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The activation values were computed using Equation (4). The numeric bias term was used to
eliminate possible systematic errors as follows:

W0 =
1
N

N∑
k=1

(ek − êk), (7)

Here, the modeling errors ek obtained from LR are obtained by a global model. This value is
calculated simply to eliminate errors. Consequently, the model output Ê(xk) allows the characterization
for three parameters:

〈

p∑
t=1

ξtWt− + W0,
p∑

t=1

ξtWt + W0,
p∑

t=1

ξtWt+ + W0〉 (8)

2.4. IGM

The flow chart of the IGM design is visualized in Figure 4. Adopting a linear regression structure,
we compensated the modeling errors through local rules of the GFM that represent the local nonlinearity
of the model to be considered [9,11,28]. Figure 5 shows the architecture of the IGM.



Symmetry 2020, 12, 1916 7 of 16

Symmetry 2020, 12, x FOR PEER REVIEW 7 of 16 

 

The flow chart of the IGM design is visualized in Figure 4. Adopting a linear regression structure, 

we compensated the modeling errors through local rules of the GFM that represent the local 

nonlinearity of the model to be considered [9,11,28]. Figure 5 shows the architecture of the IGM. 

 

Figure 4. Fundamental flow of IGM. 

 

Figure 5. Architecture of IGM. 

The construction procedures of the IGM shown in Figure 5 are as follows: 

[Step 1] Use linear regression on the numerical data points. Subsequently, the errors k k ke y z   are 

obtained by the difference between the desired and linear regression outputs. 

[Step 2] Obtain the input and error pairs { , }k kex . These error values are employed as the output 

data in the use of the local GFM. Subsequently, the contexts in the error space are generated. 

The linguistic contexts are produced as shown in Figure 1. 

[Step 3] Estimate the clusters using context-based fuzzy clustering approach. 

[Step 4] Calculate the aggregation values by the linear summation of the activation levels and the 

context weight. Consequently, the model output results in fuzzy number with a triangular 

type. 

[Step 5] Integrate the linear regression output and granular results of the GFM. Hence, the prediction 

result is expressed as ˆ ˆY z E  . 

Figure 4. Fundamental flow of IGM.

Symmetry 2020, 12, x FOR PEER REVIEW 7 of 16 

 

The flow chart of the IGM design is visualized in Figure 4. Adopting a linear regression structure, 

we compensated the modeling errors through local rules of the GFM that represent the local 

nonlinearity of the model to be considered [9,11,28]. Figure 5 shows the architecture of the IGM. 

 

Figure 4. Fundamental flow of IGM. 

 

Figure 5. Architecture of IGM. 

The construction procedures of the IGM shown in Figure 5 are as follows: 

[Step 1] Use linear regression on the numerical data points. Subsequently, the errors k k ke y z   are 

obtained by the difference between the desired and linear regression outputs. 

[Step 2] Obtain the input and error pairs { , }k kex . These error values are employed as the output 

data in the use of the local GFM. Subsequently, the contexts in the error space are generated. 

The linguistic contexts are produced as shown in Figure 1. 

[Step 3] Estimate the clusters using context-based fuzzy clustering approach. 

[Step 4] Calculate the aggregation values by the linear summation of the activation levels and the 

context weight. Consequently, the model output results in fuzzy number with a triangular 

type. 

[Step 5] Integrate the linear regression output and granular results of the GFM. Hence, the prediction 

result is expressed as ˆ ˆY z E  . 

Figure 5. Architecture of IGM.

The construction procedures of the IGM shown in Figure 5 are as follows:

[Step 1] Use linear regression on the numerical data points. Subsequently, the errors ek = yk − zk are
obtained by the difference between the desired and linear regression outputs.

[Step 2] Obtain the input and error pairs {xk, ek}. These error values are employed as the output data
in the use of the local GFM. Subsequently, the contexts in the error space are generated.
The linguistic contexts are produced as shown in Figure 1.

[Step 3] Estimate the clusters using context-based fuzzy clustering approach.
[Step 4] Calculate the aggregation values by the linear summation of the activation levels and

the context weight. Consequently, the model output results in fuzzy number with a
triangular type.

[Step 5] Integrate the linear regression output and granular results of the GFM. Hence, the prediction

result is expressed as Ŷ = z⊕ Ê

3. Refinement of Contexts in IGM Design

We present the optimization of the context refinement in this Section. This optimization method
comprises two steps, as shown in Figure 6. First, we used the gradient descent method to adjust the
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contexts from the error between the desired and GFM outputs. Next, we obtained new cluster centers
using context-based fuzzy clustering approach. The number of iteration to operate in the loop is 20.
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We can consider the optimization methods where the minimization is performed by the centers of
the triangular membership function as the context. The maximization of the average match between the
granular output of the GFM and the available numerical desired output is straightforward. We assumed
that Y is an output of the GFM for xk, Y(xk).

As described by the triangular fuzzy sets, we calculated the degrees as follows:

max
1
N

N∑
k=1

Y(xk)
(
targetk

)
(9)

Furthermore, we can consider minimizing the average values of the output for the corresponding
inputs as follows:

min
1
N

N∑
k=1

(bk − ak), (10)

where ak and bk are the values with lower and upper bounds of the triangular membership function
produced for xk, respectively. We performed the optimization by assuming that the successive contexts
can overlap at the half-point level. Therefore, the optimization focuses on the median values of the
triangular fuzzy membership function of the context. When these modal values have been updated,
this clustering is performed. Subsequently, the iteration loop of the optimization is repeated. In gradient
descent methods, the next point is adjusted as follows:

w(new) = w(old) + ∆w (11)
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The chain rule to obtain the gradient vector is applied as follows:

∆wi = −η·

(
∂Ek
∂wi

)
= −η·

∂Ek

∂ŷk
·
∂ŷk

∂wi
(12)

∂Ek

∂ŷk
= 2(ŷk − yk),

∂ŷk

∂wi
= ui (13)

Hence, the update formula is defined as follows:

∆wi = −2·η·(ŷk − yk)·ui (14)

Figure 7 shows a flowchart pertaining to context refinement by gradient descent and cluster
adjustment via clustering.
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4. Experimental Results

We performed experiments using the proposed IGM with two optimization steps for coagulant
dosing in a water purification plant and automobile mpg prediction in these experiments.
The experimental results were compared with those of previous studies.

4.1. Coagulant Dosing in Water Purification Plant

The test data were collected at a water purification plant, and the water purification capacity
was 1,320,000 ton/day [28]. We used 346 consecutive samples. The input comprised the turbidity,
temperature, pH, and alkalinity. The output was polyaluminum chloride (PAC). To evaluate the
resulting model, the dataset was partitioned into training and test data sets, respectively. In this
experiment, 173 training data pairs were used to construct the IGM using the optimization method,
and the 173 test datasets were used to validate the presented IGM. Table 1 lists the performance
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comparison for the training (Trn_RMSE) and test (Tst_RMSE) data for the PAC prediction of the
coagulant dosing process. The number of iteration loops was 20, and the learning rate was 0.001.
Figure 8 shows the prediction performance for the training and test datasets, respectively. As shown
in Figure 8, the experimental results showed good prediction and generalization capability. Figure 9
shows the error distribution of PAC obtained by linear regression. As shown in Figure 9, it can
be seen that the error distribution is concentrated near zero. Figure 10 shows the cluster centers
corresponding to each context when the number of contexts was 8. As listed in Table 1, the prediction
performance revealed that the IGM with the new optimization method performed better than linear
regression, multilayer perceptron, linguistic model, and the IGM. As listed in Table 1, the IGM without
optimization method showed good performance in comparison to the previous works. Furthermore,
the experimental results revealed that the IGM with optimization method enhanced the performance
of IGM itself. When p = c = 8, we obtained the best prediction performance in trial and error method.
We followed the selection method of the number of node and rules in the previous works [28].

Table 1. Comparison results for root mean square error (RMSE) for PAC prediction.

No. of Rule (*: No. of Node) Trn_RMSE Tst_RMSE

Linear regression - 3.508 3.578

Multilayer perceptron 45 * 3.191 3.251

RBFN based on context-based fuzzy
c-means clustering [20] 45 * 3.048 3.219

Linguistic model [4] (p = 8) c = 8 64 2.427 2.800

IGM [13] p = c = 8 64 1.790 2.009

The proposed model

p = c = 6 36 2.124 2.271

p = c = 7 49 1.862 2.093

p = c = 8 64 1.640 1.976

p = c = 9 81 1.631 2.105
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4.2. Automobile MPG Prediction

The automobile MPG prediction data are available from the UCI repository [29]. The dataset
consists of 392 data pairs. The input comprised the weight, acceleration, model year, cylinder number,
displacement, and horsepower. The dataset was partitioned into training and test datasets. In this
experiment, 196 training data pairs and the remaining test datasets were used for model evaluation.
The number of iteration loops and the learning rates used were the same as those used previously.
Figure 11 shows the performance for the training and test datasets. Figure 12 shows the distribution
of error obtained by linear regression. Figure 13 shows the centers corresponding to each context,
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when the number of contexts was 8. Table 2 lists the performance comparison. As listed in Table 2,
the experimental results revealed that the proposed IGM performed better than the linguistic model
and IGM. When p = c = 8, we obtained the best prediction performance in trial and error method.
We followed the selection method of the number of node and rules in the previous works [28].
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Table 2. Performance comparison.

No. of Rule Trn_RMSE Tst_RMSE

Linguistic model [4] 36 2.788 3.337
IGM [13] 36 2.418 3.175

The proposed model
p = c = 6 36 2.274 3.041
p = c = 7 49 2.206 2.984
p = c = 8 64 2.138 2.862

4.3. Boston Housing Data

Next, we shall use Boston housing data set that deals with the problem of real estate price
prediction. This data are available from the UCI repository [29]. In this example, we used twelve input
variables except for one binary attribute. The total data include 506 data pairs. We divided the data set
into training and testing data sets of equal size. In this study, we used 253 training data pairs, while the
remaining testing data sets were used for model evaluation. Table 3 listed the comparison results for
RMSE for Boston housing data set. When p = c = 8, we obtained the best prediction performance in
trial and error method. The proposed method outperformed the linguistic model and the basic IGM.

Table 3. Comparison results for RMSE for Boston housing data set.

No. of Rule RMSE (Training) RMSE (Testing)

Linguistic model [4] 36 4.790 4.878
IGM [13] 36 3.371 3.649

The proposed method(p = c = 7) 49 3.106 3.273
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4.4. Discussion

The experimental results revealed that the proposed optimization method showed good
performance in comparison to linguistic model and IGM itself for three data sets. The proposed method
can be summarized by the following strength and weakness:

Strengths:

- The incremental granular model has high prediction performance by combining linear regression
and local granular fuzzy model.

- The local granular fuzzy model generates the automatic if-then rules using context-based fuzzy
clustering method from numerical data set.

- The incremental granular model can enhance the prediction performance by combining the
derivative-based optimization and context-based fuzzy clustering.

- In contrast to the conventional back-propagation method, after adjusting the contexts by steepest
descent method, the cluster centers in the premise part are estimated by using context-based
fuzzy clustering method.

Weaknesses:

- The number of contexts is obtained by trial and error method.
- The number of cluster center per context are obtained by trial and error method.
- As the number of data points increase, the number of rules also increase
- The specific context can include the small data points, when the distribution of context is uniform.

5. Conclusions

We developed an optimization method for an IGM. This method comprised two stages:
context refinement and cluster adjustment. In contrast to the conventional gradient descent
method, we performed a hybrid learning method using the gradient descent method and clustering.
The experimental results clearly indicated that the proposed IGM with the optimization method
presented better generalization capability compared with the conventional methods and IGM. Therefore,
we conclude that the new optimization method for IGM design is effective. Future studies will involve
the optimal determination of cluster per context and new performance measures based on the concept
of coverage and specificity.
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