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Abstract: Several new asymmetric distributions have arisen naturally in the modeling extreme values
are uncovered and elucidated. The present paper deals with the extreme value theorem (EVT) under
exponential normalization. An estimate of the shape parameter of the asymmetric generalized value
distributions that related to this new extension of the EVT is obtained. Moreover, we develop the
mathematical modeling of the extreme values by using this new extension of the EVT. We analyze the
extreme values by modeling the occurrence of the exceedances over high thresholds. The natural
distributions of such exceedances, new four generalized Pareto families of asymmetric distributions
under exponential normalization (GPDEs), are described and their properties revealed. There is
an evident symmetry between the new obtained GPDEs and those generalized Pareto distributions
arisen from EVT under linear and power normalization. Estimates for the extreme value index of the
four GPDEs are obtained. In addition, simulation studies are conducted in order to illustrate and
validate the theoretical results. Finally, a comparison study between the different extreme models is
done throughout real data sets.

Keywords: extreme value theory; generalized extreme value distribution; generalized Pareto
distributions; linear normalization; power normalization; exponential normalization

1. Introduction

It has become necessary to study statistical models that have the ability to evaluate these rare
phenomena to avoid its dangers due to the sudden rise of some natural harmful phenomena, such as
earthquakes, Tsunami, air pollution, and other phenomena. In the last two decades, the EVT has
emerged as one of the most significant statistical modeling disciplines for the applied sciences.
The EVT can be applied to environmental studies, such as hydrology, pollution, rainfall, floods,
wind gusts, and corrosion, in order to develop models for describing the distribution of extreme
events. The distributional properties of the extreme and intermediate order statistics and exceedances
over (below) high (low) thresholds are determined by the upper and lower tails of the underlying
distribution. The most important challenges in any application of such extreme value models is the
scarcity of extreme data, choosing the threshold, or beginning of the tail, and choosing the methods
of estimating the unknown parameters. Much of the classical EVT is concerned substantially with
distribution properties of the maximum Xn:n = max{X1, X2, . . . , Xn} of iid RVs X1, X2, . . . ., Xn and all
of the results obtained for maximum of course lead to anologous results for minimum through the
obvious relation X1:n = min{X1, X2, . . . , Xn} = −max{−X1,−X2, . . . ,−Xn}. The core of the EVT is
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the extreme value distributions, which are well known in the literature (cf. [1]), and they are used as
approximations to DFs of normalized partial maximum Xn:n of iid RVs. A DF F is said to belong to the
l-max domain of attraction of an extreme value distribution G under linear normalization, denoted by
F ∈ Dl(G), if there exist norming constants an > 0 and bn ∈ R such that

P
(

Xn:n − bn

an
≤ x

)
= Fn(anx + bn)

w−→n G(x), (1)

where “ w−→n ” stands for weak convergence, as n → ∞. It is well known that the asymptotic
relation (1) yields only three possible types of non-degenerate limiting DFs, which are Frèchet, Weibull,
and Gumbel DFs. Moreover, any non-degenerate DF G is an extreme value distrbution (i.e., it is a limit
in (1)) if and only if it satisfies the stability relation Gn(anx + bn) = G(x), x ∈ R, n ≥ 1, for every
integer n, where an > 0 and bn ∈ R are some suitable constants (cf. [1,2]). For this reason, these limits
are called l-max-stable laws. On the other hand, these l-max stable laws may be written in the von
Mises−Jenkinson format

G(x; µ, σ, γ) = exp[−[1 + γ(
x− µ

σ
)]−

1
γ ], 1 + γ(

x− µ

σ
) > 0, (2)

where µ and σ > 0 are the location and scale parameters, respectively, while γ ∈ R is a shape
parameter that is known as the extreme value index (EVI), which is the central issue in empirical
research dealing with extreme events. It is obviously found that the DF G(x; µ, σ, γ), which is known as
the generalized extreme value distribution under linear normalization (GEVL), describes the Gumbel,
Frèchet, and Weibull types with respect to the cases γ = 0 (interpreted as γ → 0), γ > 0 and γ < 0.
The GEVL provides a prevailing parametric approache for modeling extreme events, which is known
as the block maxima (BM). Its application consists of partitioning a data set into blocks of equal
length, and fitting the GEVL to the set of block maxima. An extension of the BM approach is the peak
over threshold (POT) approach (see [1]), where we only consider the observations which lie above
an appropriate threshold. The generalized Pareto distribution under linear normalization (GPDL)
introduced by [3,4] is considered as a foremost pillar of the POT approach. The GPDL is the limit
distribution of scaled excesses over high thresholds, which has the form 1 + log G(x; µ, σ, γ).

In order to widen the class of limit laws in EVT for solving more approximation problems,

the authors of [5] extended the EVT under power normalization
∣∣∣Xn:n

αn

∣∣∣ 1
βn S(Xn:n), where

S(x) = sign(x) = −1, 0, 1 according to x < 0, x = 0, x > 0, respectively. Another reason for using
the power normalization in EVT is concerning the possibility of getting a better rate of convergence
in EVT (cf. [6]). Clearly, the power normalization is a strictly monotone continuous transformation.
Therefore, this transformation does not give rise to any wastage of information that the data contains
(e.g., the sufficiency property is preserved under one to one transformation). Nevertheless, we might
lose some flexibility if we used such normalization. For example, under this normalization we can
not change the sign of the data or get rid of zero. The DF F is said to belong to the p-max domain of
attraction of a non-degenerate DF H under power normalization, denoted byF ∈ Dp(H), if for some
norming constants αn > 0 and βn > 0,

P

(∣∣∣∣Xn:n

αn

∣∣∣∣ 1
βn
S(Mn) ≤ x

)
= Fn(αn |x|βn S(x)) w−→n H(x). (3)

The possible p-types of limiting DFs H in (3) are the p-max stable laws satisfying the stability
relation Hn(αn |x|βn S(x)) = H(x), x ∈ R, for every n ≥ 1, where αn > 0 and βn > 0 are some suitable
sequences of constants. Here, two DFs, F and G, are of the same p-type if we can find α > 0 and
β > 0, for which F(x) = G(α |x|β S(x)), for all x. Consequently, any non-degenerate DF H is a p-max
stable, or equivalently H is a limit in (3), if and only if for every n ≥ 1 the two DFs H and Hn are
of the same p-type. In [7] the author has exemplified these types by the von Mises representation
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Pi;γ(x; a, b) = exp
[
−(−1)i(1− γ log a(−(−1)ix)b)−

1
γ

]
, (−1)ix < 0, 1− (−1)iγ log a(−(−1)ix)b > 0,

i = 1, 2. Each of these families is called generalized extreme value distribution under power
normalization (GEVP). It is well known that the p-max-stable laws attract more distributions than
the l-max-stable laws. This fact virtually means that the linear model may be unsuccessful for fitting
an extreme data set; on the contrary, the power model succeed to fit it (see [1]). The authors of
[8] applied the BM approach under power normalization using the GEVPs. Moreover, in a series
of papers, refs. [9–13] developed the modeling of extreme values under power normalization
by defining and using the generalized Pareto distributions under power normalization (GPDPs),
1 + log Pi;γ(x; 1, 1), i = 1, 2, to a real extreme-value data (for more details regarding the power
transformation, see [14–18]).

Once more, in order to widen the class of the limit laws in EVT, in [19] the authors extended the
EVT under exponential normalization Tn(x) = Tun ,vn(x) = exp{un(| log |x||)vn S(log |x|)}S(x), un,
vn > 0. Under this transformation, we can say that the DFs F and G are of the same e-type if
F(x) = G(exp{(u(| log |x||)vS(log |x|))}S(x)) = G(Tu,v(x)), for some constants u > 0, v > 0. In this
case, a non-degenerate DF Λ(.) is said to be an e-max-stable laws if there exists a DF F and norming
constants un > 0, vn > 0, such that

P(T −n (Xn:n)} ≤ x) = P

({[
exp(

(
| log |Xn;n||

un

)1/vn

S(log |Xn:n|))
]}
S(Xn:n) ≤ x

)

= P(Xn:n ≤ Tn(x)) = Fn(Tn(x)) w−→n Λ(x). (4)

If (4) is satisfied, then we can say that the DF F belongs to the e-max-domain of attraction of the
non-degenerate DF Λ under e-normalization, denoted by F ∈ De(Λ). The authors of [19], showed that
the possible limiting DFs Λ in (4) are the e-max stable laws that satisfy the stability property that any
non-degenerate DF Λ is an e-max stable, or equivalently Λ is a limit in (4), if and only if for every n ≥ 1
the two DFs Λ and Λn are of the same e-type (for more details about the exponential transformation,
see [20]).

In [19], the authors showed that the possible limit laws arisen from (4) attract more DFs than
the p-max-stable laws. This fact virtually means that the linear and power models may fail to
fit the given extreme data, while the exponential model succeeds. This fact gives us a sufficient
motivation for developing the modeling of extreme values via the exponential model, denoted by
the e-model. The aimed development is the first object of this paper and it will be achieved within
two stages. The first stage is to infer the generalized extreme value distributions related to the
EVT under exponential normalization. These asymmetric DFs enable us to apply the BM approach.
The second stage is deriving the possible generalized Pareto families of asymmetric distributions
relating to the EVT under exponential normalization. These families will pave the way to applying the
POT approach. The second object of this paper is comparing between the EVT under linear, power,
and exponential normalization via a real data sets of air pollution.

The rest of this paper is structured, as follows: In Section 2, we deduce the generalized extreme
value distributions relating to the EVT under exponential normalization (GEGEs). In Section 3,
which is devoted to the theoretical details, we first suggest an estimate for the EVI in each of the
GEGEs. This estimate corresponds to a Dubey estimate in the GEVL model (3) and the GEVP models
Piγ(x; a, b), i = 1, 2 (cf. [8]). Secondly, we derive the generalized Pareto distributions under exponential
normalization (GPDEs). Finally, we propose estimators for the EVI in these GPDEs. Section 4 is
devoted to a simulation study, which illustrates and corroborates the theoretical results. In Section 5,
the EVT under linear, power, and exponential normalization is applied, with comparisons to several
real data sets.
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2. Preliminary Results

In [19], the authors derived the following a chain of equivalences between l-max-domains,
p-max-domains and e-max-domains of attraction:

1. FX ∈ Dl(Fξ) ⇐⇒ Fexp(X) ∈ Dp(Fexp(ξ)) ⇐⇒ F− exp(−X) ∈ Dp(F− exp(−ξ)), where Fξ is an l-max
stable DF, and Fexp(ξ) and F− exp(−ξ) are p-max stable DFs.

2. FX ∈ Dp(Fξ) ⇐⇒ Fexp(X) ∈ De(Fexp(ξ)) ⇐⇒ F− exp(−X) ∈ De(F− exp(−ξ)), where Fξ is an p-max
stable DF, and Fexp(ξ) and F− exp(−ξ) are e-max stable laws.

In the above implications, FX denotes the DF of the RV X and “⇐⇒” stands for “if and only
if”. Moreover, ref. [19] used these implications in order to determine e-max-stable laws, wherein the
first six e-max-stable DFs have right endpoint r(Λ) = sup{x : Λ(x) < 1} > 0 and the subsequent six
e-max-stable DFs have r(Λ) ≤ 0.

1: Λ1,β(x) = exp(−(log log x)−β), x ≥ e;
2: Λ2,β(x) = exp(−(− log log x)β), 1 ≤ x < e;
3: Λ3,β(x) = exp(−(log x)−1), x ≥ 1;
4: Λ4,β(x) = exp(−(− log(− log x))−β), 1/e ≤ x < 1;
5: Λ5,β(x) = exp(−(log(− log x))β), 0 ≤ x < 1/e;
6: Λ6,β(x) = x, 0 ≤ x < 1;
7: Λ7,β(x) = exp(−(log(− log(−x)))−β),−1/e ≤ x < 0;
8: Λ8,β(x) = exp(−(− log(− log(−x)))β),−1 ≤ x < −1/e;
9: Λ9,β(x) = exp(−(− log(−x))−1),−1 ≤ x < 0;
10: Λ10,β(x) = exp(−(− log log(−x))−β),−e ≤ x < −1;
11: Λ11,β(x) = exp(−(log log(−x))β), x ≤ −e;
12: Λ12,β(x) = Λ12(x) = − 1

x , x ≤ −1.



(5)

We now totalize the limit laws (5) using the von Mises type representations. For any a, b > 0,
the types (5) are totalized by the following general von Mises type forms:

W1;γ(x; a, b) = exp[−(1 + γ log(a(log x)b))
−1
γ ], 1 + γ log(a(log x)b) > 0;

W2;γ(x; a, b) = exp[−(1 + γ(− log(a(− log x)b)))
−1
γ ], 1 + γ(− log(a(− log x)b)) > 0;

W3;γ(x; a, b) = exp[−(1 + γ log(a(− log(−x))b))
−1
γ ], 1 + γ log(a(− log(−x))) > 0;

W4;γ(x; a, b) = exp[−(1 + γ(− log(a(log(−x))b)))
−1
γ ], 1 + γ(− log(a(log(−x))b) > 0,


(6)

where γ is a given real number. When γ = 0, Wi;γ(x; a, b) is defined as limγ→0 Wi;γ(x; a, b),
i = 1, 2, 3, 4. The DF Wi;γ(x; a, b) yields laws of the same e-types as Λ3i−2(x), Λ3i−1(x) and
Λ3i(x), i = 1, 2, 3, 4, according to γ = 1

β > 0, γ = − 1
β < 0 and γ = 0 (γ → 0), respectively.

Each DF in (6) is called generalized extreme value distribution under exponential normalization
(GEVE), denoted by GEVE(γ, a, b). Clearly, the parametric models in (6) enable us to apply the BM
approach under exponential normalization, where, in this case, we have to assume that the data in
hand form a random sample drwan from an exact GEVE(γ, a, b).

3. BM Approach and GPDEs

When considering the BM approach, let x1:n ≤ x2:n ≤ · · · ≤ xn:n be the set of maximums of
the given blocks. Clearly, in view of the shape of the e-types (6), the modeling under exponential
normalization can only be applied if all values of these maximums belong to one and only one of the
non-overlapping intervals I1 = (1, ∞), I2 = (0, 1), I3 = (−1, 0) and I4 = (−∞,−1). More specifically,
if 1 < x1:n ≤ x2:n ≤ · · · ≤ xn:n, or 0 < x1:n ≤ x2:n ≤ · · · ≤ xn:n < 1, or −1 < x1:n ≤ x2:n ≤ · · · ≤
xn:n < 0, or x1:n ≤ x2:n ≤ · · · ≤ xn:n < −1, we would select the model W1;γ(x; a, b), or W2;γ(x; a, b),
or W3;γ(x; a, b), or W4;γ(x; a, b), respectively. Subsequently, we compute the maximum likelihood
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(ML) estimates (γ̂, â, b̂) of (γ, a, b) as the numerical solutions of the likelihood equations based on the
selected model. The estimate of the shape parameter γ corresponds to a Dubey estimate in the GEVL
model is linear combinations of ratios of spacing

Rn =



log(log(Xnq2:n))−log(log(Xnq1:n))

log(log(Xnq1:n))−log(log(Xnq0:n))
, for the model W1;γ,

log(− log(Xnq2:n))−log(− log(Xnq1:n))

log(− log(Xnq1:n))−log(− log(Xnq0:n))
, for the model W2;γ,

log(− log(−Xnq2:n))−log(− log(−Xnq1:n))

log(− log(−Xnq1:n))−log(− log(−Xnq0:n))
, for the model W3;γ,

log(log(−Xnq2:n))−log(log(−Xnq1:n))

log(log(−Xnq1:n))−log(log(−Xnq0:n))
, for the model W4;γ,

where q0 < q1 < q2 and qi = i
n . Clearly, the statistic Rn is invariant under the exponential

transformation. Now, relaying on the obvious relations: (1) F−1
t;n (qi) = xi:n, where t = 1, or t = 2,

or t = 3, or t = 4, if xi:n ∈ I1, i = 1, 2, . . . , n, or xi:n ∈ I2, i = 1, 2, . . . , n, or xi:n ∈ I3, i = 1, 2, . . . , n,
or xi:n ∈ I4, i = 1, 2 . . . , n, respectively, and Ft;n is the sample DF, (2) for large n, we have Ft;n(x) '
Fn(x) 'Wt;γ(T −n (x)) and (3) F−1

t;n (Tn(x)) = T −n (F−1
t;n (x)), we obtain

Rn =
log(| log |W−1

t;γ (q2|)|)− log(| log |W−1
t;γ (q1)|)|

log(| log |W−1
t;γ (q1|)|)− log(| log |W−1

t;γ (q0|)|)
, t = 1, . . . , 4. (7)

The relation (7), after some algebra, yields

Rn =
(− log q2)

−γ − (− log q1)
−γ

(− log q1)−γ − (− log q0)−γ
=

(
log q0

log q2

) γ
2

, (8)

if q0, q1, q2 satisfy the equation (− log q1)
2 = (− log q2)(− log q0). Upon taking the logarithm of both

sides of (8), we get the estimate

γ̂ =
2 log Rn

log(log q0/ log q2)
.

On the other hand, if q0 = q, q1 = qa, q2 = qa2
, for some 0 < q, a < 1, we get the estimate family

γ̂ =
log Rn
− log a . By taking a = 1

2 , we get

γ̂e =
log Rn

log 2
. (9)

In Section 4, we will compare the ML method and estimate γ̂e for estimating γ via the W−1
1;γ .

Moreover, we will detect the value of q, which gives the best estimate for γ. It will be revealed that the
estimate (9) is very poor for large values of γ (γ > 0.1). Regardless of the fact that this estimate is based
on the BM approach, this approach also suffers some other problems, among them is only considering
several maxima within several blocks and ignoring most the other data. In a spirit of the result of [3,4],
we propose applying the POT approach based on the EVT under exponential normalization, where we
deal with the right tail F(x) = 1− F(x), for large x, i.e., we deal with top-order observations. In order
to adapt this approach for the e-model we derive the GPDE. Our focus will be mainly on the case
r(F) > 0 via Theorem 1. Clearly, the case r(F) > 0 covers most of the important practical applications
of the EVT. However, the case r(F) < 0 will be briefly discussed in Theorem 3. In the next theorems
and throughout the paper, we adopt the notations F[A](x) = P(X ≤ x) | X > A) and “ −→n ” to
mean convergence as n→ ∞.

Theorem 1. Let (4) be satisfied with Wt;γ(x; a, b), t ∈ {1, 2}. Then there exists α(u) > 0 such that

F[e(−1)t+1u ](Tu,α(u)(x)) w−→u Qt(x), (10)
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where “ w−→u ” means weak convergence, as e(−1)t+1u ↑ r(F) and

a. Q1(x)=Q1;γ(x; b̄)=1 + log W1;γ(x; 1, b̄), b̄ = b
c and c = 1 + γ log a, if r(F) > 1;

b. Q2(x)=Q2;γ(x; b)=1 + log W2;γ(x; 1, b), b = b
c and c = 1− γ log a, if 0 < r(F) ≤ 1.

Proof. The proof of Part [a]: In view of the EVT, we obtain

n(1− F(Tun ,vn(x))) −→n − log W1;γ(x; a, b),

which, in view of the assumption r(F) > 1, implies that

n(1− F(exp (un(log x)vn))) −→n − log W1;γ(x; a, b). (11)

On the other hand, (11) cannot be true unless F(exp (un(log x)vn)) −→n 1, for all x for which
W1;γ(x; a, b) > 0. Thus, we can write

n(1− F(exp (un+1(log x)vn+1))) ' (n + 1)(1− F(exp (un+1(log x)vn+1)))

−→n − log W1;γ(x; a, b). (12)

By using the modified Khinchin’s Theorem (cf. [1]), the relations (11) and (12) yield

(
un+1

un
)

1
vn −→n 1 and

vn+1

vn
−→n 1. (13)

Now, let n be chosen, such that un ≤ u ≤ un+1, where u is any real number such that eu < r(F)

(note that by putting x = e in (11), we get eun ↑ r(F)). Subsequently, (13) implies that 1 = ( u
un
)

1
vn ≤

( un+1
un

)
1

vn → 1. Thus, put α(u) ≡ vn and apply again the modified Khinchin’s Theorem, (11) may be
written in the form

n(1− F(exp (u(log x)α(u)))) −→n − log W1;γ(x; a, b). (14)

Therefore, by putting x = e in (14), we get

n(1− F(exp (u)))→ [1 + γ log a]−
1
γ . (15)

By combining (14) and (15), we get, as n→ ∞, or equivalently as eu ↑ r(F),

F[eu ](Tu,α(u)(x)) =
F(Tu,α(u)(x))− F(exp (u))

1− F(exp (u))
= 1−

1− F(Tu,α(u)(x))
1− F(exp (u))

w−→u 1−
W1;γ(x; a, b)
W1;γ(e; a, b)

= 1−
(

1 + γ log(a(log x)b)

1 + γ log a

)− 1
γ

= 1−
[
1 + b̄γz

]− 1
γ = 1 + log W1;γ(x; 1, b̄),

which was to be proved. The proof of Part [b] is very similar to the proof of Part [a], with the exception
of only of obvious changes. This completes the proof of Theorem 1.

Theorem 2 (the peak over threshold stability property). The left truncated GPDE again yields a GPDE.
This means that, for every 1 < L < x, we have Q[L]

1;γ(x; σ) = Q1;γ(
x
L ; σ̄), where σ̄ = σ

c and c = 1 + γσ log L.

Moreover, for every 0 < L < x < 1, we have Q[L]
2;γ(x; σ) = Q2;γ(

x
L ; σ̄), where σ̄ = σ

c̄ and c̄ = 1 −
γσ log(−L).
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Proof. Let L ≤ x. Subsequently,

Q[L]
1;γ(x; σ) =

1− (1 + γσ log(log x))−
1
γ − (1− (1 + γσ log L)−

1
γ )

1− (1− (1 + γσ log L)−
1
γ )

=
(1 + γσ log L)−

1
γ − (1 + γσ log(log x))−

1
γ

(1 + γσ log L)−
1
γ

= 1− (1 + γσ log(log x))−
1
γ

(1 + γσ log L)−
1
γ

= 1− [
(1 + γσ log(log x))

(1 + γσ log L)
]−

1
γ = 1− (1 +

γσ log( log x
L )

c
)−

1
γ ,

where c = 1 + γσ log L. On the other hand, we have

Q[L]
2;γ(x; σ) =

(1− γσ log(−L))−
1
γ − (1− γσ log(− log x))−

1
γ

(1− γσ log(−L))−
1
γ

= 1− (1− γσ log(− log x))−
1
γ

(1− γσ log(−L))−
1
γ

= 1− (1−
γσ log(−(− log x

L ))

c
)−

1
γ ,

where c = 1− γσ log(−L). This completes the proof of Theorem 2.

Theorem 3. Let (4) be satisfied with Wt;γ(x; a, b), t ∈ {3, 4}. Subsequently, there exists α(u) > 0 such that

F[−e(−1)tu ](Tu,α(u)(x)) w−→u Qt(x), where “ w−→u ” means weak convergence, as −e(−1)tu ↑ r(F) and

c. Q3;γ(x; b̄) = 1 + log W3;γ(x; 1, b̄), if −1 < r(F) < 0;
d. Q4;γ(x; b) = 1 + log W4;γ(x; 1, b), if r(F) < −1.

Moreover, the limits Q3;γ(x; b̄) and Q4;γ(x; b) satisfy the peak over threshold stability property.

Proof. The proof is very similar to the proof of Theorems 1 and 2, with the exception of only of
obvious changes.

Estimation of the EVI via GPDE Model

In this subsection, we derive estimates for the parametrs γ and σ̄ in the GPDE Q1;γ(x; σ).
These estimates consort with the Pickand’s estimates in the GEVL model (2) (cf. [4]). Let n be the sample
size and m = m(n) be an integer much smaller than n. Let X?

i = Xn−i+1:n be the ith largest observation

in the sample, i = 1, 2, . . . , n. The values X?
i

X?
4m

, i = 1, 2, . . . , 4m− 1, will be treated as though they were
the descending order statistics from a sample of size 4m− 1 from the DF Q1;γ(x; σ) for some 0 < σ < ∞

and −∞ < γ < ∞. Because, for any 0 ≤ y ≤ 1, we have Q−1
1,γ(y; σ) = exp

[
exp

[
1

γσ ((1− y)−γ − 1)
]]

,

we get Q−1
1,γ

(
1
2 ; σ
)
= exp

[
e

1
γσ (2

γ−1)
]

and Q−1
1,γ
( 3

4 ; σ
)
= exp

[
e

1
γσ (22γ−1)

]
. Clearly,

L =
log(log Q−1

1,γ(
3
4 ; σ))− log(log Q−1

1,γ(
1
2 ; σ))

log(log Q−1
1,γ(

1
2 ); σ)

= 2γ,

which implies γ =
logL
log 2 and σ = 2γ−1

γ log Q−1
1,γ(

1
2 ;σ)

. To estimate γ and σ, we replace the population

quantiles Q−1
1,γ

(
1
2 ; σ
)

and Q−1
1,γ
( 3

4 ; σ
)

by the sample quantiles Q̂−1
1,γ

(
1
2 ; σ
)
=

X?
2m

X?
4m

and Q̂−1
1,γ
( 3

4 ; σ
)
= X?

m
X?

4m
.

Therefore,

γ̂ = (log 2)−1 log
log X?

m − log X?
2m

log X?
2m − log X?

4m
and σ̂ =

2γ̂ − 1
γ̂(log X?

2m − log X?
4m)

. (16)
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In the next section, we will consider the determination problem of m via a simulation study.
Theoretically, the value m = m(n) should satisfy the two conditions limn→∞ m = ∞ and limn→∞

m
n = 0

(cf. [4]).

4. Simulation Study

In Table 1, we compare the ML method and the Formula (9) for estimating the EVI γ via the
first GEVE defined in (6). Additionally, from Table 1, we determine the value of q, which gives the
best estimate for γ. In Table 1, we present estimates for each value of γ = 0.08, 0.09, 0.1, 0.11, 0.12 by
applying the ML method and computing the estimate γ̂e that resulted from (9) for different quantiles
q = 0.6, 0.68, 0.7, 0.75, 0.8. This procedure is repeated 1000 times to obtain the average estimates
(for the given different values of q) for γ and their mean square errors (MSE’s). Table 1 shows that the
estimates (9) are poor when compared with the Ml estimates. Moreover, the precision of the estimate
γ̂e closely depends on the value of γ. It was revealed that when γ > 0.12, the estimates computed
by (9) became very poor, for this reason in Table 1 we only considered the values γ ≤ 0.12.

Table 1. Estimating the extreme value index (EVI) γ via W1;γ(x; 2× 10−3, 10) by using the maximum
likelihood (ML) and (9) estimators.

γ ML Estimate
The Estimate (9)

q = 0.6 q = 0.68 q = 0.7 q = 0.75 q = 0.8

0.08 γ̂e 0.0800 −0.0267 0.0496 0.0520 0.0411 0.0819
MSE 5.22× 10−4 1.1394 0.0926 0.0786 0.1513 3.54× 10−4

0.09 γ̂e 0.0896 −0.0718 0.0062 0.0256 0.0871 0.1349
MSE 4.98× 10−4 2.6172 0.7018 0.4141 8.15× 10−4 0.2015

0.1 γ̂e 0.1037 0.0341 0.1062 0.0899 0.1182 0.1700
MSE 5.06× 10−4 0.4344 0.0039 0.0101 0.0330 0.4899

0.11 γ̂e 0.1095 0.0327 0.1096 0.1094 0.1435 0.1992
MSE 6.41× 10−4 0.5977 1.73× 10−5 3.44× 10−5 0.1125 0.7959

0.12 γ̂e 0.1215 0.0775 0.1517 0.1476 0.1872 0.2714
MSE 4.57× 10−4 0.1809 0.1003 0.0762 0.4511 2.2913

In Table 2, for each value of γ = 0.08, 0.09, 0.1, 0.11, 0.12 we generate a random sample of size
n = 20, 000 from Q1;γ(x; 1). Moreover, we choose the threshold values k = 5000, 4500, . . . , 1000 (in the
interval k ≤ n

4 ). In view of Theorem 2, the DF of the simulated data, which come after any threshold
value k, has the same type of the DF Q1;γ. Therefore, we can estimate the parameter γ by using the ML
method for each of these threshold values. This procedure is repeated 1000 times to obtain the average
estimates and their MSE’s. Finally, we determine the value k, which gives the best estimate for the
parameter γ by using the ML method. Table 3 is devoted to display the computed estimates of γ by
using (16). In Table 3, the same procedure is applied with the exception that we choose m instead of k
as m = 125, 250, . . . , 1250 (note that k = 4 m).

In both Tables 2 and 3, the asterisk in the superscript of a value means that this value is the
best. Here, the “best” is according to the closeness to the actual value of γ and then according to the
value of MSE in the case of equal closeness to true value of γ of two or more estimates. Moreover,
Tables 2 and 3 show that the ML and (16) estimators for estimating the EVI γ via the GPDE Q1;γ have
high accuracy when comparing with the estimates of γ via W1;γ.
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Table 2. Estimating the EVI γ in the generalized Pareto distributions under exponential normalization
(GPDE) Q1;γ, by using the ML method.

k 5000 4500 4000 3500 3000 2500 2000 1000

The GPDE Q1;γ, with γ = 0.08

γ̂ 0.0486 0.0522 0.0618 0.0665 0.0679 0.0738 0.0756 0.0761 ?

MSE 0.0011 0.0009 0.0006 0.0003 0.0003 0.0003 0.0004 0.0004

The GPDE Q1;γ, with γ = 0.09

γ̂ 0.0488 0.0475 0.0576 0.0653 0.0724 0.0729 0.0727 0.0832 ?

MSE 0.0018 0.0019 0.0012 0.0008 0.0005 0.0005 0.0006 0.0003

The GPDE Q1;γ, with γ = 0.1

γ̂ 0.0700 0.0702 0.0724 0.0720 0.0794 0.0835 0.0924 ? 0.0924
MSE 0.0011 0.0012 0.0010 0.0010 0.0006 0.0005 0.0002 0.0003

The GPDE Q1;γ, with γ = 0.11

γ̂ 0.0785 0.0854 0.0884 0.0920 0.0945 0.1006 0.1021 ? 0.1189
MSE 0.0011 0.0008 0.0007 0.0004 0.0004 0.0002 0.0002 0.0004

The GPDE Q1;γ, with γ = 0.12

γ̂ 0.0894 0.0949 0.0983 0.1038 0.1113 0.1133 0.1143 0.1173 ?

MSE 0.0011 0.0007 0.0006 0.0004 0.0004 0.0011 0.0007 0.0005

Table 3. Estimating the EVI γ in the GPDE Q1;γ, by using the estimator (16).

m 125 250 375 500 625 750 1000 1250

The GPDE Q1;γ, with γ = 0.08

γ̂ 0.0794 0.0858 0.0883 0.0818 0.0784 0.0819 0.0801 ? 0.0808
MSE 0.0047 0.0026 0.0021 0.0013 0.0012 0.0009 0.0007 0.0006

The GPDE Q1;γ, with γ = 0.09

γ̂ 0.0924 0.0865 0.0845 0.0895 0.0911 0.0905 ? 0.0913 0.0917
MSE 0.0048 0.0024 0.0019 0.0016 0.0012 0.0010 0.0008 0.0007

The GPDE Q1;γ, with γ = 0.1

γ̂ 0.1041 0.0967 0.0957 0.0992 0.1002 ? 0.0995 0.0987 0.1011
MSE 0.0061 0.0027 0.0018 0.0013 0.0015 0.0010 0.0009 0.0007

The GPDE Q1;γ, with γ = 0.11

γ̂ 0.1099 ? 0.1166 0.1132 0.1103 0.1103 0.1137 0.1136 0.1136
MSE 0.0047 0.0028 0.0013 0.0014 0.0009 0.0010 0.0009 0.0008

The GPDE Q1;γ, with γ = 0.12

γ̂ 0.1232 0.1198 ? 0.1209 0.1143 0.1168 0.1170 0.1167 0.1206
MSE 0.0058 0.0031 0.0017 0.0017 0.0011 0.0010 0.0009 0.0008

5. Comparison Study between the Linear, Power and Exponential Models

Air pollution is a global problem, from which most countries across the world suffer (cf. [21–23]).
In this section, we consider this problem via two data sets of pollutants, each of them consists of the
maximum data of the three pollutants, nitric oxide (NO), nitrogen dioxide (NO2), and particulate
matter diameter less than 10 mm (PM10) (for some properties of these pollutants, see [1,22]).
The first data set is taken from the site Lambeth–Streatham Green-Urban Background (denoted
by LB6). The daily maximum of these pollutants was monitored and recorded every hour. Therefore,
around 21,169 records are presented from 1 January 2014 to 31 July 2016. These data sets are publicly
available from the following site: http://www.londonair.org.uk/london/asp/datadownload.asp.

Table 4 shows the summary statistics for these maximum data sets. Table 5 is devoted to the
estimate parameters of the generalized extreme value distributions for LB6.

http://www.londonair.org.uk/london/asp/datadownload.asp
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Table 4. Summary statistics for maximum data from LB6.

n Minimum Maximum Median Mean SD Skewness Kurtosis

NO 1601 3 466.10 29.05 45.94 50.84904 3.209211 14.44866
NO2 838 5.5 171.1 53.75 55.21205 24.54528 0.768683 1.277585
PM10 369 11 353 33 41.19241 33.964229 5.128280 34.681366

Table 5. Estimate parameters of the generalized extreme value distributions for LB6.

Estimate parameters of the GEVL G(x; µ, σ, γ) via BM approach for LB6

Pollutant γ̂ σ̂ µ̂

NO 0.5794 16.6815 21.5258
NO2 −0.0719 20.9257 44.5482
PM10 0.3048 11.7537 28.6365

Parameter estimations of the GEVP P1;γ(x; a, b) via BM approach for LB6

Pollutant γ̂ b̂ â

NO −0.2034 1.1971 0.0251
NO2 −0.3729 1.8877 8.49× 10−4

PM10 −0.0585 2.3911 3.35× 10−4

Estimate parameters of the GEVE W1;γ(x; a, b) via BM approach for LB6

Pollutant γ̂ b̂ â

NO −0.3939 3.5125 0.0200
NO2 −0.4589 6.7161 1.46× 10−4

PM10 −0.1567 7.9032 7.24× 10−5

We checked the fitting of any family by the Kolmogorov–Smirnov (K-S) test, where, in this test,
we have four functions [H, P, KSSTAT, CV]. H is equal to 0 or 1, P is the p-value, KSSTAT is the
maximum difference between the data and the fitting curve and CV is a critical value. Therefore,

• we accept H0, if H = 0, KSSTAT ≤ CV and P > level of significant and
• we reject H0, if H = 1, KSSTAT > CV and P ≤ level of significant.

Table 6 gives the result of the Kolmogorov–Smirnov (K-S) test for fitting the three models
G(x; µ, σ, γ), P1;γ(x; a, b), and W1;γ(x; a, b) to the maximum data sets from LB6. Table 7 illustrates
the summary statistics for these maximum data set. Finally, the graphical representations of the data
sets and the fitted distributions are given in Figures 1–9.

Table 6. Kolmogorov–Smirnov (K-S) test for the maximum data. from LB6.

Fitting data of LB6 by the GEVL G(x; µ̂, σ̂, γ̂)

Pollutant P KSSTAT Decision

NO 0.0414 0.0347 reject H0
NO2 0.4084 0.0305 accept H0
PM10 0.9506 0.0266 accept H0

Fitting data of LB6 by the GEVP P1;γ̂(x; â, b̂)

Pollutant P KSSTAT Decision

NO 0.3141 0.0189 accept H0
NO2 0.0199 0.0481 reject H0
PM10 0.5204 0.0293 accept H0

Fitting data of LB6 by the GEVE W1;γ̂(x; â, b̂)

Pollutant P KSSTAT Decision

NO 0.1271 0.0253 accept H0
NO2 0.0011 0.0635 reject H0
PM10 0.4131 0.0342 accept H0
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Table 7. Summary statistics for maximum data from GR4.

n Minimum Maximum Median Mean SD Skewness Kurtosis

NO 1706 1.2 380.60 8.6 23.265 39.721 4.043 21.225
NO2 1706 4.3 120.6 34.6 36.82 17.8640 0.6906 0.5265
PM10 1471 7.4 325.29 25.2 30.529 18.527 4.7380 53.16945
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Figure 1. The depiction of the data set of NO and the fitted GEVL for LB6.
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Figure 2. The depiction of the data set of NO2 and the fitted GEVL for LB6.
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Figure 3. The depiction of the data set of PM10 and the fitted GEVL for LB6.
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Figure 4. The depiction of the data set of NO and the fitted GEVP for LB6.
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Figure 5. The depiction of the data set of NO2 and the fitted GEVP for LB6.
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Figure 6. The depiction of the data set of PM10 and the fitted GEVP for LB6.
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Figure 7. The depiction of the data set of NO and the fitted GEVE for LB6.
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Figure 8. The depiction of the data set of NO2 and the fitted GEVE for LB6.
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Figure 9. The depiction of the data set of PM10 and the fitted GEVE for LB6.

The second data set is taken from the site Greenwich-Eltham (denoted by GR4). The daily
maxima of these pollutants are recorded every hour, so around 43,825 records are presented from
1 January 2014 to 31 December 2018. These data are publicly available from the following site: http:
//www.londonair.org.uk/london/asp/datadownload.asp.

Table 8 is devoted to the estimate parameters of the generalized extreme value distributions
for GR4. Table 9 gives the result of the Kolmogorov–Smirnov (K-S) test for fitting the three models
G(x; µ, σ, γ), P1;γ(x; a, b) and W1;γ(x; a, b) to the maximum data sets from GR4. Finally, the graphical
representations of the data set and the fitted distributions are given in Figures 10–18.

Table 8. Estimate parameters of the generalized extreme value distributions for GR4.

Estimate parameters of the GEVL G(x; µ, σ, γ) via BM approach for GR4

Pollutant γ̂ σ̂ µ̂

NO 1.0065 5.6233 6.1006
NO2 −0.0537 14.9302 28.8916
PM10 0.3007 8.5229 22.2351

Parameter estimations of the GEVP P1;γ(x; a, b) via BM approach for GR4

Pollutant γ̂ b̂ â

NO −0.0013 1.0922 0.1334
NO2 −0.3830 1.7425 0.0031
PM10 −0.0739 2.5652 3.51× 10−4

Estimate parameters of the GEVE W1;γ(x; a, b) via BM approach for GR4

Pollutant γ̂ b̂ â

NO −0.4550 1.7980 0.3384
NO2 −0.4795 5.4804 0.0015
PM10 −0.1741 7.8801 1.352× 10−4
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Figure 10. The depiction of the data set of NO and the fitted GEVL for GR4.

http://www.londonair.org.uk/london/asp/datadownload.asp
http://www.londonair.org.uk/london/asp/datadownload.asp
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Figure 11. The depiction of the data set of NO2 and the fitted GEVL for GR4.

Table 9. K-S test for the maximum data from GR4.

Fitting data of GR4 by the GEVL G(x; µ̂, σ̂, γ̂)

Pollutant P KSSTAT Decision

NO 0.0086 0.0398 reject H0
NO2 0.0184 0.0370 reject H0
PM10 0.2332 0.0269 accept H0

Fitting data of GR4 by the GEVP P1;γ̂(x; â, b̂)

Pollutant P KSSTAT Decision

NO 0.0061 0.0386 reject H0
NO2 0.0098 0.0367 reject H0
PM10 0.1073 0.0274 accept H0

Fitting data of GR4 by the GEVE W1;γ̂(x; â, b̂)

Pollutant P KSSTAT Decision

NO 0.0817 0.0270 accept H0
NO2 4.496× 10−4 0.0474 reject H0
PM10 0.1752 0.0242 accept H0
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Figure 12. The depiction of the data set of PM10 and the fitted GEVL for GR4.
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Figure 13. The depiction of the data set of NO and the fitted GEVP for GR4.
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Figure 14. The depiction of the data set of NO2 and the fitted GEVP for GR4.
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Figure 15. The depiction of the data set of PM10 and the fitted GEVP for GR4.
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Figure 16. The depiction of the data set of NO and the fitted GEVE for GR4.
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Figure 17. The depiction of the data set of NO2 and the fitted GEVE for GR4.
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Figure 18. The depiction of the data set of PM10 and the fitted GEVE for GR4.
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The result summary of this study is given below, where the more favorable model is chosen
among accepted models and has a minimum KSSTAT value.

1. Only the power and exponential models are favorable in describing the pollutant NO that is
monitored by LB6. The power model is the best one.

2. The linear model is only the favorable model to describe the pollutant NO2 that is monitored
by LB6.

3. All of the models are favorable to describe the pollutant PM10 that is monitored by LB6. The best
model is the linear model followed by the power model.

4. Only the e-model is favorable to describe the pollutant NO, which is monitored by GR4.
5. None of the three models is favorable to describe the pollutant NO2 that is monitored by GR4.
6. All of the models are favorable to describe the pollutant PM10 that is monitored by GR4. The best

model is the e-model followed by the linear model.

It is worth remarking that the study shows an interesting fact that the kurtosis of the data has
an impact, to some extent, on the kind of the extreme model that describes the data, e.g., as the kurtosis
increases, the e-model becomes more favorable. Moreover, the linear, power and exponential models
become less favorable to fit the symmetric-platykurtic data set (for details about the description of
data according to the skewness and kurtosis, see [24,25]), e.g., the case of pollutant NO2. Finally,
a quick look at the Figures 1–18 reveals that the curves of the empirical DF and the tested family nearly
coincide when we accept H0 (e.g., Figures 2–4, 6, 7, 9, 12, 15, 16, and 18), while, in the case of the
rejection, the two curves diverge in some regions. This result endorses the results that are given in
Tables 6 and 9.

6. Conclusions

In this paper, we developed the EVT under exponential normalization to model extreme values,
which are arisen in different natural phenomena. An estimate of the shape parameter of the generalized
value distributions that related to the EVT under exponential normalization was proposed. New four
generalized Pareto distributions related to the EVT under exponential normalization are obtained
and their properties are elucidated. Estimates for the extreme value index of these distributions are
suggested. The linear, power, and the suggested exponential models were applied, with a comparison,
to several real data sets. The comparison between the three models revealed that the skewness and
kurtosis of the data have an impact on the kind of the extreme model that describes the data.
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iid Independent identically distributed
RVs Random variables
DF Distribution function
EVI Extreme value index
GEVL Generalized extreme value distribution under linear normalization
BM Block maxima
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POT Peak over threshold
GPDL Generalized Pareto distribution under linear normalization
GEVP Generalized extreme value distribution under power normalization
GPDP Generalized Pareto distributions under power normalization
GEVE Generalized extreme value distribution under exponential normalization
GPDE Generalized Pareto distribution under exponential normalization
ML Maximum likelihood
K-S Kolmogorov-Smirnov
CV Critical value
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