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Abstract: This paper proposes a further development of the mathematical theory of swarms to
behavioral dynamics of social and economic systems, with an application to the modeling of price
series in a market. The complexity features of the system are properly described by modeling the
asymmetric interactions between buyers and sellers, specifically considering the so-called cherry
picking phenomenon, by which not only prices but also qualities are considered when buying a
good. Finally, numerical simulations are performed to depict the predictive ability of the model
and to show interesting emerging behaviors, as the coordination of buyers and their division in
endogenous clusters.

Keywords: kinetic theory; social dynamics; active particles; swarm theory; price formation;
cherry picking; pattern formation; clusters

1. Objectives and Plan of the Paper

This paper is devoted to develop an approach based on a suitable development of the theory of
swarms, arguably initiated by the celebrated paper by Cucker and Smale [1], applied to behavioral
dynamics of social and economic systems with particular focus on the study of price sequences.
The behavioral swarm theory approach to the dynamics of prices was recently introduced in [2] and this
present paper aims at providing a deeper insight in the role of cherry picking and asymmetric interactions.

The modeling and simulations of large systems of interacting behavioral entities have been
developed by methods of the so-called kinetic theory of active particles, in short KTAP, as well as by
recent developments of the theory of swarms. For additional details, the interested reader is addressed
to the KTAP approach [3], to the kinetic theory approach by mean field and Fokker-Plank models [4],
and to the mathematical theory of behavioral swarms [2,5]. All approaches refer to large systems of
interacting living entities, called active particles, whose state at the microscopic scale, or shortly
micro-scale, includes well defined social and/or economic variables which are heterogeneously
distributed over active particles.

The common feature of all different kinetic theory methods is that the overall state of the system
is described by a distribution function over the micro-state. This distribution accounts for the overall
heterogeneity of the system. In the case of behavioral swarms, the overall state of the system is
delivered by a whole set of micro-states. An additional common feature is that mathematical models are
obtained by inserting into general mathematical structures, which differ for each of the aforementioned
approaches, models of the dynamics of interactions. Indeed, this rationale is followed also in our paper.
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The KTAP has been applied to model several socio-economic phenomena, among others,
propagation of opinion formation and credit risk over networks [6,7], idiosyncratic learning [8],
opinion dynamics [9,10] and social inequality [11], while additional bibliography is provided in [12].
Another example about the use of kinetic theory to explain the market mechanisms is in [13] where the
microscopic description leads to a system of linear Boltzmann-type equations.

An alternative method is the so-called agent-based modeling (ABM). Although not mathematically
fully grounded, it is useful to understand complex dynamics. The agents are commonly implemented
in software as objects, with internal rules. With the model, it is possible to instantiate a population
agent, observing what is emerging by the actions and interactions that produce following their rules.
From the formal point of view, ABMs are close to a narrative of reality, thanks to their flexibility. Still,
they are also close to a mathematical structure if they adhere to a rigorous representation via computer
code [14–16].

As stated before, this paper proposes a development and a new vision of the approach proposed in
the second part of [2], where price dynamics within a market was studied by a swarm theory approach.
The scientific literature on swarms has been arguably initiated by physicists, while the interest of
mathematicians has been boosted by the visionary paper [1]. An overview of the vast literature on this
topic is far beyond the aims of our paper which consists of understanding how the structure delivered
by the classical mathematical theory of swarms [17] can be modified towards the modeling of social
and economic systems. The first step is to set the variables that can describe the individual state of the
interacting entities. If particles are viewed as agents which carry a certain social variable, for instance
a social or political opinion, an analogous structure has been used to study and control the dynamics
of the collective behavior of one or more populations [18,19]. The concept of topological interactions in
swarms has been introduced in [20], by which interactions occur with a fixed number of individuals
rather than with those belonging to an influence domain, and the mathematical formalization was
further developed in [21].

The main objective of our paper consists of a detailed analysis of the role of the asymmetry in
the interactions with respect to symmetric interactions, issue that has been recently treated in [22].
The aforementioned model presented [2] is enriched with a proper description of sticky prices and
the so-called cherry picking, which assumes that—in addition to prices—quality is also an important
factor to be considered. In [23] a useful economic discussion on market coordination by prices is
provided. Other useful references are [24,25]. An important asymmetry of our work is represented
by the stickiness of seller prices, which allows the market prices to stay stable. Stickiness is a crucial
characteristic for seller prices, especially when we consider the realistic phenomenon of cherry picking,
as shown in [26]. The use of this novel modeling structure for micro-economic analyses of the markets
has simultaneously two goals: (i) to observe the agent coordination on the two sides of the market
and (ii) investigate the effects of the information presence on the quality. Instead, in a classical model,
we would have aggregate demand and offer curves related to a unique good in each market.

The presentation is as follows:

Section 2 provides a qualitative description of the behavioral economic systems object of the modeling
approach. More in details, of the dynamics of prices under asymmetric interactions.
Section 3 first introduces the concept of cherry picking that is applied to derive two specific models
focusing on specific types of asymmetries. Finally, is devoted to simulations and interpretation of the
computational results referring to the framework of economic sciences.
Section 4 looks ahead to possible research perspectives induced by a critical analysis of the contents
of our paper.

2. Behavioral Dynamics of Prices

Let us consider a market in which N sellers and M buyers trade a specific good. According to the
kinetic theory of active particles [27,28], sellers and buyers can be regarded as functional subsystems
(FS). Within each FS, particles (i.e., sellers or buyers) express an activity which is heterogeneously
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distributed among them. In this specific case, activity variables for sellers and buyers are the price
assigned by each seller for this good and the price that each buyer accepts to pay for the good, respectively [2].
We introduce the following notation:

- us, s = 1, . . . , N corresponds to the first functional subsystem (sellers), where each s-firm
expresses the price us of the product (good) offered for sale.

- wb, b = 1, . . . , M corresponds the second functional subsystem (buyers), where each b-buyer
expresses the price wb that he/she accepts to pay.

- The variables which define the activities within each FS are given by the vectors

u = (u1, . . . , us, . . . , uN) and w = (w1, . . . , wb, . . . , wM),

while their corresponding speeds of change are

v = (v1, . . . , vs, . . . , vN) and z = (z1, . . . , zb, . . . , zM),

where if both prices and related speeds are normalized with respect to their highest value at initial
time t = 0, we can assume that u0, v0 ∈ [0, 1]N and w0, z0 ∈ [0, 1]M. The dynamics can, however,
generate values which do not belong to these intervals for larger times.

According to this representation, m-order moments within each FS can be computed by

Em
s =

1
N

N

∑
s=1

um
s and Em

b =
1
M

M

∑
b=1

um
b , (1)

where first (m = 1) and second (m = 2) order moments provide the expected (or mean) price and
variance, respectively, while higher order moments give information on the distortion.

Following the reasonings exposed in [2], we assume that

- Micro-micro interactions take place only across FSs, but not within the same FS. By these
interactions, firms and customers adjust the price by direct contacts.

- Macro-micro interactions take place within the same FS, but not across different ones.
By these interactions, each seller adjusts her/his price according to the mean stream of sellers,
while customers adjust the price accounting for the mean stream of buyers.

Let us now introduce the following quantities deemed to model interactions among particles and
between particles and FSs:

- ηb
s (us, wb) models the rate at which a seller s interacts with a buyer b;

- ηs
b(wb, us) models the rate at which a buyer b interacts with a seller s;

- µs(us,Es) models the micro-macro interaction rate between a seller s and her/his own FS;
- µb(wb,Eb) models the micro-macro interaction rate between a buyer b and her/his own FS;
- ϕb

s (us, wb, vs, zb) denotes the micro-micro action, which occurs with rate ηb
s , of a buyer b over a

seller s;
- ϕs

b(wb, us, zb, vs) denotes the micro-micro action, which occurs with rate ηs
b, of a seller s over a

buyer b;
- ψs(us,Es) denotes the micro-macro action, which occurs with rate µs of the FS of sellers over a

seller s;
- ψb(wb,Eb) denotes the micro-macro action, which occurs with rate µb of the FS of buyers over a

buyer b.
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Accordingly, the mathematical structure corresponding to the setting given by Equation (2) in [2]
is as follows: 

dus

dt
= vs,

dwb
dt

= zb,

dvs

dt
=

1
M

M

∑
q=1

η
q
s (us, wq) ϕ

q
s (us, wq, vs, zq) + µs(us,Es)ψs(us,Es),

dzb
dt

=
1
N

N

∑
q=1

η
q
b(wb, uq) ϕ

q
b(wb, uq, zb, vq) + µb(wb,Eb)ψb(ub,Eb),

(2)

for s = 1, . . . N and b = 1, . . . , M. This provides the framework to derive specific models by inserting
into Equation (2) a detailed description of the interactions.

As remarked in [2], the system presents asymmetries, since the seller prices are public
(e.g., advertised price tags), while buyer prices are unknown to the sellers. This feature is taken
into account to properly model the interactions terms:

1. The interaction rates for both micro-micro and macro-micro interactions asymmetrically decay
with the distance between the interacting entities starting from the same rates η0 and µ0.
In addition, when M increases with respect to N the interaction rates η and µ both decrease
by the so-called sticking effect: 

ηb
s ' ηs = η0 exp

(
− ρ

ε us
)
,

ηs
b = η0 exp

(
− 1

ε

|us − wb|
wb

)
,

(3)

where ε = N/M and ρ is a non-negative parameter, and
µs = µ0,

µb = µ0 exp
(
− 1

ε

|wb −Eb|
wb

)
.

(4)

2. The actions ϕ and ψ correspond to a dynamics of consensus driven by the difference between the
seller and buyer prices, in the micro-micro interaction, and between the local price and the global
one, in the micro-macro interaction. The following model of interaction is proposedϕb

s = α ussign(wb − us),

ϕs
b = β (us − wb),

(5)

and ψs = γ (Es − us),

ψb = κ (Eb − ub),
(6)

where α, β, γ, κ are non-negative parameters.

If the interactions terms introduced in Equations (3)–(6) are replaced into the general structure (2),
we get a system of ODEs that the describe the whole dynamics. This will be specified in the next
section accounting for cherry picking.
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3. Cherry Picking

3.1. Modeling Consumers as Cherry Pickers

Adding cherry picking to the model introduced in Section 2 means that an agent chooses a specific
other agent to interact with, under some conditions. In this scenario, each buyer chooses a specific
seller basing her/his choice on the offered price and/or quality of the good.

Assume that a level of quality of the product, denoted by cs, is assigned to each seller s.
This quantity will remain constant during the whole process, which means that we are looking at it in
the short term and thus the agent is not able to improve or worsen the product quality. The buyers are
now seen as “cherry pickers” because we start from a world in which each of them is aware of the
seller price, but not vice versa. That means that the buyer has more information than the seller (like in
a mall or online shopping), so that it is difficult for the seller to know the buyer “reservation quality”
and “reservation price”.

After the buyer makes her/his choice, the price dynamics will remain: the buyer decides to buy if
her/his reservation price is higher or equal to the one of seller she/he has chosen. To choose the seller,
the buyer must “visit” her/his shop (or online shopping site) to check the quality and/or the price of
the product offered by every seller and compare them. So the buyer reservation price is not changed by
every seller price, because the buyer is just looking for the condition she/he made and then compares
her/his price only with the price of the seller she/he has chosen. On the other hand, the seller is aware
of the visit of every buyer, and if she/he is not chosen then her/his price will go down.

Summarizing the above reasonings, the whole dynamics can be described as follows:

1. Each buyer looks for the right seller (under the above-mentioned conditions), visiting and
comparing the prices and quality offered by all of them.

2. After choosing the right one, the buyer will compare their prices and buy if her/his reservation
price is higher or equal than seller price (or not if it is not).

3. If the buyer effectively makes the transaction, then her/his reservation price will go down (if not
it will go up).

4. Each seller is visited by every buyer. If they buy, then she/he will increase the price of the product
(if not she/he will decrease it).

3.2. Derivation of Model 1

Let us first consider a scenario in which the buyer choice is conditioned by both features:
quality and price. To make the model near the most to reality, we introduce three types of buyers:

1. Type of buyer B1, numbered from 1 to a1, who always chooses the seller offering the highest
quality product.

2. Type of buyer B2, numbered from a1 + 1 to a2, who always chooses the seller with the highest
quality-price ratio.

3. Type of buyer B3, numbered from a2 + 1 to M, who always chooses the seller with the lowest price.

Remark 1. Another kind of buyer could have been the one choosing the seller with the highest price (for example
in the case of a luxury good), but it is not present in every market and, most of all, it is a low percentage of it.
For the size we are reproducing now, it is negligible, so we will not consider it.

Remark 2. Buyers belonging to each group B1, B2 and B3 will act in different ways in the micro-micro
interactions depending on their type. However, in the macro-micro interactions all buyers will behave in the
same way.
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Let us now define the following quantities:

- scmax = arg max
s∈{1,...,N}

cs (for the sake of simplicity sc) is the seller offering the highest quality.

- srmax = arg max
s∈{1,...,N}

cs
ws

(for the sake of simplicity sr) is the seller with the highest quality-price ratio.

- swmin = arg min
s∈{1,...,N}

ws (for the sake of simplicity sw) is the seller offering the lowest price.

Introducing the above defined types of buyers and sellers in Equation (2), the system describing
the dynamics under this scenario is:

dus

dt
= vs,

dwb
dt

= zb,

dvs

dt
=

(
1
a1

a1

∑
q=1

(
δsc

s
[
η

q
s (us, wq)ϕ

q
s (us, wq, vs, zq)

]
+
(
δsc

s − 1)(ηb
s αus)

)
+

+ 1
a2−a1

a2
∑

q=a1+1

(
δsr

s
[
η

q
s (us, wq)ϕ

q
s (us, wq, vs, zq)

]
+
(
δsr

s − 1)(ηb
s αus)

)
+

+ 1
M−a2

M
∑

q=a2+1

(
δsw

s
[
η

q
s (us, wq)ϕ

q
s (us, wq, vs, zq)

]
+
(
δsw

s − 1)(ηb
s αus)

))
+

+µs(us,Es)ψs(us,Es),

dzb1

dt
= ηsc

b1
(wb1 , usc)ϕsc

b1
(wb1 , usc , zb1 , vsc) + µb(wb,Eb)ψb(wb,Eb),

dzb2

dt
= ηsr

b2
(wb2 , usr )ϕsr

b2
(wb2 , usr , zb2 , vsr ) + µb(wb,Eb)ψb(wb,Eb),

dzb3

dt
= ηsw

b3
(wb3 , usw)ϕsw

b3
(wb3 , usw , zb3 , vsw) + µb(wb,Eb)ψb(wb,Eb),

(7)

where δ
y
x denotes a delta Kronecker function, namely δ

y
x = 1 if x = y and δ

y
x = 0 otherwise.

Remark 3. The functions used are the same used in the original model [2], except for ηb
s , the one of the sellers.

It is

ηb
s ' ηs = η0 exp

(
− ρ

ε
us

)
,

where ρ is a parameter and ε = N
M . In this way we make the price of the sellers more “sticking", because cherry

picking creates a sticking effect on the price of the picker (in this case the buyer). Therefore, the aim is to balance
this not wanted effect.

Remark 4. The Kronecker function δ aims to classify the seller: if she/he is the chosen one by the buyer, then the
price dynamics is the same as in the original model without cherry picking. If not, the term (δsc

s − 1)(ηb
s αus)

will make the seller price go down for every buyer of that type, following the same lower-price rule introduced
in [2].

Remark 5. Notice that the maximum (resp. minimum) value in the definitions of cs and sr (resp. ws), above can
be eventually reached by more than one seller. If this is the case, a random seller will be picked at random among
those who attain the maximum (resp. minimum) value.

3.3. Derivation of Model 2

In this case, let us consider the “reservation quality” of the buyer, which is the minimum level of
quality that she/he is willing to accept. We denote it as cb. The cherry picking consists of choosing the
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seller offering the lowest price among those with cs ≥ cb (so, among sellers with quality high at least
as her/his own “reservation quality”, the buyer b will choose the one with lower price ). We denote
the chosen seller as:

sbmin
= arg min

s∈{1,...,N}
{ws|cs ≥ cb}, (8)

and for the sake of simplicity we will refer to her/him as sb. This time, the seller will not be the same
for all the buyers of the same type (as in the previous case). In principle, it could be different for every
buyer and that is why it depends on b.

The overall dynamics are then described by the following system:

dus

dt
= vs,

dwb
dt

= zb,

dvs

dt
=

(
1
M

M

∑
q=1

(
δ

sq
s
[
η

q
s (us, wq)ϕ

q
s (us, wq, vs, zq)

]
+
(
δ

sq
s − 1)(η0αus)

))
+

+µs(us,Es)ψs(us,Es),

dzb
dt

= η
sb
b (wb, usb)ϕ

sb
b (wb, usb , zb, vsb) + µb(wb,Eb)ψb(wb,Eb),

(9)

where all the interaction functions are the same than in Model 1.

3.4. Numerical Results

In the following we perform numerical simulations for Models 1 and 2, which are based on some
essential premises also assumed in [2]:

1. Prices are assumed to be ordered numbers.
2. Productive factors do not change (capital and labor, here represented by the number of sellers).
3. It is assumed the absence of new seller entries or existent seller exits in or from the market.
4. The Statements (2) and (3) consequence is that any automatic price control mechanism is missing;

instead, allowing the entry and exit mechanism, if prices go too high new sellers (firms) enter in
the market increasing the offer side and lowering the prices, and vice versa.

5. Both in our construction and in reality—when price are exposed by the sellers (e.g., in the mall)—,
buyers coordination is easier than that of the sellers, which ignore the reservation prices of the
buyers (the max price that a buyer accepts to pay); sellers blindly react step by step to their
successes (made a sale) or failures (no sale) in dealing.

6. Consistently with (5), buyers very well coordinate their reservation prices because they see all the
set of the sellers, which on turn receive the reactions of all the other buyers; sellers instead have to
act on the basis of information collected observing buyer decisions without seeing their internal
reservation prices; certainly, they have micro-macro (mean field) interactions with the other sellers.

3.5. Numerical Results for Model 1

Let us first perform some numerical experiments by solving Equations (7) with N = 10 sellers
and M = 50 buyers. In order to set initial conditions we consider that the initial prices, both for sellers
and buyers, are taken randomly following a uniform distribution in the interval [1000, 1005] while
initial speeds are assumed to be all equal to 0. Figure 1 shows the temporal evolution of the system
taking η0 = µ0 = α = 1, and β = γ = 0.1 and ρ = 2 for a short term of T = 1000 time steps. We can
see that prices trend is made of regular waves maintaining same frequency and amplitude for each
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price, especially for the seller prices. The same behavior is observed in the price variances, both for
buyers and sellers, as shown in Figure 2.

(a) (b)

(c) (d)

Figure 1. Seller and buyer prices and mean prices for a short term T = 1000. (a) Buyer prices, (b) seller
prices, (c) buyer mean price and (d) seller mean price.

(a) (b)

Figure 2. Variance of prices for a short term T = 1000 for (a) buyers and (b) sellers.

Figure 3 represents the corresponding Pareto market efficiencies for short and long terms,
which are calculated as follows:

- Seller Pareto market efficiency is the sum, at every time t, of Ps − Ic calculated at every exchange
at a selling price Ps and for every seller with initial cost Ic, fixed from the beginning as 1

10 of
seller price.

- Buyer Pareto market efficiency is the sum, at every time t, of Rp − Ps calculated at every exchange
at a selling price Ps and for every buyer with reservation price Rp.

- The total Pareto market efficiency is the sum of the two above.

Notice that Pareto market efficiencies show a sort of regular and cyclical trend, where the benefits
of the market are practically all on sellers, because of the sticking prices that were introduced for them
and also for the choice made about the initial cost.
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(a) (b)

(c)

Figure 3. Red: buyers; blue: sellers; purple: total Pareto market efficiency. (a) Pareto market efficiency
with ρ = 0.1, γ = 0.1, short term. (b) Buyer Pareto market efficiency with ρ = 0.1, γ = 0.1, short term.
(c) Pareto market efficiency with ρ = 0.1, γ = 0.1, long term.

In addition, we aim to investigate the influence of some of the model parameters on the overall
dynamics. For instance, Figure 4 shows the trend for two values of η0, namely η0 = 1 and η0 = 0.1,
while the other parameters keep the same value. Notice that there is a change in the ratio between the
frequencies of the prices of the two different types of agents.

(a) (b)

Figure 4. Buyers (red) and sellers (blue) trends for (a) η0 = 1 and (b) η0 = 0.1.

Both seller coordination and buyer differentiation in type are crucial. In particular, when we
decrease seller coordination through γ (which goes from 0.1 to 0.01), buyer prices begin to change the
amplitude of their waves during time and macro-waves appear in the long term, as shown in Figure 5.
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(a) (b)

Figure 5. Buyer prices trends for (a) γ = 0.1 and (b) γ = 0.01. In the first case prices range remains
constant, in second case we can see macro-waves appearing

Taking a closer look to macro-waves, we can see that they are well differentiated depending on
buyer type. That means that a lower seller coordination, brings both to the formation of clusters in
the buyer functional subsystem, depending on their type, and to the aforementioned macro-waves.
Recall that buyers B1 only seek the best quality, buyers B2 seek for the best quality-price ratio,
while buyers B3 always choose the lowest price. Figure 6 shows the dynamics for each type of
buyer for different time intervals. In particular we use green for type B1, purple for B2 and yellow for
B3. Although parameter γ was reduced to 0.01, all the other parameters keep the initially stated values.
Three macro-waves emerge according to the type of buyer.

(a) (b)

(c)

Figure 6. Dynamics of buyer prices for different times intervals: (a) [0,1500], (b) [49,000,50,000],
(c) [0,150,000]. Each color represents a buyer type, namely green B1, purple B2, yellow B3. Blue in (c) is
for seller prices that remain in the same constant interval, as in the previous case
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The stickiness of seller prices do not allow a visible change [for them] in their amplitude, as shown
in Figure 7.

(a) (b)

Figure 7. Comparing sellers prices trend for (a) γ = 0.1 and (b) γ = 0.01. Here with ρ = 0.1 and η = 1.

However, even a small change in seller prices trend (which are more free to adapt to buyer ones
due to a lower coordination) brings to an amplified effect on buyer prices, creating three different
markets. Both the split and the macro-waves are a way for the buyer to reach (also creating it) the
market they prefer. For example, macro-waves allow more often type B1 to have higher probability of
grabbing the best quality. In this way, they also reach a higher Pareto market efficiency, as shown in
Figure 8. A similar result deriving from buyer coordination is also in [23].

(a) (b)

Figure 8. Red: buyers; blue: sellers; purple: total Pareto market efficiency. (a) Pareto market efficiency
with ρ = 0.1, γ = 0.01, medium term. (b) Buyer Pareto market efficiency with ρ = 0.1, γ = 0.01,
medium term.

3.6. Numerical Results for Model 2

Recall that Model 2 assumes that each buyer has a reservation quality, which is the minimum
level of quality that she/he is willing to accept for the product. Among those sellers satisfying the
quality requirement, the buyer will choose the option with lowest price.

Consider the same initial conditions than in the previous case. Figure 9 shows the dynamics for
the short term of individual and mean prices.
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(a) (b)

(c)

Figure 9. Sellers (blue) and buyers (red) prices and mean prices for a short term T = 1000, with ρ = 2.
(a) individual prices (b) buyer mean price and (c) seller mean price.

As in the first case, when the value of γ is changed, we can see macro-waves and a the formation
of clusters depending on their (this time) reservation quality. Figure 10 shows the case in which
the 50 buyers are divided into six reservation qualities that, ordered from larger to lower, will be
represented in black, red, cyan, yellow, green and magenta. It is clear that macro-waves emerge
according to the reservation quality and this becomes especially clear for large times.

Notice that, as it usually happens in the simulations, in the short term (Figure 10a) there are
only three different trends for the six individuated groups, analogously to the first case (Figure 6).
But taking a look at the red and the black trends, if at the beginning (Figure 10a) they stay together,
in the medium term (Figure 10c) we can see a slight differentiation in the frequency and, in the long
term we can see that the red has got its own macrocycle (in Figure 10d in the second half). Therefore,
we end up with four different clusters.
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(a) (b)

(c)

Figure 10. Evolution of buyer prices for different time intervals: (a) [0,1500], (b) [49,000,50,000],
(c) [0,150,000]. Buyers are divided into 6 reservation qualities that, ordered from larger to lower, will be
represented in black, red, cyan, yellow, green and magenta. Here, ρ = 0.5, γ = 0.01, η = 1.

If the aforementioned trend is the most common, the split of the trends can also change depending
on the (random) initial conditions of prices. Indeed, we can also see a fewer clusters and a unique
cluster, as shown in Figure 11. That means that the formation of clusters is an endogenous effect. In this
sense, we may state that the second model is a generalization of the first one, in the sense that buyers
can organize both in three clusters as in the first case, but also in more or less as it is more convenient
for them.

(a) (b)

Figure 11. Two different simulations showing evolution of buyer prices in which a unique cluster
appears in the medium term. Here with ρ = 0.5, γ = 0.01, η = 1. (a) buyers can organize both in three
clusters. (b) generalization of (a)
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4. Conclusions

In this paper, using [2] as a base for our work, we developed the study of price dynamics,
applying theory of swarms to describe the interactions of the particles living in our world.
We introduced variables that can be seen as economic features. They are carried by particles that
represent the agents divided in two different types: buyers and sellers. We showed a system in which
the asymmetry between behaviors of the two types is a fundamental characteristic and a crucial aspect
for the obtained results. We study the dynamics of prices in a perfect competitive market where
also the parameter of quality is crucial. We used the idea of cherry picking performed by buyers,
which creates a more realistic behavior of our agents. In this context, the model explains the realistic
behavior of markets besides the limits of the classical microeconomics models, with a unique price
and a unique good; in the classical framework, goods with quality differences generate multiple
markets. From that perspective, it is impossible to analyze the buyer behavior in the face of quality
differences. Considering micro-transactions with prices exposed by the sellers (so-called adhesion
contracts), we can instead investigate the effects of the consumer control about quality, e.g., in food
and beverage markets, while cherry picking the products. The relevance of quality is related to goods
with a limited range of prices. If the range is enormous, the quality usually is consistent with the
price levels.

In Section 2 we present the basis of our world, that will be completed in Section 3. We set agent
variables which are the price of the offered product for sellers and the reservation price for buyers.
Price dynamics is based on the interaction (which affects the acceleration of prices) between two agents
of the opposite type (micro-micro interaction) and the interaction between an agent and the whole
group it is part of (the macro-micro interaction).

In Section 3 we add the main characteristics of our model: the quality variable and cherry picking
(buyers choose seller to interact with, basing their choice on seller prices and qualities). We develop
two models. In the first one we add quality as seller parameter and we distinguish three types of
buyers on the different ways they choose sellers, every type basing its choice on different variables.
In the second model we add also buyer reservation quality and every buyer chooses seller basing
both on seller quality, with respect to its reservation one, and seller price. In this further development,
the asymmetry consists of cherry picking, in the stickiness of sellers prices and in the idea that the buyer
knows seller price and quality, but the seller does not know the buyer reservation price and quality
(and this is reason it is the buyer to make the choice).

Computational results are also shown in Section 3. If seller macro-micro interaction is set sufficiently
high, we obtain a regular oscillating trend for both seller and buyer prices. Wave trend has a length
of few interactions and the amplitude remains always constant in time. Otherwise, if we lower the
interaction among sellers, we see a more interesting behavior, which is the main result of our work.
Seller prices do not seem to have an important change, while the buyer ones show a change in
the amplitude of price waves during time that in the long term, creates macro-waves (with long
wavelength). Moreover, every price follows a different macro-cycle depending on buyer type (for the
first model) and buyer reservation quality (for second model). In this sense, the second case appear
to be a generalization of the first one. We can explain this trend saying that a higher freedom for
sellers, not bounded by the medium seller price, creates a little change in their prices, which brings
to an acceleration in buyer ones. However, to understand better the economic reason behind this
trend, we can see the effects on Pareto market efficiency, noticing that macro-waves are not only a way
for buyer to “create” different markets to reach the best choice for their condition, but also a way to
increase their own Pareto market efficiency. Our results also suggest a concrete consequence on reality,
especially considering the increasing of markets where the competition and the number of relevant
sellers are getting lower: when sellers create a sort of “agreement” about their prices (in the model,
when they have a high interaction among them), buyers suffer of a drawback. On the other hand,
a more free market means a gain for buyers, without a significant loss for sellers.
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