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Abstract: The two most important aspects of material research using deep learning (DL) or
machine learning (ML) are the characteristics of materials data and learning algorithms, where the
proper characterization of materials data is essential for generating accurate models. At present,
the characterization of materials based on the molecular composition includes some methods based
on feature engineering, such as Magpie and One-hot. Although these characterization methods have
achieved significant results in materials research, these methods based on feature engineering cannot
guarantee the integrity of materials characterization. One possible approach is to learn the materials
characterization via neural networks using the chemical knowledge and implicit composition rules
shown in large-scale known materials. This article chooses an adversarial method to learn the
composition of atoms using the Generative Adversarial Network (GAN), which makes sense for
data symmetry. The total loss value of the discriminator on the test set is reduced from 4.1e13 to
0.3194, indicating that the designed GAN network can well capture the combination of atoms in real
materials. We then use the trained discriminator weights for material characterization and predict
bandgap, formation energy, critical temperature (Tc) of superconductors on the Open Quantum
Materials Database (OQMD), Materials Project (MP), and SuperCond datasets. Experiments show
that when using the same predictive model, our proposed method performs better than One-hot and
Magpie. This article provides an effective method for characterizing materials based on molecular
composition in addition to Magpie, One-hot, etc. In addition, the generator learned in this study
generates hypothetical materials with the same distribution as known materials, and these hypotheses
can be used as a source for new material discovery.

Keywords: material characterization; GAN; deep learning; materials discovery

1. Introduction

Artificial intelligence (AI) has made exciting progress, in which the application of machine learning
(ML) and deep learning (DL) technology has brought competitive performance in various fields,
including image recognition [1–4], Speech recognition [5–7] and natural language understanding [8–10].
Even in the ancient and complex game of Go, AI players have convincingly defeated the human world
champion with or without learning from humans [10]. DL builds the mapping from feature space to
target attribute. It does not need to consider the complex internal transformation rules, but trains a set
of weights to reflect the transformation rules, so DL can approach any nonlinear transformation in
theory. It is this advantage of DL, together with the availability of more and more experimental and/or
computational material databases (MP [11], OQMD [12], ICSD [13]), that spurs material scientists
to adopt advanced data-driven technology to solve material problems. For example, Zhi et al. [14]
used AI technology to rationally design the most energy-saving path to obtain the ideal electronic
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band gap materials; Chen et al. [15] developed a MEGNet using graph neural networks to accurately
predict the properties of molecules and crystals. it is proved that the MEGNet model is superior to
previous ML model in 11 of the 13 attributes of the QM9 [16] molecule dataset; Takahashi et al. [17]
used unsupervised and supervised machine learning techniques combined with Gaussian mixture
models to understand the data structure of material databases and used random forest (RF) to predict
crystal structure. The potential physical laws in materials data will be presented in the form of data,
which can be described by a large number of ready-made and relevant information. The collected
information variables are developed/trained and used to predict macro characteristics.

The two most important aspects of DL models are data representation and learning
algorithms. Proper representation of material data is essential to generate accurate models.
Currently, molecular-based material characterization methods include Magpie [18], One-hot [19],
etc. The Magpie material characterization method refers to the calculation of a group of element
statistical properties of the material, such as the periodic number, group number, atomic number,
atomic radius, melting temperature, average fraction of valence electrons from the s, p, d and f orbits in
all elements, etc. Table 1 shows the statistics of 22 attributes of Magpie. Valen et al. [20] used Magpie
to characterize each inorganic compound into a 134-dimensional vector, and used a random forest
(RF) algorithm to predict the Tc of superconductors. Zhuo et al. [21] used the Magpie characterization
method to build a model that can predict the band gaps of metal compounds using support vector
regression (SVR) algorithm on 3896 metal compound data.

Table 1. 22 statistical characteristics of Magpie.

Feature Category Magpie Features

Statistical characteristics of positions in
the periodic table Number, MendeleevNumber, Column, Row

Statistical characteristics of
physical properties AtomicWeight, MeltingT, CovalentRadius, Electronegativity

Valence electron feature NsValence, NpValence, NdValence, NfValence, Nvalence,
NsUnfilled, NpUnfilled, NdUnfilled, NfUnfilled, Nunfilled

Atomic stacking Gsvolume_pa, Gsbandgap, Gsmagmom, SpaceGroupNumber

One-hot characterization is to characterize materials by the number of elements in the molecular
formula. The characterization vector has non-zero values for all elements present in the compound and
zero values for other elements. Assume that all the elements in the periodic table form a fixed-length
element vector En, where n is the number of elements, the elements present in the compound have
a non-zero value and the value is expressed by the number of elements in the compound, and zero
elsewhere. Table 2 gives examples of One-hot characterization.

Calfa et al. [19] established a reliable prediction model using One-hot material characterization
method and a nuclear ridge regression (KRR) algorithm to predict the total energy, density and band
gap of 746 binary metal oxide. Mansouri et al. [22] used the One-hot material characterization method
and BP neural network algorithm on the OQMD [23] to establish a prediction model of material
formation energy, and in hundreds of millions of possible material spaces (AwBxCyDz: A, B, C, D are
elements in the periodic table of the elements, w + x + y + z ≤ 10) searched out hundreds of possible
new materials. However, whether it is Magpie or One-hot, which is a feature engineering-based
material characterization method, the accuracy and completeness of material characterization cannot be
ensured. In response to these problems, we propose to learn the characterization of materials through
neural networks based on the chemical knowledge and implicit composition rules shown in large-scale
known materials. This paper uses Wasserstein GAN(WGAN) [24] to learn the compositional rules of
elements from large-scale known materials and then to characterize the materials, which makes sense
for data symmetry.
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Table 2. One-hot coding example.

Attributes

i Formula Energy (eV) Formation_Energy_Atom (eV)
1 Li2O −14.264 −2.071
...

...
...

...
11 Na2O2 −8.401 −1.312
...

...
...

...
214 TiO2 −26.902 −3.512

...
...

...
...

One-hot characterization

i H Li Na . . . O . . .
1 2 0 . . . 1 . . .
...

...
...

...
...

...
...

11 0 0 2 . . . 2 . . .
...

...
...

...
...

...
...

214 0 0 0 . . . 2 . . .
...

...
...

...
...

...
...

The generative adversarial network (GAN) consists of a generative model (G) that captures the
data distribution and a discriminator model (D) that evaluates whether the sample is from real data or
a generative model. It was first proposed by Goodfellow et al. [25] for image generation. Compared
with other generative models [26,27], the significant difference of GAN is that it does not directly
take the difference between the data distribution and the model distribution as the objective function.
Instead, an adversarial approach was adopted. First, learn the difference by discriminating model D,
and then guide the generation model G to narrow the difference. WGAN [24] is based on the original
GAN proposed by Goodfellow et al. [25] to replace the loss function of the JS divergence [28] definition
generator with a Wasserstein distance that better reflects the similarity between two distributions.
In the end, the generator model learned how to generate hypothetical materials consistent with the
atomic composition law of the training material, and the discriminant model learned to distinguish
between real materials and fake materials that differed from the real material atomic composition law.
In the process of adversarial learning, the weights of the generated model and the discriminant model
store the information of element combination rules, so we can use the network weights of the element
combination rules stored in the discriminant model to characterize the materials.

In this work, we first trained a WGAN model on the OQMD. Its generator model can generate
hypothetical materials consistent with the atomic combination of the training materials, and its
discriminative model’s loss value was reduced from 4.1e13 to 0.3. Using the trained discriminator
model, we have created a material characterization method. Supervised experiments such as prediction
of bandgap, formation energy, and Tc on the three public material data sets of OQMD [23], ICSD [29],
and SuperCon database [20] show that this method performs better than One-hot and Magpie when
the same prediction model is used. The main contributions of this article:

1. An effective material characterization method is constructed based on WGAN.
2. Compared with Magpie and One-hot, the characterization method proposed in this paper

achieved the best results on OQMD, ICSD, SuperCon database and other data sets when using
the same prediction model.

3. A material generator model capable of generating the same atomic combination law as known
materials has been trained, which can be used for efficient sampling from a large space of
inorganic materials.
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2. Methods

2.1. Data Sources

This article uses OQMD to train WGAN deep learning models. OQMD is a widely used
DFT [30–32] database with crystal structures either calculated from high-throughput DFT or obtained
from the ICSD database. OQMD is in continuous development. At the time of writing, this article
already contains 606,115 compounds, including many compounds with the same molecular formula
but different formation energy. This article retains the lowest formation energy data because they
represent the most stable compounds. Next, excluding single-element materials and removing data
entries with formation energy outside ± 5σ (σ is the standard deviation in the data), Jha et al. [33] also
adopted a similar data screening method. After the above data screening, data of 291,884 compounds
were finally obtained.

2.2. Material Representation Method for WGAN Input

By performing simple statistical calculations on the materials selected by OQMD, 85 elements were
found among the 118 elements in the periodic table of the elements. In any particular compound/formula,
each element is usually less than 8 atoms. Each material is then represented as a sparse matrix Xr

∈ n×m
with n = 85 and m = 8. The matrix has 0/1 cell values, each column represents one of the 85 elements,
and the column vector is a thermal encoding of the number of atoms for that particular element
(see Figure 1).
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Figure 1. Schematic representation of KZn2Ru.

2.3. Structure of the WGAN Model

GAN defines a noise as a prior, which is used by the generative model G to learn the probability
distribution on the training data X. The G generates fake samples close to the real samples as much as
possible, and the D discriminates as accurately as possible whether the input data comes from the real
samples X or from the pseudo samples G(z). In order to win the game, these two processes oppose
each other and iteratively optimize, so that the performance of D and G is continuously improved.
The goal of the optimization is to find the Nash balance [34] between the D and G. Accordingly, in this
mini-maximization optimization problem, the optimization objective functions of the discriminant
model and the generated model can be defined as:

LossD = max
D

V(D, G)= Ex:Pdata [logD(x)] + Ex:Pg [log(1−D(G(x)))] (1)

LossD = min
G

V(D, G) = Ex:Pg
[log(1−D(G(x)))] (2)

G(x) in the formula means mapping the input noise z into data (for example, generating a molecular
map). D(x) represents the probability that x comes from the real data distribution. The standard form
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of GAN proposed by Goodfellow has problems such as training difficulties, loss functions of generators
and discriminators that cannot indicate the training process, and lack of diversity in the generated
samples. Arjovsky et al. [24] constructed a WGAN based on the original GAN, replacing the loss
function of the JS divergence definition generator with a Wasserstein distance that better reflects the
similarity between the two distributions, and generates a meaningful gradient to update G, so that the
generated distribution is pulled towards the real distribution. The loss function of the generated model
and discriminant model is redefined as Formulas (3) and (4). Formula (4) can indicate the training
process. The smaller the value, the smaller the Wasserstein distance between the real distribution and
the generated distribution, the better the GAN training.

LossG= −Ex:Pg [ fw(x)] (3)

LossD= Ex:Pg [ fw(x)]−Ex:Pr [ fw(x)] (4)

In the end, the generator model learned how to generate hypothetical materials consistent with
the regular combination of elements in the training materials, and the discriminant model learned
to distinguish between real materials and fake materials that differed from the regular combinations
of atoms in real materials. In the process of adversarial learning, the weights of the generated
models and discriminator models store the information of element combination rules, so we can
use the discriminator model network weights that store the element combination rules to perform
material characterization.

Neither Magpie, One-hot, or other feature-engineering-based methods or supervised
training-based neural transfer characterization methods can guarantee the best characterization.
However, the basic physical knowledge of some material composition laws obtained through adversarial
learning from large-scale known material data can reflect the nature of material composition. We can
use this learned knowledge to characterize materials.

Figure 2 is the architecture of the WGAN model designed in this paper. The generation network
consists of a fully connected layer and 4 deconvolution layers [35], and each deconvolution layer is
followed by a batch normalization [36] layer. The sigmoid activation function is used because the
output layer of the generation network needs to generate only sparse matrices of 0 and 1. The hidden
layer uses the rectified linear unit (ReLu) [37] as the activation function after the batch normalization
layer. The specific parameters of the generation model are shown in Table 3. Given a set of vectors
ZR that follow a normal distribution, where R = 128, the generator G finally generates a feature map
X f
∈ n×m.

Symmetry 2020, 12, x FOR PEER REVIEW 5 of 12 

 

diversity in the generated samples. Arjovsky et al. [24] constructed a WGAN based on the original 
GAN, replacing the loss function of the JS divergence definition generator with a Wasserstein 
distance that better reflects the similarity between the two distributions, and generates a meaningful 
gradient to update G, so that the generated distribution is pulled towards the real distribution. The 
loss function of the generated model and discriminant model is redefined as Formulas (3) and (4). 
Formula (4) can indicate the training process. The smaller the value, the smaller the Wasserstein 
distance between the real distribution and the generated distribution, the better the GAN training. 

LossG= -Ex:Pg fw(x)  (3) 

LossD=Ex:Pg fw(x) -Ex:Pr fw(x)  (4) 

In the end, the generator model learned how to generate hypothetical materials consistent with 
the regular combination of elements in the training materials, and the discriminant model learned to 
distinguish between real materials and fake materials that differed from the regular combinations of 
atoms in real materials. In the process of adversarial learning, the weights of the generated models 
and discriminator models store the information of element combination rules, so we can use the 
discriminator model network weights that store the element combination rules to perform material 
characterization. 

Neither Magpie, One-hot, or other feature-engineering-based methods or supervised training-
based neural transfer characterization methods can guarantee the best characterization. However, the 
basic physical knowledge of some material composition laws obtained through adversarial learning 
from large-scale known material data can reflect the nature of material composition. We can use this 
learned knowledge to characterize materials. 

Figure 2 is the architecture of the WGAN model designed in this paper. The generation network 
consists of a fully connected layer and 4 deconvolution layers [35], and each deconvolution layer is 
followed by a batch normalization [36] layer. The sigmoid activation function is used because the 
output layer of the generation network needs to generate only sparse matrices of 0 and 1. The hidden 
layer uses the rectified linear unit (ReLu) [37] as the activation function after the batch normalization 
layer. The specific parameters of the generation model are shown in Table 3. Given a set of vectors 
ZR that follow a normal distribution, where R = 128, the generator G finally generates a feature map 
X f∈n×m. 

Real 
materials

…
…

Generated 
materials

Real 
sample

Fake 
sample

Generator 

Discrimitor 

z
……

……

……

…
…

…
…

·

...

H
He
Li

Mt

H
He
Li

Mt

 
Figure 2. Architecture of the WGAN model used in this paper. 

  

Figure 2. Architecture of the WGAN model used in this paper.



Symmetry 2020, 12, 1889 6 of 12

Table 3. Parameters of the WGAN generation model.

Layer Input Shape Filter Kernel Stride Output Shape

Fc1 [batch, 128] - - - [batch, 5 × 4 × 256]
Reshape [batch, 5 × 4 × 256] - - - [batch, 5, 4, 256]
DeConv1 [batch, 5, 4, 256] 128 (5, 5, 256) (2, 2) [batch, 11, 8, 128]
DeConv2 [batch, 11, 8, 128] 64 (3, 3, 128) (2, 1) [batch, 22, 8, 64]
DeConv3 [batch, 22, 8, 64] 32 (3, 3, 64) (2, 1) [batch, 43, 8, 32]
DeConv4 [batch, 43, 8, 32] 1 (3, 3, 32) (2, 1) [batch, 85, 8, 1]

In discriminator model, we represent 85 kinds of atoms as an identity matrix E ∈ R85×85 according
to the atomic number. After a fully connected embedding layer, we obtain the embedding representation
matrix T ∈ R85×d of these 85 kinds of atoms, where d is the number of neurons in the embedding layer.
Then, the hypothetical material X f generated by the generator and the real material characterization
matrix Xr are introduced into the discriminant model, and a matrix operation is performed with
the embedded matrix T of the atom to generate a d-dimensional material characterization vector C.
The specific process is as Formulas (5) and (6).

C = SBL(X T(EW) � A) (5)

A =


1 1 · · · 1
2 2 · · · 2
· · · · · · · · · · · ·

8 8 8 8

, A ∈ Rm×d (6)

In the formula, W ∈ n× d is the trainable network weight in the discriminator, the atom embedding
matrix T = EW, and A is the matrix we introduced to obtain the number of atoms in the molecular
formula. � represents the matrix point multiplication. SBL(·) means sum the matrix by rows.

The matrix calculation process is shown in Figure 3: The transposition of the material
characterization matrix X is multiplied with the atom embedding matrix T to obtain a material
characterization map represented by T. This characterization map does not contain information about
the number of each element in the material. Next, we introduce a special auxiliary matrix A to help
obtain the number characteristics of the atom. The result of the previous step is multiplied with
A, and then the results are summed in rows. The material characterization vector represented by
T is obtained. Finally, the characterization vector is input into a fully connected layer to obtain the
final score. So as long as the atom embedding matrix T is obtained, any molecular formula can be
characterized according to Equations (5) and (6).
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3. Results

Deep learning algorithm has many hyperparameters, and adjusting these parameters can change
the performance of the model. The hyperparameters of neural network mainly include momentum,
learning rate, optimization algorithm and batch size, among which learning rate and batch size are
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the most important. In this paper, the WGAN model is trained from 0.1 to 1e−5 (10 times less each
time), and the number of batches is from 32 to 1024 (increasing by 2 times each time). To obtain
the best material characterization model, this paper keeps the model with the smallest loss value
of discriminator on the test set. In order to ensure the stability and reliability of the results of the
supervised prediction experiment, the follow-up comparative experimental results are obtained by
averaging 10 validation calculations. The model in this paper is implemented based on python3,
and the neural network model is established by using the Tensrflow 18.0 [38] deep learning framework.
All programs run on NVIDIA DIGITS GTX1080Ti.

To evaluate the performance of the supervised regression models, we use the mean absolute
error (MAE), the root mean square error (RMSE), and R-Squared (R2) as the evaluation measures.
These performance measures can be calculated as follows:

MAE =
1
m

m∑
i=1

∣∣∣yi − ŷi
∣∣∣ (7)

RMSE =

√√
1
m

m∑
i=1

(yi − ŷi)
2 (8)

R2 = 1−

∑m
i=1 (yi − ŷi)

2∑m
i=1 (yi − y)2 (9)

where m is the number of samples, yi and ŷi are the true and predicted values of the i sample label, y is
the average of the m sample real labels.

In order to train the WGAN model, we randomly divide the OQMD into a training set and a
test set (10%) according to 10%. The training set is used to train the GAN model, and the test set is
used to verify the quality of the model. We save the model with the smallest total loss value of the
discriminator on the test set in 100,000 iterations as the final trained WGAN model. Experiments show
that when the learning rate of the training generator is 1e−2, the learning rate of the discriminator is
1e−2, the number of batch size is 256, and the RMSProb optimization algorithm is used, the WGAN
model converges best. The total loss value of the discriminator on the test set was reduced from 4.1e13

to 0.3194 (as shown in Figure 4a). As in Equation (4), the smaller the loss value of the discriminator,
the better the network training. The discriminator’s loss value converges so well, indicating that the
WGAN designed in this study can capture the atomic combination of known materials well.
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After obtaining the atomic matrix T from the trained model, we characterize the materials
on the SuperCond dataset according to the Formula (5), and use the t-SNE [39] algorithm to
reduce the dimension of the characterization vector (see Figure 4b). Red dots represent iron-based
superconductors, blue dots represent copper-based superconductors, and black dots represent other
types of superconductors. We use only the atom embedding matrix T obtained from the discriminator
model to characterize superconductors into vectors, and use t-SNEsne to reduce the characterization
vectors to two dimensions, and then display them on the coordinate axis. We find that without using
any classification algorithm, simply reducing the size, the three types of superconductors can be
automatically separated according to the learned representation, which shows the rationality of the
characterization method proposed in this paper.

In order to further illustrate that the material characterization method proposed in this paper
can better characterize materials than the existing Magpie and One-hot, we conducted supervised
experiments on three data sets: MP, Supercond, and OQMD. The bandgap of non-metallic materials is
predicted on MP, the critical temperature (Tc) of superconductors is predicted on SuperCond database,
and the formation energy of predicted materials is predicted on OQMD. To ensure the fairness of the
experiments, we use the same fully connected neural network structure for all three representation
methods, and the hidden layer neurons are 256, 128, 64, 32, and 1, respectively. The final results are
shown in Table 4 and Figure 5a. The three numbers side by side in Table 2 correspond to the MAE,
RMSE, and R2 values.

Table 4. Results of supervised experiments on three datasets.

WGAN Magpie One-Hot

MP 0.467/0.641/0.828 0.570/0.786/0.745 0.484/0.662/0.810
Supercond 6.05/9.21/0.902 6.47/10.3/0.878 6.11/9.63/0.887

OQMD 0.101/0.180/0.907 0.126/0.203/0.841 0.108/0.221/0.866

The characterization method proposed in this paper achieved the best results on all three tasks on
three data sets. The material characterization method proposed in this paper achieves the best results
on the MP dataset, followed by the One-hot method, and the bad one is Magpie. The One-hot method
can also produce good results, which may be related to MP data redundancy. The characterization
method proposed in this paper achieves similar results using a simple fully connected neural network
and a graph neural network-based method proposed by Goodall et al. [40]. Although the amount of
parameters is much smaller than the method proposed by Goodall et al., the results are similar. On the
Supercond dataset, Valen et al. used the Magpie characterization method and an RF prediction model
to obtain a result of R2 of 0.88. The Magpie characterization method and RF prediction model used by
Valen et al. on the Supercond dataset achieved a result of R2 of 0.88, and the characterization method
proposed in this paper achieved R2 of 0.902. Our proposed characterization method on the OQMD
dataset also achieved the best results. Although our method is only a little better than the other two
methods in MP prediction of band gap, the prediction of band gap is a very challenging problem, and the
improvement of prediction results is very innovative. Our results are similar to [40], even though the
scale of our model is much smaller than that of [40] based on graph neural network. The prediction of
Tc on Supercond dataset is close to the best result about Tc at present [34]. Even if a simple model is
used, the proposed characterization method can achieve good results both on the large-scale oqmd data
set and on the small-scale data such as the Supercond dataset. In general, the neural network-based
material characterization method has obvious advantages over the characterization methods such as
Magpie, One-hot, etc. constructed by feature engineering, and the advantages of the characterization
method in this paper are more obvious on small data sets.
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Figure 5. (a) Comparison results of R2 on the three data sets MP, SuperCond, and OQMD. (b) the
percentages of charge-neutral (CN) and electronegativity balance (EN) samples generated from OQMD
dataset are very close to those of training set.

Charge neutrality and balanced electronegativity are two fundamental chemical rules of materials.
Therefore, the rationality of our model can be verified by examining the hypothetical materials
generated by WGAN. We use the charge-neutrality and electronegativity checking procedures proposed
in reference [41] to calculate the percentage of samples for training materials and generated materials
meeting these two rules. The results are shown in Figure 5b. We find that the percentage of effectively
generated materials is very close to that of training set. For OQMD dataset When the charge-neutrality
of the training set is 55.8%, the generated sample set is 58.1%. This indicates that our WGAN
model has successfully learned the chemical rules implied in the material composition. The detailed
experimental procedures and results of charge neutrality and balanced electronegativity check have
been discussed in detail in another article [42] of ours. Reference [42] is to learn the combination
rules of atoms to generate hypothetical materials, while this article is to learn the characterization
methods of materials from large-scale known materials. The generators in these two articles adopt
the deconvolution method, but the discriminator of [42] is to judge whether the generator is true or
not. In this paper, the material characterization method is designed into the discriminator, so that
the discriminator can not only judge the authenticity of the material generated by the generator,
but also learn the characterization of the material. All the codes in this paper have been uploaded to
https://github.com/Chilitiantian/code/tree/master for researchers to verify or follow-up work.

4. Discussion

The generator model trained in this article has learned how to generate hypothetical materials
consistent with the element combination rules of the training materials, and the discriminant model
has learned to distinguish between real materials and fake materials that are not the same as the
atomic combination rules of real materials. In the process of adversarial learning, the weights of
the generated models and discriminant models store the information of element combination rules,
so we can use the discriminant model network weights that store the element combination rules
to perform material characterization. Neither Magpie, One-hot, or other feature-engineering-based
methods or supervised training-based neural transfer characterization methods can guarantee the best
characterization. However, the basic physical knowledge of some material composition laws obtained
through adversarial learning from large-scale known material data can reflect the nature of material
composition. We can use this learned knowledge to characterize materials. A series of experiments
prove that the characterization method proposed in this paper is indeed superior to Magpie and
One-hot characterization methods.

https://github.com/Chilitiantian/code/tree/master
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5. Conclusions

In this work, we first trained a WGAN model on the OQMD. Its generator model can generate
hypothetical materials consistent with the atomic combination of the training materials. Using the
trained discriminator model, we have created a material characterization method. Supervised
experiments such as prediction of bandgap, formation energy, and Tc on the three public material
data sets of OQMD [23], ICSD [29], and SuperCon database [20] show that this method performs
better than One-hot and Magpie when the same prediction model is used. This article provides an
effective method for characterizing materials based on molecular composition in addition to Magpie,
One-hot, etc. In addition, the generator learned in this study can generate hypothetical materials
with the same distribution as known materials, and these hypotheses can be used as a source of new
material discovery.

Our work can be carried out in various forms. We can use the generation model to generate
hypothetical materials, and use the material characterization method proposed in this paper to build a
supervised model to screen the generated hypothetical materials, to find new materials with certain
properties. We can also combine the generated hypothetical materials with the graph neural network,
and use the material characterization method proposed in this paper to construct a semi supervised
model for predicting material attributes.
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