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Abstract: Rough Heston model possesses some stylized facts that can be used to describe the stock
market, i.e., markets are highly endogenous, no statistical arbitrage mechanism, liquidity asymmetry
for buy and sell order, and the presence of metaorders. This paper presents an efficient alternative
to compute option prices under the rough Heston model. Through the decomposition formula of
the option price under the rough Heston model, we manage to obtain an approximation formula
for option prices that is simpler to compute and requires less computational effort than the Fourier
inversion method. In addition, we establish finite error bounds of approximation formula of option
prices under the rough Heston model for 0.1 ≤ H < 0.5 under a simple assumption. Then, the second
part of the work focuses on the short-time implied volatility behavior where we use a second-order
approximation on the implied volatility to match the terms of Taylor expansion of call option prices.
One of the key results that we manage to obtain is that the second-order approximation for implied
volatility (derived by matching coefficients of the Taylor expansion) possesses explosive behavior for
the short-time term structure of at-the-money implied volatility skew, which is also present in the
short-time option prices under rough Heston dynamics. Numerical experiments were conducted
to verify the effectiveness of the approximation formula of option prices and the formulas for the
short-time term structure of at-the-money implied volatility skew.

Keywords: rough Heston model; decomposition formula; approximation formula for implied volatility

1. Introduction

Stochastic volatility models and jump diffusion models such as classical Heston model [1]
and Merton jump diffusion model [2] have played an important role in the option pricing theory.
The models have aimed at replicating the stochastic volatility effect (along with the mean-reversion)
and the jump-effect as displayed in the financial market. For decades, the models have been proven to
be useful in pricing options, but they are deemed as inadequate for modeling the short-time behavior
of the implied volatility of the options using the real data.

It was discovered by Alòs et al. [3] that the introduction of fractional components with Hurst
parameter 0 < H < 0.5 is capable of generating the term structure of at-the-money skew of order
Tδ for every δ > −0.5 and small time to maturity T. In addition, Fukasawa [4] managed to
show that (through an example of martingale expansion’s application) the stochastic volatility model
with volatility term driven by fractional Brownian motion with Hurst parameter H can generate
at-the-money volatility skew of order TH−0.5 for the small time to maturity T. This motivated the
authors of [5] to further explore through real empirical data to verify that the use of fractional Brownian
motion in a stochastic volatility model is useful and adequate in replicating the roughness behavior of
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volatility in the financial market. Fractional Brownian motion with Hurst parameter 0 < H < 0.5 in
volatility model is subsequently named as rough volatility. On a side note, Hurst parameter H is used
to control the roughness of the fractional Brownian motion, i.e., when 0 < H < 0.5, the rough volatility
displays anti-persistency effect, and, for 0.5 < H < 1, the volatility would display long-memory effect.
Prior to the use of rough volatility, fractional Brownian motion with Hurst parameter 0.5 < H < 1 was
proposed by Comte and Renault [6] to model the long-memory effect of volatility. A linear sum of
classical Brownian motion and fractional Brownian motion called mixed fractional Brownian motion
0.5 < H < 1 was also proposed and developed by Cheridito et al. [7] to price model stock movement
and price options.

Rough Bergomi model by Bayer, C., Friz, P., & Gatheral, J. [8] was among the first models
proposed to incorporate the rough volatility component. The initial model proposed is slow in
simulation such that the authors ruled out the possibility of optimization in practice. Nevertheless,
the authors proposed an efficient expansion method for the implied volatility to the second order in the
volatility of volatility component. Furthermore, further advancements in reducing the computational
costs were made by the authors of [9,10], i.e., they introduced a faster scheme that utilizes hybrid
methods for the Brownian semistationary process in the simulation and variance reduction techniques
for a significant runtime reduction in the simulation process.

Rough Heston model is our main discussion of this paper. It possesses the rough quality of the
classical Heston model and was introduced by El Euch and Rosenbaum [11] as a stochastic Volterra
equation. The model is used to describe the high degree of endogeneity (orders that have no real
economic motivation) of the liquid market and the no statistical arbitrage mechanism which should
present on a highly liquid electronic markets. In addition, the liquid asymmetry (average impact of a
sell order is greater than the impact of a buy order) and presence of metaorders (large orders whose
execution is split in time by trading algorithm) are also features of rough Heston model. Accordingly,
the authors of [11] obtained the characteristic function of the rough Heston model to compute the
option price using the Fourier inversion method. Coincidentally, the computation for option price
under the rough Heston model is also computationally expensive. One of the brilliant achievements
of El Euch and Rosenbaum [11] is that, under the numerical experiments, the authors were able to
numerically verify that pricing option price under rough Heston model consists of explosive behavior
for term-structure at-the-money implied volatility skew (the same goes to the rough Bergomi model)
as T → 0. Explosive behavior for the short-time term structure of at-the-money implied volatility skew
is one of the crucial components in pricing options for short maturity time (see [4,8,12]). In addition,
Gatheral and Radoicic [13] used rational approximations on fractional Riccati equation which in return
substantially reduces the computational cost (see [14] for a review and [15] for an improvement on the
method). Recent advancements by the authors of [16,17] made effort in reducing the computational
cost of the rough Heston model.

We study an approximation formula for option prices under the rough Heston model. Section 1
serves as prerequisites to our study. In particular, the approximation method is obtained using the
decomposition formula proposed in [18–20]. Accordingly, the error bounds of the approximation
formula are studied in Section 2 under a simple assumption. Details of the proof in Section 2 are listed
in Appendix A. Subsequently, in Section 3, we propose a second-order approximation to the implied
volatility similar to the work of Alòs, Elisa and De Santiago, Rafael and Vives, Josep [19]. We then
match the coefficients and thus obtain some of the short-time implied volatility behaviors for our
approximation formula for implied volatility. Ultimately, one important result that we obtain is that
the approximation formula for implied volatility does display explosive behavior for the term structure
at-the-money volatility skew. Through the numerical experiments, as shown in Section 4, we manage
to verify that the option prices under rough Heston model computed using the approximation formula
and the Fourier inversion method with fractional Adams scheme [11,21] are extremely consistent with
one another for short maturity time. In addition, we find that, by comparing the implied volatility
computed by Fourier inversion method with fractional Adams scheme [11,21] under rough Heston
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model, approximation formula for option prices (transformed back to implied volatility) and short-time
term structure of the at-the-money skew equation have roughly the same order of explosive behavior
for the term structure of at-the-money implied volatility skew. Lastly, we give a conclusion to our work
in Section 5.

Prerequisites

Consider the price model process with rough Heston dynamics:

dSu

Su
= σu

[
ρdW∗u +

√
1− ρ2dW⊥u

]
(1)

σ2
u = σ2

t +
1

Γ(α)

∫ u

t
(u− s)α−1λ

[
θ − σ2

s

]
ds +

ν

Γ(α)

∫ u

t
(u− s)α−1σsdW∗s (2)

where S is the stock price, ρ is the correlation between stock return and the volatility movement,
0.5 < α = H + 0.5 < 1 , θ > 0 is the mean reversion level, λ > 0 is the rate at which the
process σ2

s reverts to the mean reversion level θ, ν > 0 is the magnitude of random movement,
W∗ and W⊥ are independent Brownian motion defined in a filtered probability space (Ω,F ,Q) with
F := FW∗ ∨ FW⊥ , and σ is the volatility of the return that is positive and square-integrable function
adapted to the filtration.

Let Xu = log(Su) and we describe Equation (2) in the forward variance form:

dXu = σu

[
ρdW∗u +

√
1− ρ2dW⊥u

]
− 1

2
σ2

udu (3)

σ2
u = ξt(u) +

ν

Γ(α)

∫ u

t
(u− s)α−1σsdW∗s (4)

where ξt(u) := E[σ2
u |Ft] is the forward variance curve. Following the work of Alos et al. [20], we denote

the future expected variance wt(T) as

wt(T) := E
[∫ T

t
σ2

s ds|Ft

]
(5)

and the martingale as

Mt := E
[∫ T

0
σ2

s ds|Ft

]
(6)

The connection between wt(T) and Mt can be easily established as

wt(T) = Mt −
∫ T

0
σ2

s ds (7)

then it follows that
dwt(T) = dMt − σ2

t dt (8)

The Delta–Gamma–Vega relationship can be established as

1
2
(∂xx − ∂x)B(Xt, wt)− ∂wB(Xt, wt) = 0 (9)

where Bt := B(Xt, wt(T)) is some function that solves the Black–Scholes equation with X being
the log-spot price with the dynamics specified in Equation (3) and w depends on σ. Otherwise,
B(Xt, wt) can be formulated as

B(Xt, wt(T)) = eXt · N(d+(wt(T)))− K · N(d−(wt(T))) (10)

where N(·) is the cumulative distribution function of standard normal distribution and
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d±(wt(T)) =
Xt − ln K√

wt(T)
±
√

wt(T)
2

(11)

with the assumption of risk-free interest rate r = 0 throughout the paper.

Theorem 1 (Decomposition formula). Assume Bt := B(X, w) as some function that solves the Black–Scholes
equation where x is the log-spot price with the dynamics specified in Equation (3) and w depends on the σ2 from
Equation (4). Then, for all t ∈ [0, T],

E[BT |Ft] = Bt +E
[∫ T

t
∂xwBsd〈X, M〉

∣∣∣∣Ft

]
+

1
2
E
[∫ T

t
∂wwBsd〈M, M〉s

∣∣∣∣Ft

] (12)

Proof. Applying Itô’s formula to Bt, we have

dBt =∂xBtdXt + ∂wBtdwt(T) +
1
2

∂xxBtd〈X, X〉t

+ ∂xwBtd〈X, w(T)〉t +
1
2

∂wwBtd〈w(T), w(T)〉t
(13)

We use Equations (3), (8) and (9) to simplify

dBt = ∂xBt

(
σt

[
ρdW∗t +

√
1− ρ2dW⊥t

]
− 1

2
σ2

t dt
)
+ ∂wBt

(
dMt − σ2

t dt
)

+
1
2

∂xxBtσ
2
t dt + ∂xwBtd〈X, M〉t +

1
2

∂wwBtd〈M, M〉t

= ∂xBtσt

[
ρdW∗t +

√
1− ρ2dW⊥t

]
+ σ2

t

(
1
2
(∂xx − ∂x)Bt − ∂wBt

)
dt (14)

+ ∂wBtdMt + ∂xwBtd〈X, M〉t +
1
2

∂wwBtd〈M, M〉t

= ∂xBtσt

[
ρdW∗t +

√
1− ρ2dW⊥t

]
+ ∂wBtdMt

+ ∂xwBtd〈X, M〉t +
1
2

∂wwBtd〈M, M〉t

Integrating up to time T and taking conditional expectation of Equation (14) on Ft, the result
follows.

Theorem 1 is the decomposition formula from [20] with slight changes of the notation as
corresponds to the original work in [18]. Equation (12) is exact rather than an approximation, i.e.,
it describes the interaction between the movement of log-stock movement and the future expected
variance from time t to T. It is known that Equation (12) under conditional expectation can be
difficult to compute, therefore approximation of the equation is needed. In this study, we provide an
approximation formula for Equation (12) using the rough Heston model dynamics under a simple
assumption. It is found that the errors are bounded and decreasing as the time to maturity gets smaller.
Let Et(·) := E[·|Ft] as a simplification.

We consider the following assumption throughout this study:

Assumption 1 (A1). Et(σ2
u)
∫ u

t (u− s)α−1ds ≥
∫ u

t (u− s)α−1 Et(σ2
s )ds

The relevance of Assumption 1 for the practical application is discussed at the end of Section 4.
We prove some bounds under Assumption 1.
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Lemma 1. Assume the model in (2) and (3) and Assumption 1; then, for all T − s ∈ [0, 1],

∫ T

s
Es(σ

2
u)du ≥ σ2

s
Γ(α + 1)

Γ(α + 1) + λ
(T − s) (15)

∫ T

s
Es(σ

2
u)du ≥ λθ(T − s)α+1

Γ(α + 2) + λ(α + 1)
(16)

and for T− s ∈ (1, ∞) ∫ T

s
Es(σ

2
u)du ≥ σ2

s
Γ(α + 1)

Γ(α + 1) + λ
(17)

∫ T

s
Es(σ

2
u)du ≥ λθ

Γ(α + 2) + λ(α + 1)
(18)

Proof. Since Et[σ2
u ] is Ft-martingale, it is not hard to see that from Equations (2) and (3)

Et(σ
2
u) = σ2

t +
1

Γ(α)

∫ u

t
(u− s)α−1λ[θ −Et(σ

2
s )]ds

= σ2
t +

λθ

Γ(α)

∫ u

t
(u− s)α−1ds− λ

Γ(α)

∫ u

t
(u− s)α−1 Et(σ

2
s )ds (19)

≥ σ2
t −

λ

Γ(α)

∫ u

t
(u− s)α−1 Et(σ

2
s )ds

Based on Assumption 1,

Et(σ
2
u) ≥ σ2

t −
λ

Γ(α)
Et(σ

2
u)
∫ u

t
(u− s)α−1ds

= σ2
t −

λ(u− t)α

Γ(α + 1)
Et(σ

2
u)

(20)

Remembering that 0.5 < α < 1, rearranging we obtain

Et(σ
2
u) ≥ σ2

t

(
Γ(α + 1)

Γ(α + 1) + λ(u− t)α

)
≥ σ2

t Γ(α + 1)
[(

1
Γ(α + 1) + λ

)
1u−t≤1 +

(
1

Γ(α + 1) + λ(u− t)

)
1u−t>1

] (21)

For T − s ≤ 1, we compute
∫ T

s Es(σ2
u)du as

∫ T

s
Es(σ

2
u)du ≥

∫ T

s
σ2

s Γ(α + 1)
1

Γ(α + 1) + λ
du

= σ2
s

Γ(α + 1)
Γ(α + 1) + λ

(T − s)
(22)

For T − s > 1,

∫ T

s
Es(σ

2
u)du ≥ σ2

s Γ(α + 1)
[∫ s+1

s

1
Γ(α + 1) + λ

du +
∫ T

s+1

1
Γ(α + 1) + λ(u− s)

du
]

= σ2
s Γ(α + 1)

[
1

Γ(α + 1) + λ
+

1
λ

ln
(

Γ(α + 1) + λ(T − s)
Γ(α + 1) + λ

)]
(23)

≥ σ2
s

Γ(α + 1)
Γ(α + 1) + λ
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Furthermore, we can obtain two more bounds by considering the following

Et(σ
2
u) ≥

λθ

Γ(α)

∫ u

t
(u− s)α−1ds− λ

Γ(α)

∫ u

t
(u− s)α−1 Et(σ

2
s )ds

=
λθ

Γ(α + 1)
(u− t)α − λ

Γ(α)

∫ u

t
(u− s)α−1 Et(σ

2
s )ds

(24)

By Assumption 1,

Et(σ
2
u) ≥

λθ

Γ(α + 1)
(u− t)α − λ

Γ(α + 1)
(u− t)α Et(σ

2
u)

=
λθ(u− t)α

Γ(α + 1) + λ(u− t)α
(25)

≥
(

λθ(u− t)α

Γ(α + 1) + λ

)
1u−t≤1 +

(
θλ

Γ(α + 1) + λ

)
1u−t>1

Again, for T − s ≤ 1, we compute
∫ T

s Es(σ2
u)du as

∫ T

s
Es(σ

2
u)du ≥

∫ T

s

λθ(u− s)α

Γ(α + 1) + λ
du

=
λθ(T − s)α+1

Γ(α + 2) + λ(α + 1)

(26)

For T − s > 1, ∫ T

s
Es(σ

2
u)du ≥

∫ s+1

s

λθ(u− s)α

Γ(α + 1) + λ
du +

∫ T

s+1

θλ

Γ(α + 1) + λ
du

=
λθ(1 + (α + 1)(T − s− 1))

Γ(α + 2) + λ(α + 1)
(27)

≥ λθ

Γ(α + 2) + λ(α + 1)

and the result follows.

Lemma 2. Let 0 ≤ t ≤ s ≤ T. Then, for every n ≥ 0, there exists C = C(n, ρ) such that

|∂n
x G(Xs, ws)| ≤ C

(∫ T

s
Es(σ

2
u)du

)− 1
2 (n+1)

(28)

where G(Xs, ws) = (∂2
xx − ∂x)B(Xs, ws)

Proof. See Lemma 2.1 in [18] or similar result in Lemma 4.1 of [3].

Proposition 1. Assuming the volatility model (2), the conditional expectation is

E0(σ
2
t ) = σ2

0 − (σ2
0 − θ)

∫ t

0
gα,λ(s)ds (29)

where
gα,λ(t) := λtα−1Eα,α(−λtα) (30)

with Eα,β(x) = ∑∞
n=0

xn

Γ(αn+β)
as the generalized Mittag–Leffler function.

Proof. See pages 7–8 in [22], Proposition 3.1 in [23] or Proposition 2.1 in [24].
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2. Approximation for Option Pricing Formula

In this section, we prove that the errors for approximation formula of rough Heston model in the
range of 0.1 ≤ H < 0.5 is bounded.

Theorem 2 (Approximation formula). Assume model (3) and (4) with Assumption 1 satisfied. Then, for all
t ∈ [0, 1] and α ∈ [0.6, 1), we have

|Et[B(XT , wT(T)]− B(Xt, wt(T))− H(Xt, wt(T))Ut − K(Xt, wt(T))Rt|

≤ C(ν, ρ, α, λ, θ)(T − t)
5
2 α− 3

2
(31)

and for t ∈ (1, ∞) and α ∈ (0.5, 1), we have

|Et[B(XT , wT(T)]− B(Xt, wt(T))− H(Xt, wt(T))Ut − K(Xt, wt(T))Rt|
≤ C1(ν, ρ, α, λ, θ) + C2(ν, ρ, α, λ, θ)(T − t)4α+1 (32)

where C(ν, ρ, α, λ, θ), C1(ν, ρ, α, λ, θ) and C2(ν, ρ, α, λ, θ) are functions depending on the parameters
ν, ρ, α, λ, θ, but not T and t. The terms H(Xt, wt(T)), K(Xt, wt(T)), Ut and Rt are defined as

H(Xt, wt(T)) =
∂2

∂xw
B(Xt, wt(T))

=
1
2

(
∂3

∂x3 −
∂2

∂x2

)
B(Xt, wt(T)) (33)

K(Xt, wt(T)) =
∂2

∂w2 B(Xt, wt(T))

=
1
4

(
∂4

∂x3 − 2
∂3

∂x3 +
∂2

∂x2

)
B(Xt, wt(T)) (34)

Ut = Et

[∫ T

t
d〈X, M〉s

]
(35)

Rt =
1
2
Et

[∫ T

t
d〈M, M〉s

]
(36)

Proof. See Appendix A.

Remark 1. Theorem 2 shows that the error bound does not diverge for any α ∈ [0.6, 1] (provided that λ > 0
and θ > 0). Coincidentally, for t ∈ [0, 1], we can obtain the same order convergence when α = 1 in the case of
classical Heston model as shown in [18,19]. Furthermore, if Assumption 1 is satisfied, then the errors of the
approximation formula can be effectively reduced when ν and T− t are small.

3. Second-Order Approximation and Small-Time Behavior of Implied Volatility

The outline of this section is roughly the same as that of Alòs, Elisa and De Santiago, Rafael and Vives,
Josep [19], but we focus on the rough Heston model rather than classical Heston model. We expand
the function f with respect to the two scales in order to obtain the second-order approximation
for the implied volatility. Consider the asymptotic sequence {δi}∞

i=0 and the function f can be
expanded as f = f ε

0 + δ f ε
1 + δ2 f ε

2 + .... Then, consider the scale function {εi}∞
i=0 and expand each f ε

i
as f ε

i = f0,i + epsilon f1,i + ε2 f2,i + .... Combining the expansions f ε
i and f , we obtain the following

f = f0,0 + ε f1,0 + δ f0,1 + O((ε + δ)2) (37)

We thus let ε = ρν/α and δ = ν2/α with I(T, K) be the implied volatility function expanded to
these two scales:

I(T, K) = ν0 +
ρν

α
I1(T, K) +

ν2

α
I2(T, K) + O((

ρν + ν2

α
)2) (38)
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Let

Î(T, K) = ν0 +
ρν

α
I1(T, K) +

ν2

α
I2(T, K) (39)

as the second-order approximation to the implied volatility. Then, let vt =
√

1
T wt(T) as the future

average volatility and V(XT , vt) = B(XT , wt(T)) such that V̂(XT , vt(T)) is the approximation formula
to the option price obtained in Theorem 2. Ultimately, we have

V̂(XT , vT) := V(X0, v0) + H(X0, v2
0T)U0 + K(X0, v2

0T)R0

= V(X0, v0) +
exe−

d2
+(v2

0T)
2

2v0
√

2πT

(
1−

d+(v2
0T)

v0
√

T

)
U0

+
exe−

d2
+(v2

0T)
2

4v0
√

2πT

(
d2
+(v

2
0T)− v0

√
Td+(v2

0T)− 1
v2

0T

)
R0 (40)

= V(X0, v0) +
1

2v0T
∂V(X0, v0)

∂σ

(
1−

d+(v2
0T)

v0
√

T

)
U0

+
1

4v0T
∂V(X0, v0)

∂σ

(
d2
+(v

2
0T)− v0

√
Td+(v2

0T)− 1
v2

0T

)
R0

where ∂V(X0,v0)
∂σ = exe−

d2
+(v2

0T)
2
√

T√
2π

is the Vega of the Black–Scholes formula V(X0, v0). Similarly, we can
expand the V(X0, v0) around v0 using the Taylor Expansion and Equation (37) as such

V(X0, I(T, K)) = V(X0, v0) +
∂V(X0, v0)

∂σ

(
ρν

α
I1(T, K) +

ν2

α
I2(T, K) + ...

)
+

1
2

∂2V(X0, v0)

∂σ2

(
ρν

α
I1(T, K) +

ν2

α
I2(T, K) + ...

)2

+ ... (41)

= V(X0, v0) +
ρν

α

∂V(X0, v0)

∂σ
I1(T, K) +

ν2

α

∂V(X0, v0)

∂σ
I2(T, K) + ....

Let Î1(T, K) := ρν
α I1(T, K) and Î2(T, K) := ν2

α I2(T, K); then, comparing the first-order
approximation of Equation (41) to Equation (40), we can obtain the following

Î1(T, K) =
1

2v0T

(
1−

d+(v2
0T)

v0
√

T

)
U0 (42)

Î2(T, K) =
1

4v0T

(
d2
+(v

2
0T)− v0

√
Td+(v2

0T)− 1
v2

0T

)
R0 (43)

Similarly, as noted by Alòs, Elisa and De Santiago, Rafael and Vives, Josep [19], the smile effect of
the implied volatility can be shown by the quadratic term d2

+(v
2
0T) which has impact of the (Xt− ln K)2

in its term. Suppose we let ε = V(X0, v0)− V̂(X0, v0), and we let I∗ = Î1(T, K) + Î2(T, K). The error
between the option pricing formula using the approximation of the implied volatility in Equation (38)
and the option price under rough Heston model is as follows:∣∣V(X0, Î(T, K))−V(X0, v0)

∣∣ = V(X0, v0) +
∂V(X0, v0)

∂σ
I∗ +

1
2

∂2V(X0, v0)

∂σ2 (I∗)2 + . . .

−
(

V(X0, v0) + H(X0, v2
0T)U0 + K(X0, v2

0T)R0

)
(44)

≤
∣∣∣∣∣ ∞

∑
i=2

1
i!

∂iV(X0, v0)

∂σi (I∗)i

∣∣∣∣∣+ |ε|
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The first term of Equation (44) has an error of O((I∗)2) or O
((

ρν+ν2

α

)2
)

. Under Assumption 1,

and by Theorem 2, we know that the second term of (44) has a small time (when 0 ≤ T ≤ 1) error
of O(C(ν, ρ, α, λ, θ)) which is a decreasing term proportional to ρ and ν. The total errors of option

prices on the approximation to the implied volatility are of the order ofO
((

ρν+ν2

α

)2
+ C(ν, ρ, α, λ, θ)

)
.

Noticeably, the errors converges to zero as ρ→ 0 and ν→ 0. We prove some results that would assist
in obtaining the short-time behavior on the approximation of implied volatility.

Proposition 2. Assume volatility dynamics of Equation (4); then,

lim
T→0

v0 = σ0 (45)

Proof. From the definition of v0 and Proposition 1, we can obtain the following

v0 :=

√
1
T

∫ T

0
E0(σ2

s )ds

=

√
1
T

∫ T

0
σ2

0 − (σ2
0 − θ)

∫ s

0
gα,λ(u)du ds (46)

=

√
σ2

0 −
σ2

0 − θ

T

∫ T

0

∫ s

0
gα,λ(u)du ds

Let limT→0 v0; we can subsequently notice that it is sufficient to prove that

lim
T→0

1
T

∫ T

0

∫ s

0
gα,λ(u)du ds = 0 (47)

Note that

∞

∑
n=0

∫ s

0

∣∣∣∣ (−λ)nunα+α−1

Γ(αn + α)

∣∣∣∣ du =
∞

∑
n=0

λnunα+α

Γ(αn + α + 1)

= λ
∞

∑
n=0

λn+1uα(n+1)

Γ(α(n + 1) + 1)
(48)

= λ(−1 + Eα,1(λuα))

< ∞

Then, by the above result and Fubini’s theorem, we can obtain the following

lim
T→0

1
T

∫ T

0

∫ s

0
gα,λ(u)du ds = λ lim

T→0

1
T

∫ T

0

∫ s

0

∞

∑
n=0

(−λ)nunα+α−1

Γ(αn + α)
du ds

= λ lim
T→0

1
T

∞

∑
n=0

∫ T

0

∫ s

0

(−λ)nunα+α−1

Γ(αn + α)
du ds (49)

= λ lim
T→0

1
T

∞

∑
n=0

∫ T

0

(−λ)nsnα+α

Γ(αn + α + 1)
ds

= λ lim
T→0

∞

∑
n=0

(−λ)nTnα+α

Γ(αn + α + 2)

= 0
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which is the desired result.

Proposition 3. Assume volatility dynamics of Equation (4); for k > −α− 1 and k 6= −1,

∫ T

0
E0(σ

2
s )(T − s)kds ∼ σ2

0

∫ T

0
(T − s)kds (50)

as T → 0.

Proof. From Proposition 1, we can obtain the following

∫ T

0
E0(σ

2
s )(T − s)kds =

∫ T

0

[
σ2

0 − (σ2
0 − θ)

∫ s

0
gα,λ(u)du

]
(T − s)kds

= σ2
0

∫ T

0
(T − s)kds− (σ2

0 − θ)
∫ T

0

∫ s

0
gα,λ(u)du (T − s)kds

(51)

From Proposition 2 and by the Fubini’s theorem again, we can obtain the following:

∫ T

0

∫ s

0
gα,λ(u)du (T − s)kds = λ

∫ T

0

∞

∑
n=0

(−λ)nsnα+α

Γ(αn + α + 1)
(T − s)kds

= λ
∞

∑
n=0

∫ T

0

(−λ)nsnα+α

Γ(αn + α + 1)
(T − s)kds (52)

= λ
∞

∑
n=0

(−λ)n

Γ(αn + α + 1)

∫ T

0
snα+α(T − s)kds

Substitute y = s/T and notice that it can be solved using the Beta function, such that

∫ T

0
snα+α(T − s)kds = Tnα+α+k+1 Γ(nα + α + 1)Γ(k + 1)

Γ(nα + α + k + 2)
(53)

We then have ∫ T

0

∫ s

0
gα,λ(u)du (T − s)kds = λ

∞

∑
n=0

(−λ)nΓ(k + 1)Tnα+α+k+1

Γ(nα + α + k + 2)
(54)

Then, for k > −α− 1 and k 6= −1, we can deduce the following asymptotic expansion

∫ T

0
E0(σ

2
s )(T − s)kds ∼ σ2

0

∫ T

0
(T − s)kds (55)

as T → 0.

Remark 2. Proposition 2 is equivalent to the case of the classical Heston model. Furthermore, by utilizing
Proposition 3, we ultimately yield the same result from [19] in the case of α = 1 for the rest of the result in
this paper.

3.1. Limiting Behavior of Î(T, K) When T → 0

We utilize some of the derivations from [19]. The limiting behavior of Î(T, K) as T → 0 can be
computed in term of the asymptotic formula as follows

Lemma 3. Assume model (3) and (4). Then, we can obtain the asymptotic formula of Î1(T, K) as

Î1(T, K) ∼ −ρν(X0 − ln K)
2Γ(α + 2)σ0

Tα−1 (56)
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as T → 0.

Proof. From Equation (A7) and Proposition 3, we can obtain the limiting behavior of U0 when T→ 0 as

U0 ∼
νρσ2

0
Γ(α + 1)

∫ T

0
(T − s)αds

∼
νρσ2

0
Γ(α + 2)

Tα+1
(57)

Then, the limiting behavior of Î1(T, K) can be obtained as following

lim
T→0

Î1(T, K) = lim
T→0

1
2v0T

(
1−

d+(v2
0T)

v0
√

T

)
U0

= lim
T→0

1
4v0T

U0 − lim
T→0

(X0 − ln K)
2v3

0T2
U0

(58)

The result follows from the limiting behavior of Equation (57) and Proposition 2.

We focus on the asymptotic formula of Î2(T, K) in the next lemma.

Lemma 4. Assume model (3) and (4). Then, we can obtain the asymptotic formula of Î2(T, K) as

Î2(T, K) ∼ ν2(X0 − ln K)2

8σ3
0 Γ(α + 1)2(2α + 1)

T2α−2 (59)

as T → 0.

Proof. From Equation (A7) and Proposition 3, the limiting behavior of R0 when T → 0 can be
obtained as

R0 ∼
ν2σ2

0
2Γ(α + 1)2

∫ T

0
(T − s)2αds

∼
ν2σ2

0
2Γ(α + 1)2(2α + 1)

T2α+1
(60)

Then, the limiting behavior of Î2(T, K) can be obtained as follows

lim
T→0

Î2(T, K) = lim
T→0

1
4v0T

[
d2
+(v

2
0T)− v0

√
Td+(v2

0T)− 1
v2

0T

]
R0

= lim
T→0

[
(X0 − ln K)2

4v5
0T3

− 1
16v0T

− 1
4v3

0T2

]
R0

(61)

Similarly, the result follows from the limiting behavior of Equation (60) and Proposition 2.

Remark 3. From Lemmas 3 and 4, when the option is close to maturity (T → 0), the second-order
approximation to the implied volatility can be written

Î(T, K) ∼ σ0 −
ρν(X0 − ln K)
2Γ(α + 2)σ0

Tα−1 +
ν2(X0 − ln K)2

8σ3
0 Γ(α + 1)2(2α + 1)

T2α−2 (62)

as the asymptotic formula. Furthermore, the expression (62) becomes exact and equivalent to the result found by
Alòs, Elisa and De Santiago, Rafael and Vives, Josep [19] when α = 1.
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3.2. Term Structure of At-the-Money Implied Volatility Skew

This subsection is crucial in showing that the approximation formula for the implied volatility
under rough Heston model is capable of replicating the explosive behavior of the implied volatility
under the rough volatility model as stated in [4,5]. When the option is at-the-money, we have ln K = X0

and this leads to d+(v2
0T) = v0

2

√
T. Consequently, the term structure of the at-the-money implied

volatility skew can be computed as

Lemma 5. When the option is at-the-money, the term structure of implied volatility skew has the asymptotic
formula of

∂

∂ ln K
Î(T, K)

∣∣∣∣
ln K=X0

∼ ρν

2Γ(α + 2)σ0
Tα−1 (63)

as T → 0.

Proof. From the result of Lemmas 3 and 4, we have the following as T → 0:

Î(T, K) ∼ σ0 −
ρν(X0 − ln K)
2Γ(α + 2)σ0

Tα−1 +
ν2(X0 − ln K)2

8σ3
0 Γ(α + 1)2(2α + 1)

T2α−2 (64)

∂

∂ ln K
Î(T, K) ∼ ρν

2Γ(α + 2)σ0
Tα−1 − ν2(X0 − ln K)

4σ3
0 Γ(α + 1)2(2α + 1)

T2α−2 (65)

Let ln K = X0 and the result follows.

Remark 4. From Lemma 5, we can also observe the following: for the uncorrelated case (ρ = 0) and correlated
case (ρ 6= 0) in model (3) and (4), the slope of implied volatility (with respect to ln K and T → 0) is positive
when lnK > X0 and negative when ln K < X0. The result is slightly different than the implied volatility
behavior when α = 1, where ρ 6= 0 yields different positive and negative region (slope is negative when
ln K < X0 − 3ρσ2

0 /ν and positive when ln K > X0 − 3ρσ2
0 /ν). The empirical result in Figure 8 (page 11)

of [8] shows that Lemma 5 is valid as T → 0. On a side note, Lemma 5 confirms that the term structure of
at-the-money approximation of implied volatility under rough Heston model has explosive behavior of order
Tα−1, i.e., it possesses an important feature which the classical Heston model does not possess. The presence of
explosive behavior in the term structure of at-the-money implied volatility skew fits the empirical observation
from [4,5].

3.3. Limiting Behavior of Rate of Change of Î(T, K) with respect to T When the Option Is At-The-Money

In this section, we discuss the behavior of the rate of change of implied volatility Î(T, K) with
respect to T when T → 0 and the option is at-the-money.

Lemma 6. When the option is at-the-money, the skew of the approximation of implied volatility at T → 0 has
the asymptotic formula of

Î(T, K)− σ0

T
∼

λ(θ − σ2
0 )Γ(α + 2) + ρνσ2

0 Γ(α + 1)
4σ0Γ(α + 1)Γ(α + 2)

Tα−1 − ν2

8σ0Γ(α + 1)2(2α + 1)
(Tα−1)2 (66)

Proof. Approximation to implied volatility when the option is at-the-money can be formulated as

Î(T, K) = v0 +
1

2v0T

(
1− d+(v0T)

v0
√

T

)
U0 +

1
4v0T

(
d2
+(v

2
0T)− v0

√
Td+(v2

0T)− 1
v2

0T

)
R0

= v0 +
1

4v0T
U0 −

1
4v0T

(
1
4
+

1
v2

0T

)
R0

(67)



Symmetry 2020, 12, 1878 13 of 24

From Lemmas 3 and 4 and Remark 3, it is easy to see that, when the option is at-the-money
(ln K = X0), Î(0, K) = σ0. To find the rate of change of Î(T, K) with respect to T, we use the definition
of derivative as follows

lim
T→0

Î(T, K)− σ0

T
= lim

T→0

[
v0 − σ0

T
+

1
4v0T2 U0 −

1
4v0T2

(
1
4
+

1
v2

0T

)
R0

]
(68)

We solve the above expression separately. The first term of the above expression can be computed
using L’Hopital’s rule repetitively as follows

lim
T→0

v0 − σ0

T
= lim

T→0

√
1
T
∫ T

0 E0(σ2
s )ds− σ0

T

= lim
T→0

− 1
T2

∫ T
0 E0(σ

2
s )ds + 1

T E0(σ
2
T)

2
√

1
T
∫ T

0 E0(σ2
s )ds

= lim
T→0

− 1
T2

[∫ T
0 E0(σ

2
s )ds− T E0(σ

2
T)
]

2
√

1
T
∫ T

0 E0(σ2
s )ds

(69)

= lim
T→0
− 1

2σ0T2

(∫ T

0
E0(σ

2
s )ds− T E0(σ

2
T)

)
= lim

T→0
− 1

4σ0T

(
E0(σ

2
T)−

[
T

∂

∂T
E0(σ

2
T) +E0(σ

2
T)

])
= lim

T→0

1
4σ0

∂

∂T
E0(σ

2
T)

We have E0(σ
2
T) = σ2

0 + (1/Γ(α))
∫ T

0 (T − s)α−1λ(θ −E0(σ
2
s ))ds. Then, it follows that

lim
T→0

E0(σ
2
T)− σ2

0
T

= lim
T→0

1
Γ(α)

∫ T
0 (T − s)α−1λ(θ −E0(σ

2
s ))ds

T
(70)

By Proposition 3, we have the following

1
Γ(α)

∫ T

0
(T − s)α−1λ(θ −E0(σ

2
s ))ds ∼

λ(θ − σ2
0 )

Γ(α)

∫ T

0
(T − s)α−1ds (71)

∼
λ(θ − σ2

0 )

Γ(α + 1)
Tα (72)

as T → 0. Hence,
E0(σ

2
T)− σ2

0
T

∼
λ(θ − σ2

0 )

Γ(α + 1)
Tα−1 (73)

as T → 0. Finally,
v0 − σ0

T
∼

λ(θ − σ2
0 )

4σ0Γ(α + 1)
Tα−1 (74)

as T → 0. From the previous result in Lemma 3, we know that U0 ∼
νρσ2

0
Γ(α+2)Tα+1 as T → 0;

then, along with Proposition 2, the second term of Equation (63) can be computed in terms of
asymptotic formula

1
4v0T2 U0 ∼

ρνσ0

4Γ(α + 2)
Tα−1 (75)
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as T → 0. Similarly, by the previous result in Lemma 3 such that R0 ∼
ν2σ2

0
2Γ(α+1)2(2α+1)T2α+1 as T → 0

and Proposition 2, the third term of Equation (63) can be computed as(
− 1

16v0T2 −
1

4v3
0T3

)
R0 ∼ −

ν2σ0

32Γ(α + 1)2(2α + 1)
T2α−1 (76)

Then, the result follows with the sum of three computed terms (74)–(76).

Remark 5. Lemma 6 satisfies the result of α = 1 from the work of Alòs, Elisa and De Santiago, Rafael and
Vives, Josep [19]. Furthermore, when the option is at-the-money, we can obtain a rough approximation of implied
volatility in terms of T as contrary to Remark 3 which provides constant term when the option is at-the-money.
An integration of the result in Equation (66) with respect to T near T = 0 gives us the following approximation:

Î(T, K) ≈ σ0 +
λ(θ − σ2

0 )Γ(α + 2) + ρνσ2
0 Γ(α + 1)

4σ0αΓ(α + 1)Γ(α + 2)
Tα − ν2

8σ0Γ(α + 1)2(4α2 − 1)
T2α−1 (77)

4. Numerical Experiments

Through numerical experiments, we can show that the approximation formula for the rough
Heston model possesses the explosive behavior of at-the-money implied volatility skew, which is
desirable in a stochastic volatility model to match the empirical implied volatility data in the market.
Although Theorem 2 shows that, under Assumption 1, the approximation formula for the rough
Heston model is bounded from the rough Heston model using the same set of parameters, we decided
to conduct the numerical experiments using calibration approach, i.e., calibrate a new set of parameters
used on approximation formula based on the artificial data given by rough Heston model. We wish to
note that the components or terms of v0, U0 and R0 can be obtained using Proposition 1. The following
parameters for the rough Heston model are set:

σ2
0 = 0.04, θ = 0.04, α = 0.6,

λ = 1, ν = 0.1, ρ = −0.65
(78)

Then, we calibrate the approximation Formula (40) to the rough Heston model through minimizing
the squared errors of implied volatility and subsequently we obtain the following parameters:

σ2∗
0 = 0.039671, θ∗ = 0.039230, α∗ = 0.568425,

λ∗ = 1.942492, ν∗ = 0.058033, ρ∗ = −0.911687
(79)

Figure 1 shows a calibrated option prices from T = 0.01 to T = 0.1. After the calibration of the
parameters, the approximation formula for option prices under the rough Heston model are capable of
displaying a great fit to the option prices computed using Fourier inversion method with the fractional
Adams scheme [21], as displayed in [11] .

The implied volatility plots are shown in Figure 2. In the plot, we can observe that the implied
volatilities computed using the approximation formula (40) match the ones produced by the Fourier
inversion method with the fractional Adams scheme [11,21] under the rough Heston model very well,
except for at T = 0.01 where the implied volatility is understated when the option is deep out-of-money
and in-the-money.
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Figure 1. Call option prices against log-moneyness for various time T. The solid lines are the
ones produced using Fourier inversion method with fractional Adams scheme [11,21] under rough
Heston model with parameters stated in Equation (78), whereas the cross marker is produced using
approximation formula for option prices under the rough Heston model (40) with parameters (79).

Figure 2. Implied volatilities against log-moneyness for various time T. The solid lines are the
ones produced using Fourier inversion method with fractional Adams scheme [11,21] under rough
Heston model with parameters stated in Equation (78), whereas the cross marker is produced using
approximation formula for option prices under the rough Heston model (40) with parameters (79).
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One result that sets apart from many other stochastic volatility and jump diffusion models is
the short-time behavior of term-structure at-the-money implied volatility skew, i.e., derivative of
implied volatility with respect to log-strike for the at-the-money call option. In Figure 3, we display
the term structure of the at-the-money implied volatility skew using three different methods—Fourier
inversion method with fractional Adams scheme [11,21], approximation formula for option prices (40)
(transformed back to implied volatility) and Equation (63). The result is pretty much consistent with
the ones demonstrated by the approximation formula for rough Heston model (40) and Equation (63).
Explosive behavior on the short-time term-structure of at-the-money implied volatility skew is a
remarkable feature on a stochastic volatility model and the behavior is commonly observed in the
empirical data in the financial market.

Figure 3. Term structure of the at-the-money implied volatility skew. The solid red line is produced
using Fourier inversion method with fractional Adams scheme [11,21] under the rough Heston model
with parameters stated in Equation (78), the blue circle marker is produced by the approximation
formula for option prices under the rough Heston model (40) with parameters (79) and the black cross
marker is produced by the Equation (63).

It is important to realize that our work is relying on Assumption 1. In terms of practical application,
Assumption 1 will be fulfilled whenever the current variance process σ2

t is equivalent or below the
mean reversion level θ. In other words, the usual flat forward variance curve (E0(σ

2
t ) = E0(σ

2
0 ) for

all t) frequently used by many practitioners will satisfy Assumption 1 too. Other than that, we would
say that Assumption 1 will be satisfied roughly 50% of the time under the normal market condition.

5. Conclusions

The main contribution of this paper lies within the bounded gaps of option prices on
approximation formula for the option prices of the rough Heston model under the simple Assumption 1.
Due to the nature of fractional terms in the volatility component of the rough Heston model, the errors
bound incurred by the decomposition formula are significantly higher than the classical version of
the approximation formula for the decomposition formula of classical Heston model [18,19]. In other
words, this disadvantage decreases the usability of the approximation formula in practice due to the
errors incurred. Nevertheless, in the numerical experiments, we showed that it is possible to match the
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option prices and implied volatility quite well by re-calibrating the parameters of the approximation
formula for option prices.

In addition, we propose a second-order approximation to the implied volatility of the rough
Heston model. Through the approximation of implied volatility of rough Heston model, we manage
to prove some important results which includes the explosive behavior of short-time term structure
of at-the-money implied volatility skew using the approximation formula of option prices for the
rough Heston model, which is desirable in the empirical financial market. Numerical experiments
were conducted and we subsequently discovered that the approximation formula for option prices
using the rough Heston model does have explosive behavior in its term-structure of at-the-money
implied volatility skew and roughly at the same rate as the rough Heston model after recalibrating the
parameters.
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Appendix A. Proof of Theorem 2

Here, we prove Theorem 2 that is left out in Section 2. We start by applying Itô’s product rule
formula to the H(Xt, wt(T))Ut and the K(Xt, wt(T))Rt, and then we take the conditional expectations
of the result, utilizing Delta–Gamma–Vega relationship (9). We obtain the following:

Et[H(XT , WT(T))UT ] = H(Xt, wt(T))UT − ρEt

[∫ T

t
H(Xs, ws(T))σsd〈M, W∗〉s

]
+ ρEt

[∫ T

t

∂

∂x
H(Xs, ws(T))σsd〈U, W∗〉s

]
+Et

[∫ T

t

∂

∂w
H(Xs, ws(T))d〈U, M〉s

]
+ ρEt

[∫ T

t

∂2

∂xw
H(Xs, ws(T))σsUsd〈M, W∗〉s

]
+

1
2
Et

[∫ T

t

∂2

∂w2 H(Xs, ws(T))Usd〈M, M〉s
]

= H(Xt, wt(T))UT − ρEt

[∫ T

t
H(Xs, ws(T))σsd〈M, W∗〉s

]
(A1)

+ ρEt

[∫ T

t

∂

∂x
H(Xs, ws(T))σsd〈U, W∗〉s

]
+

1
2
Et

[∫ T

t

(
∂2

∂x2 −
∂

∂x

)
H(Xs, ws(T))d〈U, M〉s

]
+

ρ

2
Et

[∫ T

t

(
∂3

∂x3 −
∂2

∂x2

)
H(Xs, ws(T))σsUsd〈M, W∗〉s

]
+

1
8
Et

[∫ T

t

(
∂4

∂x4 − 2
∂3

∂x3 +
∂2

∂x2

)
H(Xs, ws(T))Usd〈M, M〉s

]
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Note that H(XT , wt(T))UT = 0

0 = H(Xt, wt(T))UT − ρEt

[∫ T

t
H(Xs, ws(T))σsd〈M, W∗〉s

]
+ ρEt

[∫ T

t

∂

∂x
H(Xs, ws(T))σsd〈U, W∗〉s

]
+

1
2
Et

[∫ T

t

(
∂2

∂x2 −
∂

∂x

)
H(Xs, ws(T))d〈U, M〉s

]
+

ρ

2
Et

[∫ T

t

(
∂3

∂x3 −
∂2

∂x2

)
H(Xs, ws(T))σsUsd〈M, W∗〉s

]
+

1
8
Et

[∫ T

t

(
∂4

∂x4 − 2
∂3

∂x3 +
∂2

∂x2

)
H(Xs, ws(T))Usd〈M, M〉s

]
(A2)

and, similarly,

0 = K(Xt, wt(T))RT −
1
2
Et

[∫ T

t
K(Xs, ws(T))d〈M, M〉s

]
+ ρEt

[∫ T

t

∂

∂x
K(Xs, Ws(T))σsd〈R, W∗〉s

]
+

1
2
Et

[∫ T

t

(
∂2

∂x2 −
∂

∂x

)
K(Xs, ws(T))d〈R, M〉s

]
+

ρ

2
Et

[∫ T

t

(
∂3

∂x3 −
∂2

∂x2

)
K(Xs, ws(T))σsRsd〈W∗, M〉s

]
+

1
8
Et

[∫ T

t

(
∂4

∂x4 − 2
∂3

∂x3 +
∂2

∂x2

)
K(Xs, ws(T))Rsd〈M, M〉s

]
(A3)

Theorem 1 enables us to write

E[BT |Ft] = Bt +E
[∫ T

t
∂xwBsd〈X, M〉

∣∣∣∣Ft

]
+

1
2
E
[∫ T

t
∂wwBs〈M, M〉s

∣∣∣∣Ft

]
= Bt + H(Xt, wt(T))UT + K(Xt, wt(T))RT

+ ρEt

[∫ T

t

∂

∂x
H(Xs, ws(T))σsd〈U, W∗〉s

]
+

1
2
Et

[∫ T

t

(
∂2

∂x2 −
∂

∂x

)
H(Xs, ws(T))d〈U, M〉s

]
+

ρ

2
Et

[∫ T

t

(
∂3

∂x3 −
∂2

∂x2

)
H(Xs, ws(T))σsUsd〈M, W∗〉s

]
+

1
8
Et

[∫ T

t

(
∂4

∂x4 − 2
∂3

∂x3 +
∂2

∂x2

)
H(Xs, ws(T))Usd〈M, M〉s

]
(A4)

+ ρEt

[∫ T

t

∂

∂x
K(Xs, Ws(T))σsd〈R, W∗〉s

]
+

1
2
Et

[∫ T

t

(
∂2

∂x2 −
∂

∂x

)
K(Xs, ws(T))d〈R, M〉s

]
+

ρ

2
Et

[∫ T

t

(
∂3

∂x3 −
∂2

∂x2

)
K(Xs, ws(T))σsRsd〈W∗, M〉s

]
+

1
8
Et

[∫ T

t

(
∂4

∂x4 − 2
∂3

∂x3 +
∂2

∂x2

)
K(Xs, ws(T))Rsd〈M, M〉s

]
= Bt + H(Xt, wt(T))UT + K(Xt, wt(T))RT +

8

∑
i=1

Ai
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The terms d〈M, W∗〉s, d〈U, W∗〉s, d〈M, M〉s, d〈M, M〉s, d〈R, W∗〉s and d〈R, M〉s can be obtained
as follows.

Recall that
dξt(u) =

ν

Γ(α)
σt(u− t)α−1dW∗t (A5)

and

dMt =
∫ T

t
dξt(u)du

=
∫ T

t

[
ν

Γ(α)
σt(u− t)α−1dW∗t

]
du (A6)

=
ν(T − t)ασt

Γ(α + 1)
dW∗t

On the other hand, Ut can be derived as follows

Ut = Et

[∫ T

t
d〈X, M〉s

]
= Et

[∫ T

t

ν(T − s)ασ2
s ρ

Γ(α + 1)
ds
]

(A7)

=
νρ

Γ(α + 1)

∫ T

t
ξt(s)(T − s)αds

and dUt as

dUt =
νρ

Γ(α + 1)

∫ T

t
dξt(s)(T − s)αds + drift term

=
ν2ρ

Γ(α + 1)Γ(α)

∫ T

t
(T − s)α(s− t)α−1ds σtdW∗t + drift term

(A8)

The integral
∫ T

t (T − s)α(s− t)α−1ds can be solved using the substitution of y = (s− t)/(T − t)
and it corresponds to a Beta function such that

∫ T

t
(T − s)α(s− t)α−1ds = (T − t)2α Γ(α)Γ(α + 1)

Γ(2α + 1)
(A9)

and finally

dUt =
ν2ρ

Γ(2α + 1)
(T − t)2ασtdW∗t + drift term (A10)

Meanwhile, Rt can be derived as follows

Rt =
1
2
Et

[∫ T

t
d〈M, M〉s

]
=

ν2

2Γ(α + 1)2

∫ T

t
ξt(s)(T − s)2αds

(A11)

and dRt as

dRt =
ν2

2Γ(α + 1)2

∫ T

t
dξt(s)(T − s)2αds + drift term

=
ν3

2Γ(α + 1)2Γ(α)

∫ T

t
(T − s)2α(s− t)α−1ds σtdW∗t + drift term (A12)

=
ν3Γ(2α + 1)

2Γ(α + 1)2Γ(3α + 1)
(T − t)3ασtdW∗t + drift term
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where ∫ T

t
(T − s)2α(s− t)α−1ds = (T − t)3α

[
Γ(α)Γ(2α + 1)

Γ(3α + 1)

]
(A13)

Based on the previous derivations dMt, dUt, dRt, we can obtain the following

d〈M, W∗〉s =
ν

Γ(α + 1)
(T − s)ασsds (A14)

d〈U, W∗〉s =
ν2ρ

Γ(2α + 1)
(T − s)2ασsds (A15)

d〈U, M〉s =
ν3ρ

Γ(2α + 1)Γ(α + 1)
(T − s)3ασ2

s ds (A16)

d〈M, M〉s =
ν2

Γ(α + 1)2 (T − s)2ασ2
s ds (A17)

d〈R, W∗〉s =
ν3Γ(2α + 1)

2Γ(α + 1)2Γ(3α + 1)
(T − s)3ασsds (A18)

d〈R, M〉s =
ν4Γ(2α + 1)

2Γ(α + 1)3Γ(3α + 1)
(T − s)4ασ2

s ds (A19)

Using the previous equations, we can now continue from Equation (A4)

8

∑
i=1

Ai = ρEt

[∫ T

t

(
1
2

)
∂2

∂x2 G(Xs, ws)σs

[
ν2ρ

Γ(2α + 1)
(T − s)2ασsds

]]
+

1
2
Et

[∫ T

t

(
1
2

)(
∂3

∂x3 −
∂2

∂x2

)
G(Xs, ws)

[
ν3ρ

Γ(2α + 1)Γ(α + 1)
(T − s)3ασ2

s ds
]]

+
ρ

2
Et

[∫ T

t

(
1
2

)(
∂4

∂x4 −
∂3

∂x3

)
G(Xs, ws)σsUs

[
ν

Γ(α + 1)
(T − s)ασsds

]]
+

1
8
Et

[∫ T

t

(
1
2

)(
∂5

∂x5 − 2
∂4

∂x4 +
∂3

∂x3

)
G(Xs, ws)Us

[
ν2

Γ(α + 1)2 (T − s)2ασ2
s ds
]]

+ ρEt

[∫ T

t

(
1
4

)(
∂3

∂x3 −
∂2

∂x2

)
G(Xs, ws)σs

[
ν3Γ(2α + 1)

2Γ(α + 1)2Γ(3α + 1)
(T − s)3ασsds

]]
+

1
2
Et

[∫ T

t

(
1
4

)(
∂4

∂x4 − 2
∂3

∂x3 +
∂2

∂x2

)
G(Xs, ws)

[
ν4Γ(2α + 1)

2Γ(α + 1)3Γ(3α + 1)
(T − s)4ασ2

s ds
]]

+
ρ

2
Et

[∫ T

t

(
1
4

)(
∂5

∂x5 − 2
∂4

∂x4 +
∂3

∂x3

)
G(Xs, ws)σsRs

[
ν

Γ(α + 1)
(T − s)ασsds

]]
+

1
8
Et

[∫ T

t

(
1
4

)(
∂6

∂x6 − 3
∂5

∂x5 + 3
∂4

∂x4 −
∂3

∂x3

)
G(Xs, ws)Rs

[
ν2

Γ(α + 1)2 (T − s)2ασ2
s ds
]]

(A20)

We let qs =
√

ws(T) and notice that from Lemma 2

|∂n
x G(Xs, ws)| ≤ Cq−(n+1)

s (A21)

Consequently, we can obtain

Us =
νρ

Γ(α + 1)

∫ T

s
Es(σ

2
θ )(T − θ)αdθ

≤ ν|ρ|
Γ(α + 1)

∫ T

s
Es(σ

2
θ )dθ(T − s)α (A22)

=
ν|ρ|

Γ(α + 1)
q2

s (T − s)α
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and

Rs =
ν2

2Γ(α + 1)2

∫ T

s
Es(σ

2
θ )(T − θ)2αdθ ≤ ν2

2Γ(α + 1)2 q2
s (T − s)2α (A23)

Then, we continue

8

∑
i=1

Ai ≤ C
ν2ρ2

Γ(2α + 1)
Et

[∫ T

t

1
q3

s
σ2

s (T − s)2αds
]

+ C
ν3|ρ|

Γ(2α + 1)Γ(α + 1)
Et

[∫ T

t

(
1
q4

s
+

1
q3

s

)
σ2

s (T − s)3αds
]

+ C
ν|ρ|

Γ(α + 1)
Et

[∫ T

t

(
1
q5

s
+

1
q4

s

)
σ2

s |Us|(T − s)αds
]

+ C
ν2

Γ(α + 1)2 Et

[∫ T

t

(
1
q6

s
+

1
q5

s
+

1
q4

s

)
σ2

s |Us|(T − s)2αds
]

+ C
ν3|ρ|Γ(2α + 1)

Γ(α + 1)2Γ(3α + 1)
Et

[∫ T

t

(
1
q4

s
+

1
q3

s

)
σ2

s (T − s)3αds
]

+ C
ν4Γ(2α + 1)

Γ(α + 1)3Γ(3α + 1)
Et

[∫ T

t

(
1
q5

s
+

1
q4

s
+

1
q3

s

)
σ2

s (T − s)4αds
]

+ C
ν|ρ|

Γ(α + 1)
Et

[∫ T

t

(
1
q6

s
+

1
q5

s
+

1
q4

s

)
σ2

s Rs(T − s)αds
]

+ C
ν2

Γ(α + 1)2 Et

[∫ T

t

(
1
q7

s
+

1
q6

s
+

1
q5

s
+

1
q4

s

)
σ2

s Rs(T − s)2αds
]

(A24)

≤ C
ν2ρ2

Γ(2α + 1)
Et

[∫ T

t

1
q3

s
σ2

s (T − s)2αds
]

+ C
ν3|ρ|

Γ(2α + 1)Γ(α + 1)
Et

[∫ T

t

(
1
q4

s
+

1
q3

s

)
σ2

s (T − s)3αds
]

+ C
ν2ρ2

Γ(α + 1)2 Et

[∫ T

t

(
1
q3

s
+

1
q2

s

)
σ2

s (T − s)2αds
]

+ C
ν3|ρ|

Γ(α + 1)3 Et

[∫ T

t

(
1
q4

s
+

1
q3

s
+

1
q2

s

)
σ2

s (T − s)3αds
]

+ C
ν3|ρ|Γ(2α + 1)

Γ(α + 1)2Γ(3α + 1)
Et

[∫ T

t

(
1
q4

s
+

1
q3

s

)
σ2

s (T − s)3αds
]

+ C
ν4Γ(2α + 1)

Γ(α + 1)3Γ(3α + 1)
Et

[∫ T

t

(
1
q5

s
+

1
q4

s
+

1
q3

s

)
σ2

s (T − s)4αds
]

+ C
ν3|ρ|

Γ(α + 1)3 Et

[∫ T

t

(
1
q4

s
+

1
q3

s
+

1
q2

s

)
σ2

s (T − s)3αds
]

+ C
ν4

Γ(α + 1)4 Et

[∫ T

t

(
1
q5

s
+

1
q4

s
+

1
q3

s
+

1
q2

s

)
σ2

s (T − s)4αds
]
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Suppose now we let J(α, λ) := Γ(α+1)+λ
Γ(α+1) and Y := Y(α, λ, θ) = Γ(α+2)+λ(α+1)

λθ . For T − t ∈ [0, 1];
using Equations (15) and (16) in Lemma 2, we can further obtain

8

∑
i=1

Ai ≤ C
ν2ρ2

Γ(2α + 1)
J(α, λ)Et

[∫ T

t
Y

1
2 (T − s)

3
2 α− 3

2 ds
]

+ C
ν3|ρ|

Γ(2α + 1)Γ(α + 1)
J(α, λ)Et

[∫ T

t

(
Y + Y

1
2

)
(T − s)2α−2ds

]
+ C

ν2ρ2

Γ(α + 1)2 J(α, λ)Et

[∫ T

t

(
Y

1
2 + 1

)
(T − s)

3
2 α− 3

2 ds
]

+ C
ν3|ρ|

Γ(α + 1)3 J(α, λ)Et

[∫ T

t

(
Y + Y

1
2 + 1

)
(T − s)2α−2ds

]
+ C

ν3|ρ|Γ(2α + 1)
Γ(α + 1)2Γ(3α + 1)

J(α, λ)Et

[∫ T

t

(
Y + Y

1
2

)
(T − s)2α−2ds

]
+ C

ν4Γ(2α + 1)
Γ(α + 1)3Γ(3α + 1)

J(α, λ)Et

[∫ T

t

(
Y

3
2 + Y + Y

1
2

)
(T − s)

5
2 α− 5

2 ds
]

+ C
ν3|ρ|

Γ(α + 1)3 J(α, λ)Et

[∫ T

t

(
Y + Y

1
2 + 1

)
(T − s)2α−2ds

]
+ C

ν4

Γ(α + 1)4 J(α, λ)Et

[∫ T

t

(
Y

3
2 + Y + Y

1
2 + 1

)
(T − s)

5
2 α− 5

2 ds
]

≤ C
ν2ρ2

Γ(2α + 1)
J(α, λ)Y

1
2 (T − s)

3
2 α− 1

2 (A25)

+ C
ν3|ρ|

Γ(2α + 1)Γ(α + 1)
J(α, λ)

(
Y + Y

1
2

)
(T − s)2α−1

+ C
ν2ρ2

Γ(α + 1)2 J(α, λ)
(

Y
1
2 + 1

)
(T − s)

3
2 α− 1

2

+ C
ν3|ρ|

Γ(α + 1)3 J(α, λ)
(

Y + Y
1
2 + 1

)
(T − s)2α−1

+ C
ν3|ρ|Γ(2α + 1)

Γ(α + 1)2Γ(3α + 1)
J(α, λ)

(
Y + Y

1
2

)
(T − s)2α−1

+ C
ν4Γ(2α + 1)

Γ(α + 1)3Γ(3α + 1)
J(α, λ)

(
Y

3
2 + Y + Y

1
2

)
(T − s)

5
2 α− 3

2

+ C
ν3|ρ|

Γ(α + 1)3 J(α, λ)
(

Y + Y
1
2 + 1

)
(T − s)2α−1

+ C
ν4

Γ(α + 1)4 J(α, λ)
(

Y
3
2 + Y + Y

1
2 + 1

)
(T − s)

5
2 α− 3

2

≤ C(ν, ρ, α, λ, θ)(T − t)
5
2 α− 3

2
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which is valid for α ∈ [0.6, 1] or H ∈ [0.1, 0.5]. Now, for T − t ∈ (1, ∞),

8

∑
i=1

Ai ≤ C
ν2ρ2

Γ(2α + 1)
Et

[∫ T−1

t

1
q3

s
σ2

s (T − s)2αds +
∫ T

T−1

1
q3

s
σ2

s (T − s)2αds
]

+ C
ν3|ρ|

Γ(2α + 1)Γ(α + 1)
Et

[∫ T−1

t

(
1
q4

s
+

1
q3

s

)
σ2

s (T − s)3αds +
∫ T

T−1

(
1
q4

s
+

1
q3

s

)
× σ2

s (T − s)3αds
]
+ C

ν|ρ|
Γ(α + 1)

Et

[∫ T−1

t

(
1
q5

s
+

1
q4

s

)
σ2

s |Us|(T − s)αds

+
∫ T

T−1

(
1
q5

s
+

1
q4

s

)
σ2

s |Us|(T − s)αds
]
+ C

ν2

Γ(α + 1)2 Et

[∫ T−1

t

(
1
q6

s
+

1
q5

s
+

1
q4

s

)
σ2

s

×|Us|(T − s)2αds +
∫ T

T−1

(
1
q6

s
+

1
q5

s
+

1
q4

s

)
σ2

s |Us|(T − s)2αds
]

+ C
ν3|ρ|Γ(2α + 1)

Γ(α + 1)2Γ(3α + 1)
Et

[∫ T−1

t

(
1
q4

s
+

1
q3

s

)
σ2

s (T − s)3αds

+
∫ T

T−1

(
1
q4

s
+

1
q3

s

)
σ2

s (T − s)3αds
]
+ C

ν4Γ(2α + 1)
Γ(α + 1)3Γ(3α + 1)

×Et

[∫ T−1

t

(
1
q5

s
+

1
q4

s
+

1
q3

s

)
σ2

s (T − s)4αds +
∫ T

T−1

(
1
q5

s
+

1
q4

s
+

1
q3

s

)
σ2

s (T − s)4αds
]

+ C
ν|ρ|

Γ(α + 1)
Et

[∫ T−1

t

(
1
q6

s
+

1
q5

s
+

1
q4

s

)
σ2

s Rs(T − s)αds

+
∫ T

T−1

(
1
q6

s
+

1
q5

s
+

1
q4

s

)
σ2

s Rs(T − s)αds
]
+ C

ν2

Γ(α + 1)2

×Et

[∫ T−1

t

(
1
q7

s
+

1
q6

s
+

1
q5

s
+

1
q4

s

)
σ2

s Rs(T − s)2αds

+
∫ T

T−1

(
1
q7

s
+

1
q6

s
+

1
q5

s
+

1
q4

s

)
σ2

s Rs(T − s)2αds
]

(A26)

By previous result for the bound of T − t ∈ [0, 1], Equations (17) and (18), we can deduce that

2
8

∑
i=8

Ai ≤ C(ν, ρ, α, λ, θ) + C
ν2ρ2

Γ(2α + 1)
J(α, λ)Y

1
2 (T − s)2α+1

+ C
ν3|ρ|

Γ(2α + 1)Γ(α + 1)
J(α, λ)

(
Y + Y

1
2

)
(T − s)3α+1

+ C
ν2ρ2

Γ(α + 1)2 J(α, λ)
(

Y
1
2 + 1

)
(T − s)2α+1

+ C
ν3|ρ|

Γ(α + 1)3 J(α, λ)
(

Y + Y
1
2 + 1

)
(T − s)3α+1

+ C
ν3|ρ|Γ(2α + 1)

Γ(α + 1)2Γ(3α + 1)
J(α, λ)

(
Y + Y

1
2

)
(T − s)3α+1 (A27)

+ C
ν4Γ(2α + 1)

Γ(α + 1)3Γ(3α + 1)
J(α, λ)

(
Y

3
2 + Y + Y

1
2

)
(T − s)4α+1

+ C
ν3|ρ|

Γ(α + 1)3 J(α, λ)
(

Y + Y
1
2 + 1

)
(T − s)3α+1

+ C
ν4

Γ(α + 1)4 J(α, λ)
(

Y
3
2 + Y + Y

1
2 + 1

)
(T − s)4α+1

≤ C1(ν, ρ, α, λ, θ) + C2(ν, ρ, α, λ, θ)(T − t)4α+1

where the result follows from here.
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