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Abstract: All kinds of dynamic symmetries in dozy-chaos (quantum-classical) mechanics (Egorov, V.V.
Challenges 2020, 11, 16; Egorov, V.V. Heliyon Physics 2019, 5, e02579), which takes into account the
chaotic dynamics of the joint electron-nuclear motion in the transient state of molecular “quantum”
transitions, are discussed. The reason for the emergence of chaotic dynamics is associated with a
certain new property of electrons, consisting in the provocation of chaos (dozy chaos) in a transient
state, which appears in them as a result of the binding of atoms by electrons into molecules and
condensed matter and which provides the possibility of reorganizing a very heavy nuclear subsystem
as a result of transitions of light electrons. Formally, dozy chaos is introduced into the theory of
molecular “quantum” transitions to eliminate the significant singularity in the transition rates, which
is present in the theory when it goes beyond the Born–Oppenheimer adiabatic approximation and the
Franck–Condon principle. Dozy chaos is introduced by replacing the infinitesimal imaginary addition
in the energy denominator of the full Green’s function of the electron-nuclear system with a finite
value, which is called the dozy-chaos energy γ. The result for the transition-rate constant does not
change when the sign of γ is changed. Other dynamic symmetries appearing in theory are associated
with the emergence of dynamic organization in electronic-vibrational transitions, in particular with
the emergence of an electron-nuclear-reorganization resonance (the so-called Egorov resonance) and
its antisymmetric (chaotic) “twin”, with direct and reverse transitions, as well as with different values
of the electron–phonon interaction in the initial and final states of the system. All these dynamic
symmetries are investigated using the simplest example of quantum-classical mechanics, namely, the
example of quantum-classical mechanics of elementary electron-charge transfers in condensed media.

Keywords: quantum mechanics; molecular quantum transitions; singularity; dozy chaos; dozy-chaos
mechanics; charge transfer; condensed matter; direct and reverse processes; optical band shapes;
Egorov resonance

1. Introduction

A new physical theory—dozy-chaos mechanics or quantum-classical mechanics [1–4]—is designed
to describe elementary physico-chemical processes, taking into account the chaotic dynamics of their
transient state. The simplest version of quantum-classical mechanics is the quantum-classical mechanics
of elementary electron transfers in condensed media [5,6]. This theory arose about twenty years
ago [5,6] and proved its efficiency in explaining the optical spectra of polymethine dyes and their
aggregates [3–11] and other physico-chemical phenomena [2,12–14]. The very first attempts to create
it [15–18], which later turned out to be its particular cases [2,4,5,7–9], were undertaken more than thirty
years ago. Quantum-classical mechanics can be considered as a kind of “generalization” of quantum
mechanics, in which a new property of the electron is revealed [1,2,19]. This new property arises for an
electron when it forms chemical bonds between atoms and consists in the appearance as a result of
this ability to provoke chaos in the vibrational motion of nuclei in the process of molecular quantum
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transitions. The theoretical discovery of this unique ability of the electron made it possible to find
out the reason for the reorganization of the structure of the nuclear subsystem of the molecule and
molecular systems as a result of electronic transitions in them. In other words, the discovery of the
ability of an electron to create chaos in the motion of nuclei in a transient molecular state made it
possible to explain how a light electron manages to shift the equilibrium positions of vibrations of very
heavy nuclei, which occurs as a result of the redistribution of the electron charge during molecular
“quantum” transitions. This chaos is called dozy chaos [7,8,20], since it occurs only in a transient
molecular state and is absent in the initial and final adiabatic molecular states. As a result of the
appearance of dozy chaos, the energy spectrum of electrons and nuclei in the transient state becomes
continuous, which indicates the classical nature of the motion of electrons and nuclei in this state,
while the initial and final states are quantum states that differ sharply from each other in the electronic
and nuclear structure. For this reason, dozy-chaos mechanics can also be called quantum-classical
mechanics [1–3,19], and the electron itself, which creates chaos in the transient state, can be called a
quantum-classical electron [19]. Consequently, the molecular “quantum” transition can be called the
quantum-classical molecular transition.

Formally, dozy chaos arises, in theory, as a result of replacing the infinitesimal imaginary addition
iγ (γ > 0) in the energy denominator of the spectral representation of the full Green’s function of
an electron-nuclear system with a finite value [5–8,20]. This procedure of changing the quantity γ
is forced and is associated with the elimination of an essential singularity that exists in the rates
of molecular transitions if their dynamics are considered beyond the Born–Oppenheimer adiabatic
approximation and the Franck–Condon principle [21–26]. The quantity γ can be considered as the
width of the electron-nuclear energy levels in the transient molecular state, which ensures the exchange
of energy and motion between electrons and nuclei in the transient state. However, as the comparison
of theoretical results with experimental data on the optical spectra of polymethine dyes and their
aggregates shows, the value of γ turns out to be much larger than the value of the vibrational quantum
}ω of nuclei: γ >> }ω [1–9,19,20]. This circumstance points to the fact that the exchange of energy
and motion between electrons and nuclei is so intense that it leads to chaos in their joint motion in
a transient state. This chaos is the dozy chaos that we discussed above, and the quantity γ is called
dozy-chaos energy [7,8,20].

Note that the well-known imaginary, damping gamma terms in the standard theory of
radiation–matter interactions [27,28] are related to removing resonance singularities in perturbation
theory. In quantum-classical mechanics, we are talking about the elimination of an essential singularity
in the rates of electron-nuclear(-vibrational) transitions, which arises when taking into account the
full-fledged electron-nuclear motion in the transient state, that is, when considering the electron-nuclear
motion beyond the Born–Oppenheimer adiabatic approximation and the Franck–Condon principle.
This motion is singular due to the incommensurability of the masses of light electrons and heavy
nuclei and regardless of whether it is resonant or non-resonant. This is the fundamental novelty of our
problem and our approach to its solution, where it becomes necessary to damp the singular dynamics
in molecular systems, in comparison with the standard theory of radiation–matter interactions, where it
becomes necessary to damp only resonances in atomic systems. Moreover, our imaginary gamma term
already exists in the energy denominator of the total electron-nuclear(-vibrational) Green’s function,
by definition, as an infinitely small quantity. To eliminate the singularity in the rates of molecular
transitions, which, as indicated above, exists within the framework of quantum mechanics, this
gamma-term is simply assumed not to be infinitely small but finite, and thus becomes the dozy-chaos
energy γ. For details of the discussion of this issue, see [2–4,7,8].

Dozy chaos is a mix of chaotic motions of the electronic charge, nuclear reorganization, and the
electromagnetic field (dozy-chaos radiation) via which electrons and nuclei interact in the transient state.
Apparently, the main mechanism for the occurrence of dozy chaos is associated with the interaction of
an electron with optical phonons (see more details in Section 3 in [1]).
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The emergence of chaos in dynamical systems is usually associated with the presence of any
nonlinear interactions in them. In quantum-classical mechanics [2], the electron–phonon interaction in
the original Hamiltonian is assumed to be linear (see term

∑
κ Vκ(r)qκ in Equation (1), Section 2) and

has the same form as in the standard theory of many-phonon transitions [29], on the basis of which it
was built. The condition γ >> }ω arising in the complete Green’s function of the system (see above)
leads to its modification and, therefore, takes the whole theory beyond the scope of quantum mechanics.
Therefore, it presents a challenge to solve the inverse problem, namely, using the modified Green’s
function or/and the general result for the rate constant of quantum-classical transitions (see Section 3),
to find the form of the original non-Hermitian Hamiltonian [1] that corresponds to such a modified
Green function or/and our overall result for the rate constant. In this non-Hermitian Hamiltonian
obtained from the solution of the inverse problem, the electron–phonon interaction can turn out to be
nonlinear [1]. Thus, the successful solution of the inverse problem will make it possible to clarify, in
more detail, the nature of dozy chaos. On the other hand, it is also a challenge to register dozy chaos in
an experiment, for example, using X-ray free-electron lasers [2,20].

The quantum-classical electron that provokes dozy chaos can be considered as some organizing
physical principle in nature [19], and quantum-classical mechanics itself, and in this particular case, the
quantum-classical mechanics of elementary electron transfers in condensed media, can be considered
as the physical theory in which this organizing principle was discovered in science.

In any fundamental physical theory, as a rule, some kind of symmetry laws arises. Dozy-chaos
mechanics, or in other words, quantum-classical mechanics, is no exception. The purpose of this
concept review of the dozy-chaos mechanics of elementary charged particle (electron or proton)
transfers in condensed media is to draw attention to a certain set of symmetries that arise in theory
and are associated with various features and modes of charge-transfer dynamics. We call this set of
symmetries dynamic symmetry in dozy-chaos mechanics.

2. On Dozy-Chaos Mechanics of Elementary Electron Transfers

The Hamiltonian for describing the elementary electron transfers in condensed media has the
form [1–9]:

H = −
}2

2m
∆r + V1(r) + V2(r− L) +

∑
κ

Vκ(r)qκ +
1
2

∑
κ

}ωκ
(
q2
κ −

∂2

∂q2
κ

)
(1)

where 1 and 2 are the indices of the electron donor and acceptor, respectively; m is the effective mass
of the electron; r is the electron’s radius vector; qκ are the real normal phonon coordinates; ωκ are
the eigenfrequencies of normal vibrations; κ is the phonon index;

∑
κ Vκ(r)qκ is the electron–phonon

coupling term. In comparison with the Hamiltonian in the standard theory of many-phonon transitions
(see [29]), in the theory of elementary electron transfers, the Hamiltonian is complicated merely by an
extra electron potential well V2(r− L) set apart from the original well V1(r) by the distance L ≡ |L| [5,6].
The nuclear reorganization energy E associated with the reorganization of the structure of the nuclear
subsystem of the molecular system during electronic transitions in it (see Section 1), in this case, during
elementary electron transfers in condensed matter, is defined as follows [2–4]

E =
1
2

∑
κ

}ωκq̃2
κ (2)

where q̃κ are the shifts of the normal phonon coordinates qκ, which correspond to the shifts in the
equilibrium positions of the nuclei, caused by the presence of an electron in the medium on the donor
1 or on the acceptor 2.

The solution to the problem is sought by Green’s function method:

GH
(
r, r

′

; q, q′; EH
)
=

∑
s

Ψs(r, q) Ψs ∗
(
r
′

, q′
)

EH − Es − iγ
(3)
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where Ψs(r, q) are the eigenfunctions of the total Hamiltonian H of the system—in our case, the
Hamiltonian (1); (r, q) is the set of all electronic and nuclear (phonon) coordinates; Es are the
eigenvalues of H and EH is the exact value of the total energy of the system; iγ (γ > 0) is the
standard, infinitesimally small imaginary additive—the energy denominator vanishes when γ = 0;
the aforementioned singularity in the rates of “quantum” transitions is eliminated by replacing γ
in the energy denominator of Green’s function (3) with a finite quantity [2–9]. The general formula
for the rate constant of electron photo-transfers is obtained using the technique first described by
Egorov [15,16], which generalizes the generating polynomial technique of Krivoglaz and Pekar [30,31]
in the theory of many-phonon processes [29]; see the review article [2] for details.

3. General Formula for the Rate Constant of Electron Photo-Transfers

The general result for the rate constant (optical absorption) K is expressed in terms of Green’s
function of the elementary electron-charge transfers and two generating functions (see [2,5]):

K ∝
∞∑

ω1=−∞

∞∑
ω′1=−∞

GE(ω1, L)GE
∗

(
ω′1, L

)
×

1
(2πi)3

∮
dx

xω1+1

∮ dy

yω
′

1+1

∮
dz

zω12+1 Q(n1; x, y, z)S(n1; x, y, z)
(4)

where the contours encircle the points x = 0, y = 0, and z = 0, correspondingly. Green’s function
of the elementary electron-charge transfers GE(ω1, L) and the generating functions Q(n1; x, y, z) and
S(n1; x, y, z) can be found in [2,5], where n1 ≡ nκ1,l1 (Planck’s distribution function) is as follows

nκ1,l1 =
[
exp

(
}ωκ,l/kBT

)
− 1

]−1
(5)

The energy }Ω of the absorbed photon and the heat energy }ω12 > 0 are related by the law of
conservation of energy:

}Ω = J1 − J2 + }ω12 (6)

J1 is the electron binding energy on the donor 1 and J2 is the electron-binding energy on the
acceptor 2. The heat energy }ω12 < 0 corresponds to the inverse processes relative to optical absorption,
i.e., to luminescence [3,29] (see Section 10). The wavelength λ, indicated on the x-axis in the figures
below, corresponds to the frequency Ω in Equation (6) by the standard formula λ = 2πc/Ωnrefr (c
and nrefr are the speed of light in vacuum and the refractive index, respectively). The conservation
law (Equation (6)) corresponds to the entire shape of the optical band as a whole: by varying the heat
energy }ω12, we vary the frequency of light Ω and determine one or another part of the absorption
band [2–9,29].

4. The Analytical Result for Optical Absorption Band Shapes and Its Invariance with Respect to
the Change in the Sign of Dozy-Chaos Energy γ

From the general result of dozy-chaos mechanics of elementary electron transfers, Equation (4), the
expression for the light absorption factor K (the optical extinction coefficient ε [2–9,29] is proportional to
K), has been obtained. The obtained expression for K in the framework of the Einstein model of nuclear
vibrations in the framework of the Einstein model of nuclear vibrations (ωκ = constant ≡ ω), although
it is rather complex, is fully expressed in elementary functions and has the following form [2,5,6]:

K = K0 exp W (7)

W = 1
2 ln

(ωτ sinh βT
4π cosh t

)
−

2
ωτ

(
coth βT −

cosh t
sinh βT

)
+(βT − t) 1

ωτΘ −
sinh βT

4ωτΘ2cosh t

(8)
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1 <<
1

ωτΘ
≤

2cosh t
ωτ sinh βT

(9)

where βT ≡ }ω/2kBT,

t =
ωτe

θ

AC + BD
A2 + B2 +

2Θ(Θ − 1)

(Θ − 1)2 + (Θ/θ0)
2 +

θ0
2

θ02 + 1

 (10)

|θ0| >>
E

2J1
(11)

θ ≡
τe

τ
=

L E

}
√

2J1/m
, Θ ≡

τ′

τ
=

E
}ω12

, θ0 ≡
τ0

τ
=

E
γ

(12)

τe =
L√

2J1/m
, τ =

}
E

, τ′ =
1
ω12

, τ0 =
}
γ

(13)

Here, we use the notation

A = cos
(
θ
θ0

)
+ Λ +

(
1
θ0

)2

N (14)

B = sin
(
θ
θ0

)
+

1
θ0

M (15)

C = θ

[
cos

(
θ
θ0

)
−

1− ξ2

2θ0
sin

(
θ
θ0

)]
+ M (16)

D = θ

[
sin

(
θ
θ0

)
+

1− ξ2

2θ0
cos

(
θ
θ0

)]
−

2
θ0

N (17)

and ξ ≡
(
1−

E
J1

)1/2

(J1 > E by definition) (18)

and where we finally have

Λ = −(Θ − 1)2E +

[
(Θ − 1)θ

ρ
+ Θ(Θ − 2)

]
E

1−ρ
1−ξ (19)

M = 2Θ(Θ − 1)E−
[
(2Θ − 1)θ

ρ
+ 2Θ(Θ − 1)

]
E

1−ρ
1−ξ (20)

N = Θ
[
ΘE−

(
θ
ρ
+ Θ

)
E

1−ρ
1−ξ

]
(21)

E ≡ exp
( 2θ

1 + ξ

)
, ρ ≡

√
ξ 2 +

1− ξ 2

Θ
(22)

The factor K0 becomes
K0 = Ke

0Kp
0 (23)

where

Ke
0 =

2τ3 J1

m

(
A2 + B2

)
ρ3Θ4ξ

θ2
[
(Θ − 1)2 +

(
Θ
θ0

)2
]2[

1 +
(

1
θ0

)2
] ·η (24)

and η ≡ exp
(
−

4θ
1− ξ2

)
(25)
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and

Kp
0 =

1
ωτ

[
1 +

sinh(βT − 2t)
sinh βT

]2

+
cosh(βT − 2t)

sinh βT
(26)

Inequalities (9) and (11) are not any significant restrictions on the parameters of the system and
associated with items of routine approximations made in the calculations (see [2]). The time scales τe,
τ, and τ0, given by Equation (13), control the dynamics of elementary electron-transfer processes. They
are discussed in Section 9. The time scale τ′ (see Equation (13)) together with the law of conservation
of energy (6) and the other parameters of a donor–acceptor system control the dynamics of producing
the shape of optical bands [2,4].

Let us consider further the issues related to the change in the sign of the dozy-chaos energy γ.
On the one hand, in standard quantum mechanics, where the value of γ is infinitesimal and where
this value is introduced formally in order to avoid zero in the energy denominator of the spectral
representation of Green’s function (see Equation (3)), the sign of γ can be either positive or negative.
On the other hand, in quantum-classical mechanics, although the value of γ becomes a finite value, the
choice of its sign turns out to be insignificant here too. It is easy to show, for example, that our result
for the light absorption factor K, given by Equations (6)–(26), is an even function of γ. For this, it is
sufficient to consider those equations that include the dimensionless quantity θ0 = E

γ (see Equation
(12)), in which the reorganization energy E is positive by definition (see Equation (2)). So, it is easy to
see that the quantity t = t(Θ,θ0) (see Equation (10)) is an even function of θ0: in the nontrivial term
AC + BD, the cofactors A and C are even functions of θ0, and the cofactors B and D are odd functions
of θ0. Further, the factor Ke

0 (see Equation (24)) is obviously an even function of θ0.
The invariance with respect to the change in the sign of the dozy-chaos energy γ is consistent with

the physical case that both the virtual acts of transformation of electron movements and energies into
nuclear reorganization movements and energies and the reverse acts occur in the transient dozy-chaos
state [4,7–9]. For definiteness, we set γ > 0 here, there, and everywhere.

5. Potential Box with a Movable Wall. Optical Absorption Band Shapes as Dependent on the
Dozy-Chaos Energy γ: From Symmetry to Asymmetry

The reason for the appearance of a singularity in the rates of molecular “quantum” transitions
can be seen already from the example of a one-dimensional potential box with a movable wall [1].
The movable wall corresponds to the reorganization of the nuclear subsystem of the molecular
system. As indicated above (Section 1), within the framework of quantum mechanics, due to the
incommensurability of the masses of electrons and nuclei, the dynamics of nuclear reorganization
is singular. Accordingly, if the movable wall of the potential box moves without friction, then this
corresponds to an infinitely fast expansion of the potential box during the transition of an electron from
the ground state to the first excited state, which leads to a singular “collapse” of their energy levels.

The singularity can be eliminated by assuming that the wall moves with friction [1]. In the
exact theory, this assumption corresponds to the introduction of transient chaos into the dynamics of
reorganization of the electron-nuclear motion, that is, the introduction of dozy chaos.

In Figure 1, optical absorption band shapes (for kBT > }ωκ/2), as dependent on the dozy-chaos
energy γ, are computed from Equations (6)–(26). At high energies γ, the band shape is close to
symmetric and is Gaussian-like (see Section 6). With a decrease in the value of γ, in the red region of the
spectrum, a peak appears against the background of a Gaussian-like band, which, with decreasing γ,
shifts more and more to the red region of the spectrum and becomes more and more pronounced. Thus,
with a decrease in the value of the dozy-chaos energy γ, the band shape transforms from symmetric
to asymmetric.
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Figure 1. Singularity in the rate of molecular quantum transitions: the optical absorption band shape
dependent on the dozy chaos available to a given quantum transition; the band shape with the strongly
pronounced peak (J-band) corresponds to the least dozy chaos [9]. The dozy-chaos-dependent optical
absorption band is displaced to the red spectral region and narrowed. The position, the intensity, and
the width of the optical absorption band are determined by the ratio between the dozy-chaos energy γ
and the reorganization energy E (see Section 4). The smaller the value of γ is, the higher the degree of
organization of the molecular “quantum” transition and the higher the intensity and lower the width
of the optical band. The position of the wing maximum is determined by the energy E, whereas the
position of the peak is determined by the energy γ [9].

6. Passage to the Limit to the Standard Theory of Many-Phonon Transitions and the Symmetry of
the Standard Result. The Reason for the Asymmetry of the Optical Absorption Band Shape in
Dozy-Chaos Mechanics

The limit passage from expressions (6)–(26) for the optical absorption K to the standard result in
the theory of many-phonon transitions [29] can be realized by letting the dozy-chaos energy γ tend to
infinity (θ0 = E/γ→ 0 according to Equation (12)) in Equation (10) for t (see Figure 3 in [2]) and to
zero (θ0 →∞ ) in Equation (24) for Ke

0 (see Equation (162) in [2]). An equation of the standard type for
the optical absorption K (for kBT > }ωκ/2) is thus obtained [2,5]:

K =
a2}√

4πλrkBT
exp

(
−

2L
a

)
exp

− (}ω12 − λr)
2

4λrkBT

 (27)

where a ≡ }/
√

2mJ1 andλr ≡ 2E. A formula of this type was obtained by Markus in his electron-transfer
model [32–37] and is often called the Marcus formula, and the energy λr is called the reorganization
energy of Marcus. Similar and more general formulas were previously obtained in the theory of
many-phonon transitions (see [29,38]) for optical transitions by Huang and Rhys [39] and Pekar [40–42]
(see also Lax [43] and Krivoglaz and Pekar [30]), and for nonradiative transitions, by Huang and
Rhys [39] and Krivoglaz [31].

The result in the standard theory of many-phonon transitions, given by Equation (27) and
corresponding to high (i.e., room) temperatures, is a symmetric Gaussian function for the shape of
the optical absorption band. It completely neglects the dynamics of the transient molecular state.
This result corresponds to the high values of the dozy-chaos energy γ in dozy-chaos mechanics (see
Figure 1). Physically, large values of γ in dozy-chaos mechanics correspond to a pronounced chaos in
the transient state and, hence, a weak organization of the quantum-classical molecular transition (see
Section 1). With a decrease in the dozy-chaos energy γ, the transient state becomes less chaotic and the
organization of the quantum-classical transition increases, which is manifested in the appearance of a
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narrow optical absorption peak in the red spectral region and a strong asymmetry of the absorption
band shape (see Figure 1).

We also note that the half-width of the Gaussian function for the shape of the optical absorption
band (Equation (27))

w1/2 = 2
√

2 ln 2
√

2λrkBT (28)

is determined both by the individual properties of the “donor-acceptor + medium” system, which are
expressed in the reorganization energy λr, and by the properties of an ensemble of these systems, which
are expressed in temperature T. In other words, even within the framework of the well-known standard
theory of many-phonon transitions [29,38], the effects of homogeneous and inhomogeneous broadening
in the optical band cannot be separated. The introduction into the theory of a new “homogeneous effect”
in the form of the dozy-chaos energy γ in Green’s function of the system (Equation (3)) further confuses
homogeneous and inhomogeneous effects in the shape of an optical band, greatly complicating the
analytical result for it (cf. Equation (27) and Equations (6)–(26)). A discussion of the physical meaning
of each of the terms included in this complex analytical result (Equations (6)–(26)) can be found in [2,4].
Our complex result gives a greater variety of optical band shapes (see, e.g., Figure 1) compared to the
two band shapes, Lorentzian and Gaussian, which are the result of homogeneous and inhomogeneous
effects known from the standard quantum theory of spectral line broadening. These two differences can
only be understood in an open quantum system framework where the quantum system is coupled to
an external classical bath. In contrast to the standard quantum theory, where the dynamics of quantum
transitions are not considered, in quantum-classical mechanics, this bath, which is already quantum
here, enters the entire closed quantum “donor-acceptor + medium” system (see the last, phonon term
in the Hamiltonian (1)) and becomes classical only in a dynamic (chaotic) transient state (see Green’s
function (3) with γ >> }ω).

7. The Egorov Resonance

One of the main results of quantum-classical mechanics is a dynamic electron-nuclear-
reorganization resonance (the so-called transferon resonance) [5,6] (see also [2]) or, according to [10],
the Egorov resonance [1,10]

(2τe)
−1 = τ−1 (29)

where τe is the characteristic time of motion of the electron in the donor–acceptor system and τ is the
characteristic time of motion of the reorganization of nuclear vibrations in the environment. These
times are given by the following equations

τe =
L√

2J1/m
(30)

where L is the distance between the donor and the acceptor of an electron (see Section 2; L is equal to
the length of the polymethine chain—the main optical chromophore of polymethine dyes, (see Section
7 in [1]) [3–9]; J1 is the binding energy of the electron on the donor 1 (see Section 3; electronic energy of
the ground state of the dye) [3–9], and

τ =
}
E

(31)

where E is the energy of reorganization of the nuclear vibrations in the medium (see Section 2, Equation
(2)). Equations (30) and (31) are a part of Equation (13) (see Section 4).

8. Implementation of the Egorov Resonance in the Quasi-Symmetric Serious of Optical Band
Shapes of a Representative Polymethine Dye

Experimentally, the dynamic electron-nuclear-reorganization resonance (the Egorov resonance,
see Section 7) manifests itself, for example, in polymethine dyes [3–9], namely, in the resonance nature
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of the dependence of the shape of the optical absorption band on the length of the polymethine chain L
(see Figure 2). The optical band with n = 3 corresponds to the Egorov resonance or is close to it.
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dependent on the length of the polymethine chain L = 2(n + 2)d , where d are certain roughly
equal bond lengths in the chain (thiapolymethinecyanine in methanol at room temperature; ε is the
extinction coefficient) [4,9]. The optical absorption band with n = 3 corresponds to the dynamic
electron-nuclear-reorganization resonance (the Egorov resonance, see Section 7) or is close to it.
(Original citation)—Reproduced by permission of The Royal Society of Chemistry. For the short chains
(n = 0, 1, 2, 3), the tunnel effects, associated with the quantity η in Equation (25), can be neglected (η = 1).
For the long chains (n = 4, 5), the tunnel effects are small but they must be taken into account (η < 1).
The absorption bands are computed by Equations (6)-(26) with η ≤ 1 instead of the Gamow tunnel factor
(Equation (25)) when fitting them to the experimental data of Brooker and co-workers [44] (a) in terms
of wavelength λmax, extinction εmax, and half-width w1/2 with a high degree of accuracy. The following
parameters of the “dye + environment” system are used [6]: m = me, where me is the electron mass; d =

0.14 nm; ω = 5× 1013 s−1; nrefr = 1.33; for n = 0, 1, 2, 3, 4, 5, one has J1 = (5.63, 5.40, 4.25, 3.90, 3.74, 3.40)
eV, J1 − J2 = (1.71, 1.31, 1.11, 0.90, 0.74, 0.40) eV, E = (0.245, 0.248, 0.256, 0.275, 0.297, 0.496) eV, and
γ = (0.402, 0.205, 0.139, 0.120, 0.129, 0.131) eV, respectively; for n = 0, 1, 2, 3, factor η = 1, and for
n = 4, 5, factor η = 0.55, 0.1, respectively; T = 298 K.

To fit the theoretical result for the optical bands, which is given by Equations (6)–(26) to the
corresponding experimental data (Figure 2a), we need estimated numerical values for the ground-state
energies of the dye monomers, J1M, and also for the energy gaps between their ground and excited states,
J1M − J2M. These estimates follow from literature data [5,46–49]: J1M � 5 eV and J1M − J2M � 1 eV. In
addition, we need estimated numerical values for the reorganization energy of the nuclear environment
of dye monomers, EM. The estimate of EM is found from the Egorov resonance (see Equations (29)–(31))

from the length of the optical chromophore [5,6]:
√

2J1M/m
2LM

= EM
} , where LM is the length of the optical

chromophore of the dye monomers (LM = 10d, d = 0.14 nm; see the caption to Figure 2).
Under resonance conditions (Equation (29)), the motion of the reorganization of the nuclei of the

medium significantly contributes to the electronic transition in the optical π-electron chromophore—the
polymethine chain with n = 3 as compared to the electronic transition in the optical π-electron
chromophores of polymethine dyes with n , 3. As can be seen from the numerical data in the caption to
Figure 2, the series of the dozy-chaos energies γ has a minimum at n = 3. Therefore, the appearance of
the resonant band corresponding to n = 3 can also be interpreted as the transfer of chaos (dozy chaos)
from the peak of a band into its wing(s) by a chaotic motion of the quantum-classical π-electronic state
of the polymethine chain embedded in the medium as a result of the transition from “non-resonant”
chains with n , 3 to the “resonant” chain with n = 3.
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Thus, the presence of symmetry in the shape of an optical band at high (room) temperatures
is associated with a primitive, Franck–Condon picture of the dynamics of molecular “quantum”
transitions. The loss of this symmetry and the appearance of a peak against the background of a wide
band wing are related, as already noted in Section 6, to the effect of self-organization of transition
dynamics in dozy-chaos mechanics, which is expressed, in particular, in the “pumping” of dozy chaos
from one part of the optical band to another part (from the peak region to the wing). Therefore, the
series for the shape of the optical bands of a representative polymethine dye, thiapolymethinecyanine,
depending on the length of its polymethine chain, has a quasi-symmetric character with respect to the
Egorov resonance (see Figure 2), which corresponds to the most organized quantum-classical transition.

9. The Egorov Resonance and Its “Antisymmetric Twin”

The five principal parameters of the problem, viz. electron mass m, electron-donor binding energy
J1 ≡ J, distance between the donor and the acceptor L, environmental reorganization energy E, and
dozy-chaos energy γ, may be combined into three quantities:

τe =
L√

2J/m
, τ =

}
E

, and τ0 =
}
γ

(32)

having a time dimension (cf. Equations (13)) and representing two physically meaningful resonances [6]:

(2τe)
−1 = τ−1 and (2τe)

−1 = τ−1
0 (33)

The former resonance is between the extended electron motion and the ordered constituent
of the environmental nuclear reorganization motion, i.e., it is the Egorov resonance (cf. Equations
(29)–(31)). The latter is between the electron motion and, conversely, the chaotic constituent of nuclear
reorganization. Since the dozy-chaos energy γ can be considered, in a sense, as the imaginary part
of a complex reorganization energy in which the reorganization energy E is its real part [9], then this
second resonance can be considered as some antisymmetric twin with respect to the Egorov resonance.
Both of these resonances can be regarded as the simplest dynamic invariants for the transient state.
The dynamic resonance-invariants are alternatives to the Born–Oppenheimer adiabatic invariants
(potential energy surfaces). In other words, these two resonances are the simplest manifestation of the
relationship between electron and nuclear movements in the transient state.

Details of the transient-state-dynamics interpretation based on the Heisenberg uncertainty
relation can be found in [6–8]. In particular, according to this interpretation, in the simplest cases,
elementary electron transfers can be considered as a motion of a free electron–phonon quasiparticle,
the so-called transferon, corresponding to the Egorov resonance, or, alternatively, as a motion of a free
electron–phonon antiquasiparticle, the so-called dissipon, corresponding to the antisymmetric twin of
the Egorov resonance.

10. Symmetry between Optical Absorption and Luminescence in the Standard Theory and Its
Violation in Dozy-Chaos Mechanics as a Consequence of the Dynamic Organization of
Quantum-Classical Transitions

10.1. Luminescence and Absorption Spectra. Their Mirror Symmetry

According to the standard theory of many-phonon processes [29], which ignores the dynamics of
the transient state, the transition from absorption spectra to luminescence spectra is carried out by
changing the sign before the heat energy }ω12. Then, the luminescence and absorption spectra appear
to be mirror-symmetric with respect to the “pure electronic” transition line }Ω = J1 − J2. If we apply
this standard rule to the shapes of optical absorption bands obtained according to quantum-classical
mechanics from Equations (6)–(26) and shown in Figure 1, then it can be seen that with decreasing
chaos (with decreasing the dozy-chaos energy γ), which corresponds to improving the dynamic
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self-organization of the “quantum” transition, the luminescence and absorption bands narrow and
shift towards each other and towards the “pure electronic” transition line (see Figure 1 in [3]). In other
words, with the improvement of the dynamic self-organization of quantum-classical transitions, the
corresponding luminescence and absorption bands are narrowed and their Stokes shift is reduced. A
detailed discussion of the physics related to the nature of the change in the position and shape of the
optical bands with decreasing quantity of γ can be found in [4,9].

10.2. Optical Spectra, Nature of the Small Stokes Shift, and Dynamic Asymmetry of Luminescence and
Absorption

A striking example of the considered molecular “quantum” transitions, with the dynamics of their
transient states taken into account, are the “quantum” transitions in the basic optical chromophore of
J-aggregates of polymethine dyes embedded in a solvent—in the system “J-aggregate + environment” [4–
8,10,11].

Figure 3 compares the results of the experiment [50] with the result of fitting them to the theoretical
result (6)–(26) for optical absorption and the same theoretical result, in which the sign in the heat energy
}ω12 is changed to negative (Section 10.1), for luminescence (fluorescence). In the experiment, a very
small Stokes shift was obtained for the J-band [50]. Therefore, we are forced to assume that the energy
gap between the ground and excited electron states for fluorescence is greater than this gap for optical
absorption [3]. This fact means that at the very initial stage of spontaneous emission, the binding
energy of the electron in the excited state of the molecule, before the electron creates a photon, decreases
markedly. This effect can be associated with the spontaneous loosening of the excited electronic state
immediately before the act of production of a photon by an electron during spontaneous emission [3].
(For polymethine dyes and J-aggregates, the universal effect of spontaneous dynamic loosening is
abnormally strong due to the very long π-electron systems in which the quantum-classical transitions
under consideration occur [3].) Apparently, nothing of the kind occurs with optical absorption. In
other words, with respect to the loosening effect, the processes of optical absorption and luminescence
are asymmetric.
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energy }ω12. See details in the Egorov, Vladimir (2018), Mendeley Data, V2, https://doi.org/10.17632/

h4g2yctmvg.2.

10.3. Luminescence and Absorption Spectra. Their Mirror Asymmetry

It can be seen from Figure 3 that when the sign changes only in the heat energy }ω12, the
theoretical absorption and luminescence spectra turn out to be symmetric with respect to each other
(see Section 10.1), while the experiment shows their mirror asymmetry. According to quantum-classical
mechanics [3], when passing from optical absorption to luminescence, the sign should be changed not
only in the heat energy }ω12 but also in the quantity L (the distance between the donor and acceptor in

https://doi.org/10.17632/h4g2yctmvg.2
https://doi.org/10.17632/h4g2yctmvg.2
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the elementary electron-charge transfers). The change in the sign of L corresponds physically to the
reverse motion in space of the electron charge in the luminescence process relative to the absorption
process. After that, the luminescence and absorption spectra cease to be mirror-symmetric with respect
to the “pure electronic” transition line }Ω = J1 − J2 and, as we can see from Figure 4, the theory
reproduces well the asymmetry of the absorption and luminescence spectra, which is observed in the
experiment. This mirror asymmetry of the spectra is a consequence of taking the chaotic dynamics of
the transient state of quantum-classical transitions into account, and it manifests itself under conditions
of fairly weak dozy chaos, that is, under conditions of a sufficiently high degree of self-organization of
quantum-classical transitions.Symmetry 2020, 12, x FOR PEER REVIEW  13 of 20 
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Figure 4. (a) The same as in Figure 3a. (b) Theoretical absorption and fluorescence spectra [3], fitted
to the experimental data [50] (see (a)) in the J-aggregates. In the analytical result for the shape of the
optical bands (Equations (6)–(26)), the transition from absorption spectrum to fluorescence spectrum
is carried out by changing the sign before the heat energy }ω12 and before the length of the optical
chromophore (electron-charge-transfer distance) L as well. See details in the Egorov, Vladimir (2018),
Mendeley Data, V2, https://doi.org/10.17632/h4g2yctmvg.2.

11. A Simplified Version of Dozy-Chaos Mechanics—Nonradiative Transitions

All of the results of the optical spectra match, generally, weak dozy chaos (γ << E). Strong dozy
chaos (γ ≥ E) leads to the elucidation of important patterns in the reactions of proton transfers [12,51]
and comparatively fresh temperature-dependent effects on electron transfers in Langmuir–Blodgett
films [13,52]. In the case of strong dozy chaos, the dynamics of quantum-classical transitions become
weakly dependent on dozy chaos, and the electronic component of the complete electron-nuclear
amplitude of transitions can be fitted by the Gamow tunnel exponential, dependent on the transient
phonon environment. This elementary method permit us to evade the consideration of the imaginary
additive iγ in the spectral representation of the complete Green’s function and to word the physical
nature of the transient state, not in the concept of dozy chaos but in the concept of a large number of
tunnel and over-barrier energy states providing the “quantum” transition of an elementary charged
particle. This method was worked out [16] long before the development of quantum-classical
(dozy-chaos) mechanics [2–9], and now we can say that the concept of a large number of tunnel and
over-barrier states is a simplified version of the concept of dozy chaos.

The general result for the rate constant in the simplified version of dozy-chaos mechanics
K is expressed in terms of the the Gamow tunnel exponential, dependent on the transient
phonon-environment-energy }ω1 and one generating function [15,16]:

K ∝
∞∑

ω1=−∞

∞∑
ω′1=−∞

G0(ω1, L)G0 ∗
(
ω′1, L

)
×

1

(2πi)3

∮
dx

xω1+1

∮
dy

yω
′

1+1

∮
dz

zω12+1
S(n1; x, y, z) (34)

https://doi.org/10.17632/h4g2yctmvg.2
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where the contours encircle the points x = 0, y = 0, and z = 0, correspondingly (cf. Equation (4)). The
Gamow tunnel exponential is

G0 = G0(α, L) = exp(−αL) (35)

where the function α = α(ω1) is given by the following formula:

α ≡ α(ω1) = [2m(J + }ω1)]
1/2/} (36)

(here, there, and everywhere, J ≡ J1). The generating function is as follows:

S(n1; x, y, z) = exp
{
−
∑
κ

q̃2
κ(2nκ1 + 1) + 1

2
∑
κ

q̃2
κ[(nκ1 + 1)(xωκyωκ + 1)zωκ

+nκ1(x−ωκ y−ωκ + 1)z−ωk ]
} (37)

The result (34) applies to both optical and nonradiative processes. In the case of optical processes,
the heat energy }ω12 is determined from the law of conservation of energy (6) (}ω12 > 0—absorption
and }ω12 < 0—luminescence), where the frequency Ω ≡ 0 in the cases of nonradiative endothermic
and exothermic processes:

}ω12 = J2 − J1 < 0 (38)

and
}ω12 = J1 − J2 ≡ −}ω21 > 0 (39)

From the general result for the rate constant in the simplified version of dozy-chaos mechanics,
Equations (34)–(39), in the framework of the Einstein model of nuclear vibrations (ωκ = constant ≡ ω),
the simple expression for the rate constant K has been obtained [16]:

K ∝ exp
{
−

2L
a −

2E
}ω

[
coth }ω

2kBT −
cosh t

sinh(}ω/2kBT)

]
+

(
}ω

2kBT − t
)
ω12
ω −

}ω sinh(}ω/2kBT)
4E cosh t

(
ω12
ω

)2
} (40)

(cf. Equations (7) and (8)), where exp
(
−

2L
a

)
is the Gamow exponential (cf. Equation (27)) and

t =
ω L√
2J/m

(41)

(cf. Equations (10) and (13)). If, as in the case of the complete theory for optical processes (Sections 2–4),
we assume that the expression for the rate constant of the reverse process Krev is obtained by changing
the sign in the heat energy }ω12 and in the donor–acceptor distance L (see Sections 10.1 and 10.3) in
corresponding expression for the rate constant of the direct process K in the considered simplified
version of dozy-chaos mechanics, then, applying this position to Equation (40), we obtain

Krev

K
= exp

(
−
}ω12

kBT

)
exp

(4L
a

)
≡ K−1

eq exp
(4L

a

)
(42)

where Keq exp
(
−

4L
a

)
is the equilibrium constant of charged-particle-transfer reactions in the simplified

version of dozy-chaos mechanics. In the limit L→ 0 , we obtain from Equation (42) the well-known
detailed balance relationship in statistical physics and in the standard theory of many-phonon
transitions [29,31].
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12. The Simplified Version of Dozy-Chaos Mechanics: Proton-Transfer Reactions. On Symmetry
in the Brönsted Relationship

Grounded on the simplified version of dozy-chaos mechanics [16] (Section 11), in 1990, a theoretical
description of the basic experimental patterns in the Brönsted relationship [51] for the reactions of
proton transfer (acid-base catalysis) was given [12]. The Brönsted relationship was found by Brönsted
and Pedersen in 1924 (see [51]). The theory in [16] is immediately appropriate to the explanation of
electron transfers. To explain the reactions of transfers of heavy charged particles (proton transfers),
the result of thermic fluctuations of the potential barrier transparence must be considered because of
fluctuations in the barrier width. In contrast to the elementary proton transfer, the electron-transfer
process is insensitive to small fluctuations in the barrier width due to the large size of the electronic
wave function in the initial and final states. The analytical formulas for the proton-transfer rate
constants are obtained. In acid catalysis, the empirical Brönsted relationship is

lgK(acid) = α lgKemp
eq + a (43)

where K(acid) is the rate constant, Kemp
eq is the empirical equilibrium constant, and α and a are constants.

In base catalysis, the empirical Brönsted relationship is

lg K(base) = β lg Kemp
eq + b (44)

The theoretically-obtained Brönsted coefficients α and β (the Einstein model of nuclear vibrations
ωκ = constant ≡ ω) for direct (acid catalysis) and inverse (base catalysis) reactions [12]

α =
1
2
+

L kBT

}(2J/m)1/2
−

[
1−

E sinh t
2J sinh(}ω/2kBT)

]
2m(kBT)2

}2γb
(45)

and

β =
1
2
−

L kBT

}(2J/m)1/2
+

[
1−

E sinh t
2J sinh(}ω/2kBT)

]
2m(kBT)2

}2γb
(46)

(t is given by Equation (41) and γb is barrier rigidity) are symmetric relative to 1
2 and meet the generally

known empirical equality [53,54]
α+ β = 1 (47)

(which directly follows from the Brönsted relationships (43) and (44)).

13. The Simplified Version of Dozy-Chaos Mechanics: Symmetrization of the Amplitude and
Rate Constant of the Transition for the Case of Different Electron–Phonon Interactions on the
Donor and Acceptor

Until now, both in the case of the complete theory for optical processes (Sections 2–4) and in the
case of its simplified version for nonradiative processes (Section 11), we have considered the case
of the same electron–phonon interaction when a light charged particle, in particular an electron, is
localized on the donor or on the acceptor. In other words, it was assumed that the reorganization
energy E ≡ E1 = E2 (Equation (2)). For example, “quantum” transitions and the corresponding
shapes of optical bands in polymethine dyes are well described by the case of the same value of the
electron–phonon interaction on the donor and on the acceptor, because charge alternation occurs in the
polymethine chain upon optical excitation [1,3–6]. In this section, we will briefly consider the case
of different electron–phonon interactions when an electron is localized on a donor or acceptor. This
corresponds to different magnitude shifts of the normal phonon coordinates q̃κ1 and q̃κ2 (in the case of
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the same interaction, q̃κ ≡ q̃κ1 = −q̃κ2 [2]) and an obvious redefinition of the reorganization energy E
(Equation (2)):

E1,2 =
1
2

∑
κ

}ωκq̃2
κ1,2 (48)

where E1 , E2. For example, in the case of nonradiative processes, the change in sign in the heat
energy }ω12 (Equations (38) and (39)) and in the donor–acceptor distance L ≡ |L ≡ L12| (Equation (1)) is
associated with the permutation of indices 1 and 2 in the reverse order. The assumption E1 , E2 leads
to asymmetry with respect to the permutation of indices 1 and 2 in the expression for the rate constant
of transitions and the loss of connection between forward and reverse processes, expressed in Equation
(42). To restore this connection, it is necessary to symmetrize the expression for the amplitude and rate
constant of electron transfers with respect to different values of the electron–phonon interaction at the
donor and at the acceptor, which leads to the case of reorganization energies E1 , E2.

The symmetrization method proposed in [14,17,18] consists of the fact that, in addition to the
transition amplitude [2–4]

A12 =
〈
Ψ2(r− L, q)

∣∣∣V∣∣∣Ψ1(r, q)
〉

(49)

which, in view of taking the wave function Ψ2 in the Born–Oppenheimer adiabatic approximation
Ψ2 = ΨBO

2 and taking into account the entire dynamics of the transition only in the wave function
Ψ1 = G Ṽ ΨBO

1 (G is Green’s function of the Hamiltonian H − Ṽ, Ṽ ≡
∑
κ

Vκ(r)(qκ − q̃κ) [2–4]), can

be called the amplitude of the transition on the acceptor Aa
12, we introduce into the theory also

the amplitude
Ad

12 = Aa
21 (50)

in which, on the contrary, the wave function Ψ1 is taken in the adiabatic approximation Ψ1 = ΨBO
1 , and

the entire dynamics of the transition are taken into account only in the wave function Ψ2 = GṼ ΨBO
2 .

This new amplitude Ad
12 can be called the amplitude of the transition on the donor. Then, the half-sum

of these two amplitudes is taken as the total transition amplitude:

A12 =
Ad

12 + Aa
12

2
= A21 (51)

Since the symmetrization is carried out only with respect to the electron–phonon interaction, in
Equation (51), the permutation of indices 1 and 2 in the quantity L12 is not performed and the sign of
L ≡ |L| ≡ |L12| does not change.

Using Equation (51), for the case of different electron–phonon interactions on the donor and
acceptor in the framework of the Einstein model of nuclear vibrations (ωκ = constant ≡ ω), the simple
analytical expression for the rate constant has been obtained [17,18]:

K ∝ 1
2

(E1e−t+E2et

E1et+E2e−t

)ω12
2ω

+
(

E1e−t+E2et

E1et+E2e−t

)− ω12
2ω


× exp

{
−

2L
a −

E1+E2
}ω coth }ω

2kBT +

√
(E1e−t+E2et)(E1et+E2e−t)

}ω sinh(}ω/2kBT)

+
(

}ω
2kBT − t

)
ω12
ω −

}ω sinh(}ω/2kBT)

2
√
(E1e−t+E2et)(E1et+E2e−t)

(
ω12
ω

)2
} (52)

where e±t
≡ exp(±t). Substituting E2 = E1 ≡ E into Equation (52), we obtain Equation (40) for the rate

constant in the case of the same electron–phonon interaction on the donor and acceptor. It is easy to see
that Equation (52) satisfies the relationship of detailed balance in the simplified version of dozy-chaos
mechanics (Equation (42)).
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14. Conclusions

In this final section, we will list all kinds of symmetries in dozy-chaos mechanics of elementary
electron transfers considered in the article and discuss their physical meaning.

First of all, one should note the symmetry associated with the invariance of the expression for
the rate constant of elementary electron transfers with respect to sign reversal in the dozy-chaos
energy γ (Section 4). This invariance is consistent with the physical case that both the virtual acts
of transformation of electron movements and energies into nuclear reorganization movements and
energies and the reverse acts occur in the transient dozy-chaos state [4,7–9].

The result in the standard theory of many-phonon transitions [29], corresponding to high (that is,
room) temperatures, is a symmetric Gaussian function for the shape of the optical absorption band.
It completely neglects the dynamics of the transient molecular state. This result corresponds to the
high values of the dozy-chaos energy γ in dozy-chaos mechanics (see Figure 1). Physically, the high
values of γ in dozy-chaos mechanics correspond to the weak organization of the quantum-classical
molecular transition (Section 1). With a decrease in the dozy-chaos energy γ, the organization of the
quantum-classical transition increases, which is manifested in the appearance of a narrow optical
absorption peak in the red region of the spectrum and strong asymmetry of the absorption band
(Section 5, Figure 1). In other words, the presence of symmetry in the shape of an optical band
at high (room) temperatures is associated with a primitive, Franck–Condon picture of molecular
“quantum” transitions. The loss of this symmetry is associated with taking into account the effect
of self-organization of the dynamics of transitions in dozy-chaos mechanics, which is expressed, in
particular, in the “pumping” of dozy chaos from one part of the optical band (narrow peak) to another
part (wide wing).

A series for the shape of optical absorption bands in polymethine dyes, depending on the length
of the polymethine chain, has a quasi-symmetric and resonant character, where a certain “average”
chain length corresponds to the resonance (Section 8, Figure 2). In theory, this resonance—the “center
of symmetry” of the series—is the Egorov resonance (Section 7).

An important illustration of the dynamics of the transient state for the Egorov resonance (Equations
(29)–(31)) is a qualitative picture of the dynamics based on the use of the Heisenberg uncertainty
relation [6–8] (Section 9). In this picture, a quasiparticle called transferon corresponds to the Egorov
resonance. This quasiparticle has an antisymmetric twin—an antiquasiparticle called dissipon (Equation
(33)). The transferon is depicted by a narrow optical band and the dissipon by a broad one. Strictly
speaking, the dissipon is a certain broad resonance rather than (narrow) resonance proper.

Dozy-chaos mechanics, where the transition from absorption spectra to luminescence spectra is
carried out by changing only the sign in the heat energy }ω12, as in the standard theory of many-phonon
transitions [29], gives a mirror-symmetric picture of the shapes of absorption and luminescence bands
(Section 10.1). However, the need to take into account the dynamics of the “quantum” transition in the
theory leads to the need to change the sign in the donor–acceptor distance L as well. This, in turn, leads
to the appearance of mirror asymmetry in the pattern of absorption and luminescence band shapes
(Section 10.3): transitions with light emission give narrower bands in comparison with absorption
bands. Physically, this means that, as a result of taking into account the chaotic dynamics of “quantum”
transitions in dozy-chaos mechanics, transitions with emission of photons show themselves to be more
organized in comparison with transitions with absorption of photons.

Nonradiative transitions are considered within the framework of a simplified version of dozy-chaos
mechanics, in which the electronic component of the complete electron-nuclear amplitude of transitions
is fitted by the Gamow tunnel exponential, dependent on the transient phonon environment (Section 11).
As in dozy-chaos mechanics for optical processes in its full formulation, this simplified version of
dozy-chaos mechanics is considered for the case of the same electron–phonon interactions on the
donor and acceptor. Direct and reverse processes turn out to be related not by the standard detailed
balance relationship known from statistical physics but by a new, more complex, detailed balance
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relationship, which, in addition to the standard equilibrium constant, includes an exponential factor
with the donor–acceptor distance in the exponent (Equation (42)).

Within the framework of the simplified version of dozy-chaos mechanics and the Einstein model
of nuclear vibrations, the previously obtained [12] expressions for the Brönsted coefficients α and β for
proton-transfer reactions (Section 12), which satisfy the well-known symmetric relation (Equation (47)),
are given.

A simplified version of dozy-chaos mechanics is also considered for the case of electron–phonon
interactions on the donor and acceptor of different magnitudes (Section 13), where a special procedure
for the symmetrization of the total amplitude of the quantum-classical transition (Equation (51)) and
the corresponding rate constant is performed. The analytical result obtained earlier [17,18] for the
rate constant of nonradiative transitions (Equation (52)), which satisfies the new detailed balance
relationship (Equation (42)), is presented.

In conclusion, we note that it is of interest to generalize dozy-chaos mechanics for optical processes
in its full formulation (Sections 2–4) for the case of different electron–phonon interactions on the donor
and acceptor, as well as to construct a theory of nonradiative dozy-chaos processes in its full version. An
important point in the formulation of the problem in the theory of nonradiative dozy-chaos processes
is the determination of the perturbation operator in the amplitude of the transition which causes the
nonradiative transition. In the standard theory of many-phonon transitions [29], the well-known
operator of nonadiabaticity [29,31] is taken as such an operator (see [2]). It is also of interest to
generalize dozy-chaos mechanics to the case of nonlinear optics [1,10,19].
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