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Abstract: In this paper, we advance the study of plithogenic hypersoft set (PHSS). We present four
classifications of PHSS that are based on the number of attributes chosen for application and the nature
of alternatives or that of attribute value degree of appurtenance. These four PHSS classifications
cover most of the fuzzy and neutrosophic cases that can have neutrosophic applications in symmetry.
We also make explanations with an illustrative example for demonstrating these four classifications.
We then propose a novel multi-criteria decision making (MCDM) method that is based on PHSS, as an
extension of the technique for order preference by similarity to an ideal solution (TOPSIS). A number
of real MCDM problems are complicated with uncertainty that require each selection criteria or
attribute to be further subdivided into attribute values and all alternatives to be evaluated separately
against each attribute value. The proposed PHSS-based TOPSIS can be used in order to solve these real
MCDM problems that are precisely modeled by the concept of PHSS, in which each attribute value
has a neutrosophic degree of appurtenance corresponding to each alternative under consideration,
in the light of some given criteria. For a real application, a parking spot choice problem is solved
by the proposed PHSS-based TOPSIS under fuzzy neutrosophic environment and it is validated by
considering two different sets of alternatives along with a comparison with fuzzy TOPSIS in each case.
The results are highly encouraging and a MATLAB code of the algorithm of PHSS-based TOPSIS
is also complied in order to extend the scope of the work to analyze time series and in developing
algorithms for graph theory, machine learning, pattern recognition, and artificial intelligence.

Keywords: Soft set; hypersoft set; plithogenic hypersoft set (PHSS); multi-criteria decision
making (MCDM); PHSS-based TOPSIS

1. Introduction

A strong mathematical tool is always needed in order to combat real world problems involving
uncertainty in the data. This necessity has urged scholars to introduce different mathematical tools
to facilitate the world for solving such problems. In 1965, the concept of fuzzy set was introduced
by Zadeh [1], in which each element is assigned a membership degree in the form of a single crisp
value in the interval [0, 1]. It has been studied extensively by the researchers and a number of real life
problems have been solved by fuzzy sets [2–5]. However, in some practical situations, it is seen that
this membership degree is hard to be defined by a single number. The uncertainty in the membership
degree became the cause to introduce the concept of interval-valued fuzzy set in which the degree
of membership is an interval value in [0, 1]. Later on, the concept of intuitionistic fuzzy set (IFS) was
proposed by Atanassov [6] in 1986, which incorporates the non-membership degree. IFS had many
applications [7–10].
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However, IFS is unable to deal with indeterminate information, which is very common in belief
systems. This inadequacy was addressed by Smarandache [11] in 2000, who introduced the concept of
neutrosophic set in which membership (T), indeterminacy (I) and non-membership (F) degrees were
independently quantified i.e., T, I, F ∈ [0, 1] and the sum T + I + F need not to be contained in [0, 1].
All of these mathematical tools have been thoroughly explored and successfully applied to deal
with uncertainties [12–15], yet these tools usually fail to handle uncertainty in a variety of practical
situation, because these tools require all notions to be exact and do not possess a parametrization tool.
Consequently, soft set was introduced by Molodstsov [16] in 1999, which can be regarded as a general
mathematical tool to deal with uncertainty. Molodstsov [16] defined soft set as a parameterized family
of subsets of a universe of discourse. In 2003, Maji et al. [17] introduced aggregation operations on soft
sets. Soft sets and their hybrids have been successfully applied in various areas [18–21].

In a variety of real life MCDM problems, the attributes need to be further sub-divided into
attribute values for a better decision. This need was fulfilled by Smarandache [22], who introduced the
concept of hypersoft set as a generalization of the concept of soft set in 2018. Besides, Smarandache [22]
introduced the concept of plithogenic hypersoft set with crisp, fuzzy, intuitionistic fuzzy, neutrosophic,
and plithogenic sets. In 2020, Saeed et al. [23] presented a study on the fundamentals of hypersoft set
theory. Smarandache [24,25] developed the aggregation operations on plithogenic set and proved that
the plithogenic set is the most generalized structure that can be efficiently applied to a variety of real
life problems [26–29].

A PHSS-based TOPSIS is proposed in the article to deal with MCDM problem, in which attribute
may have attribute values and each attribute value has a neutrosophic degree of appurtenance of
each alternative. The proposed method is authenticated by taking two different sets of alternatives.
A comparison with fuzzy TOPSIS is made in each case. It shows that the results are highly
inspiring. A MATLAB code of the algorithm of PHSS-based TOPSIS is also complied in order
to encompass the scope of the work to analyze time series and in developing algorithms for graph
theory, artificial intelligence, machine learning, pattern recognition, and neutrosophic applications in
symmetry. It appears quite pertinent to point out that the article gives detailed insight on PHSS with
related definitions and its implementation in MCDM process. The scope of the work can be extended
in other mathematics directions as well by introducing important theorems and propositions [24].

The remainder of this article is organized, as follows. In Section 2, we briefly review some
basic notions, leading to the definitions of soft sets, hypersoft sets, plithogenic sets, and plithogenic
hypersoft sets (PHSSs), along with an illustrative example. Section 3 consists of the four proposed
classifications of PHSSs based on different criteria. More explanations with an illustrative example
for the four classifications are also made. In Section 4, the algorithm of the proposed PHSS-based
TOPSIS is given, along with its application to a real life parking spot choice problem under fuzzy
neutrosophic environment and its comparison with fuzzy TOPSIS. Section 5 provides the conclusion
and future directions.

2. Preliminaries

This section comprises of some necessary basic concepts that are related to plithogenic hypersoft
set (PHSS), which is also defined in this section along with an illustrative example for a clear
understanding. Throughout the study, let U be a non-empty universal set, P(U ) be the power set of
U , X ⊆ U be a finite set of alternatives, and A be a finite set of n distinct parameters or attributes,
as given by

A = {a1, a2, · · · , an}, n ≥ 1.

The attribute values of a1, a2, · · · , an belong to the sets A1, A2, . . . , An, respectively, where Ai ∩ Aj = φ,
for i 6= j, and i, j ∈ {1, 2, . . . , n}. Moreover, we consider a finite number of uni-dimensional attributes
and each attribute has a finite discrete set of attribute values. However, it is worth mentioning that
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the attributes may have an infinite number of attribute values. In such a case, every structure with
non-Archimedean metrics can be dealt in depth [30,31].

2.1. Soft Sets

A soft set over U is a mapping F : B → P(U ), B ⊆ A with the value FB(α) ∈ P(U ) at α ∈ B and
FB(α) = φ if α 6∈ B. It is denoted by (F ,B) and written as follows [16]:

(F ,B) = {(α,FB(α)) : α ∈ B, FB(α) ∈ P(U )}.

Moreover, a soft set over U can be regarded as a parameterized family of the subsets of U . For an
attribute α ∈ B, FB(α) is considered as the set of α-approximate elements of the soft set (F ,B).

2.2. Hypersoft Sets

Let C denote the cartesian product of the sets A1, A2, . . . , An, i.e., C = A1 × A2 × . . .× An, n ≥ 1.
Subsequently, a hypersoft set (H, C) over U is a mapping defined by H : C → P(U ) [22]. For an
n-tuple (γ1, γ2, . . . , γn) ∈ C,, where γi ∈ Ai, i = 1, 2, 3, . . . , n, a hypersoft set is written as

(H, C) = {(γ,H(γ)) : γ = (γ1, γ2, . . . , γn) ∈ C, H(γ) ∈ P(U )}.

It may be noted that hypersoft set is a generalization of soft set.

2.3. Plithogenic Sets

A set X is called a plithogenic set if all of its members are characterized by the attributes under
consideration and each attribute may have any number of attribute values [24]. Each attribute value
possesses a corresponding appurtenance degree of the element x, to the set X, with respect to some
given criteria. Moreover, a contradiction degree function is defined between each attribute value and
the dominant attribute value of an attribute in order to obtain accuracy for aggregation operations on
plithogenic sets. These degrees of appurtenance and contradiction may be fuzzy, intuitionistic fuzzy or
neutrosophic degrees.

Remark 1. Plithogenic set is regarded as a generalization of crisp, fuzzy, intuitionistic fuzzy. and neutrosophic
sets, since the elements of later sets are characterized by a combined single attribute value (degree of appurtenance),
which has only one value for crisp and fuzzy sets i.e., membership, two values in case of intuitionistic fuzzy set
i.e., membership and non-membership, and three values for neutrosophic set i.e., membership, indeterminacy,
and non-membership. In the case of plithogenic set, each element is separately characterized by all attribute
values under consideration in terms of degree of appurtenance.

2.4. Plithogenic Hypersoft Set (PHSS)

Let X ⊆ U and C = A1 × A2 × . . .× An, where n ≥ 1 and Ai is the set of all attribute values
of the attribute ai, i = 1, 2, 3, . . . , n. Each attribute value γ possesses a corresponding appurtenance
degree d(x, γ) of the member x ∈ X, in accordance with some given condition or criteria. The attribute
value degree of appurtenance is a function that is defined by

d : X× C → P([0, 1]j), ∀ x ∈ X,

such that d(x, γ) ∈ [0, 1]j, and P([0, 1]j) is the power set of [0, 1]j, where j = 1, 2, 3 are for fuzzy,
intuitionistic fuzzy, and neutrosophic degree of appurtenance, respectively.

Furthermore, the degree of contradiction (dissimilarity) between any two attribute values of the
same attribute is a function given by

c : Ai × Ai → P([0, 1]j), 1 ≤ i ≤ n, j = 1, 2, 3.
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For any two attribute values γ1 and γ2 of the same attribute, it is denoted by c(γ1, γ2) and satisfies the
following axioms:

c(γ1, γ1) = 0,

c(γ1, γ2) = c(γ2, γ1).

Subsequently, (X,A, C, d, c) is called a plithogenic hypersoft set (PHSS) [22]. For an n-tuple
(γ1, γ2, . . . , γn) ∈ C, γi ∈ Ai, 1 ≤ i ≤ n, a plithogenic hypersoft set F : C → P(U ) is mathematically
written as

F
(
{γ1, γ2, . . . , γn}

)
= {x(dx(γ1), dx(γ2), . . . , dx(γn)), x ∈ X}.

Remark 2. Plithogenic hypersoft set is a generalization of crisp hypersoft set, fuzzy hypersoft set, intuitionistic
fuzzy hypersoft set, and neutrosophic hypersoft set.

2.5. Illustrative Example

Let U = {m1, m2, m3, . . . , m10} be a universe containing mobile phones. A person wants to buy
a mobile phone for which the mobile phones under consideration (alternatives) are contained in
X ⊆ U , given by

X = {m2, m3, m5, m8}.

The characteristics or attributes of the mobile phones belong to the set A = {a1, a2, a3, a4}, such that

a1 = Processor power,
a2 = RAM,
a3 = Front camera resolution,
a4 = Screen size in inches.

The attribute values of a1, a2, a3, a4 are contained in the sets A1, A2, A3, A4 given below.

A1 = {dual-core, quad-core, octa-core},
A2 = {2GB, 4GB, 8GB, 16GB},
A3 = {2MP, 5MP, 8MP, 16MP},
A4 = {4, 4.5, 5, 5.5, 6}.

1. Soft set

Consider B = {a2, a3} ⊆ A. Afterwards, a soft set (F ,B), defined by the mapping F : B → P(U ),
is given by

(F ,B) = {(a2, {m2, m5}), (a3, {m2, m3, m8})}

Element-wise, it may be written as

FB(a2) = {m2, m5}, FB(a3) = {m2, m3, m8}.

2. Hypersoft set
Let C = A1 × A2 × A3 × A4. Then, a hypersoft set over U is a function f : C → P(U ). For an element
(octa-core, 8GB, 16MP, 5.5) ∈ C, it is given by

f ({octa-core, 8GB, 16MP, 5.5}) = {m5, m8}

3. Plithogenic hypersoft set
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For the same tuple (octa-core, 8GB, 16MP, 5.5) ∈ C, a plithogenic hypersoft set F : C → P(U )
is given by

F({octa-core, 8GB, 16MP, 5.5}) ={m5 (dm5(octa-core), dm5(8GB), dm5(16MP), dm5(5.5)) ,

m8 (dm8(octa-core), dm8(8GB), dm8(16MP), dm8(5.5))},

where dm5(γ) stands for the degree of appurtenance of the attribute value γ ∈
(octa-core, 8GB, 16MP, 5.5) to the element m5 ∈ X. A similar meaning applies to dm8(γ).

3. The Four Classifications of PHSS

In this section, we propose the four different classifications of PHSS that are based on the number
of attributes chosen for application and the characteristics of alternatives under consideration or that
of the attribute value degree of appurtenance function. The same example from Section 2 is considered
to each classification for a practical understanding. Figure 1 shows a diagram for these classifications.

Figure 1. Flowchart of four classifications of plithogenic hypersoft sets (PHSS).

3.1. The First Classification

This classification is based on the number of attributes that are chosen by the decision makers
for application.

3.1.1. Uni-Attribute Plithogenic Hypersoft Set

Let α ∈ A be an attribute required by the experts for application purpose and the attribute values
of α belong to the finite discrete set Y = {y1, y2, . . . , ym}, m ≥ 1. Hence, the degree of appurtenance
function is given by

d : X×Y → P([0, 1]j), ∀ x ∈ X,
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such that d(x, y) ⊆ [0, 1]j, where P([0, 1]j) denotes the power set of [0, 1]j and j = 1, 2, 3 stands for
fuzzy, intuitionistic fuzzy, or neutrosophic degree of appurtenance, respectively.

The contradiction degree function between any two attribute values of α, is given by

c : Y×Y → P([0, 1]j), ∀ y ∈ Y, j = 1, 2, 3.

For any two attribute values y1, y2 ∈ Y, it is denoted by c(y1, y2) and the following properties hold:

c(y1, y1) = 0,

c(y1, y2) = c(y2, y1).

Subsequently, (X, α, Y, d, c) is termed as a uni-attribute plithogenic hypersoft set. For an attribute value
y ∈ Y, a uni-attribute plithogenic hypersoft set F : Y → P(U ) is mathematically written as

F(y) = {x(dx(y)) : x ∈ X}.

3.1.2. Multi-Attribute Plithogenic Hypersoft Set

Consider a subset B of A, consisting of all attributes that were chosen by the experts, given by

B = {b1, b2, . . . , bm}, m > 1.

Let the attribute values of b1, b2, . . . , bm belong to the sets B1, B2, . . . , Bm, respectively, and

Ym = B1 × B2 × . . .× Bm.

Afterwards, the appurtenance degree function is

d : X×Ym → P([0, 1]j), ∀ x ∈ X,

such that d(x, y) ⊆ [0, 1]j, j = 1, 2, 3. In this case, the contradiction degree function is given by

c : Bi × Bi → P([0, 1]j), 1 ≤ i ≤ m, j = 1, 2, 3.

The degree of contradiction between any two attribute values y1 and y2, is denoted by c(y1, y2) and it
satisfies the following axioms:

c(y1, y1) = 0,

c(y1, y2) = c(y2, y1).

Subsequently, (X,B, Ym, d, c) is called a multi-attribute plithogenic hypersoft set. For an m-tuple
(y1, y2, . . . , ym) ∈ Ym, yi ∈ Bi, 1 ≤ i ≤ m, a multi-attribute plithogenic hypersoft set F : Ym → P(U ) is
mathematically written as

F({y1, y2, . . . , ym}) = {x(dx(y1), dx(y2), . . . , dx(ym)), x ∈ X}.

Example 1. Consider the previous example in which U = {m1, m2, m3, . . . , m10} and X ⊆ U is given by
X = {m2, m3, m5, m8}. The attributes belong to the set A = {a1, a2, a3, a4}, such that

a1 = Processor power,
a2 = RAM,
a3 = Front camera resolution,
a4 = Screen size in inches.

The attribute values of a1, a2, a3, a4 are contained in the sets A1, A2, A3, A4 given below:
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A1 = {dual-core, quad-core, octa-core},
A2 = {2GB, 4GB, 8GB, 16GB},
A3 = {2MP, 5MP, 8MP, 16MP},
A4 = {4, 4.5, 5, 5.5, 6}.

1. Uni-attribute plithogenic hypersoft set

Consider the most demanding feature of a mobile phone given by the attribute a3 that stands for
front camera resolution. The set of attribute values of a3 is A3 = {2MP, 5MP, 8MP, 16MP}. Then,
the uni-attribute plithogenic hypersoft set F : A3 → P(U ) is given by

F(γ) = {x(dx(γ)), ∀ γ ∈ A3, x ∈ X},

where dx(γ) denotes the degree of appurtenance of x ∈ X, to the set X, w.r.t. the attribute value
γ ∈ A3. For an attribute value 16MP ∈ A3, we have

F(16MP) = {m5(dm5(16MP)), m8(dm8(16MP))},

2. Multi-attribute plithogenic hypersoft set

Let B = {a3, a4} be the set of attributes required by the customer. Therefore, we need A3 and A4

given by

A3 = {2MP, 5MP, 8MP, 16MP},
A4 = {4, 4.5, 5, 5.5, 6}.

Suppose that the customer is interested to buy a mobile phone with specific requirements of 16MP front
camera with 5.5 inch screen size. In this case, we take (16MP, 5.5) ∈ A3 × A4 and a multi-attribute
plithogenic hypersoft set F : A3 × A4 → P(U ) is given by

F({16MP, 5.5}) = {m5 (dm5(16MP), dm5(5.5)) , m8 (dm8(16MP), dm8(5.5))},

where dm5(γ) stands for the degree of appurtenance of m5 to the set X w.r.t. the attribute value
γ ∈ (16MP, 5.5).

3.2. The Second Classification

This classification is based on the nature of the attribute value degree of appurtenance that may
be crisp, fuzzy, intuitionistic fuzzy, or neutrosophic degree of appurtenance.

3.2.1. Plithogenic Crisp Hypersoft Set

A plithogenic hypersoft set X is crisp if the appurtenance degree dx(γ) of each member x ∈ X,
w.r.t. each attribute value γ, is crisp, i.e., dx(γ) is either 0 or 1.

3.2.2. Plithogenic Fuzzy Hypersoft Set

If the appurtenance degree dx(γ) of each member x ∈ X, w.r.t. each attribute value γ, is fuzzy,
then it is called the plithogenic fuzzy hypersoft set. Mathematically, dx(γ) ∈ P([0, 1]).

3.2.3. Plithogenic Intuitionistic Fuzzy Hypersoft Set

If the attribute value appurtenance degree dx(γ) of each x ∈ X, w.r.t. each attribute value,
is intuitionistic fuzzy degree, then it is called the plithogenic intuitionistic fuzzy hypersoft set.
Mathematically, it is written as dx(γ) ∈ P([0, 1]2).
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3.2.4. Plithogenic Neutrosophic Hypersoft Set

A plithogenic hypersoft set X is called plithogenic neutrosophic hypersoft set if dx(γ) ∈ P([0, 1]3).

Example 2. For (octa-core, 8GB, 16MP, 5.5) ∈ C, we have the following results:

1. Plithogenic crisp hypersoft set

F({octa-core, 8GB, 16MP, 5.5}) = {m5(1, 1, 1, 1), m8(1, 1, 1, 1)}.

2. Plithogenic fuzzy hypersoft set

F({octa-core, 8GB, 16MP, 5.5}) = {m5(0.9, 0.2, 1, 0.75), m8(0.5, 0.5, 0.25, 0.9)}.

3. Plithogenic intuitionistic fuzzy hypersoft set

F({octa-core, 8GB, 16MP, 5.5}) ={m5 ((0.9, 0.1), (0.2, 0.6), (1, 0), (0.75, 0.1)) ,

m8((0.5, 0.25), (0.5, 0.5), (0.25, 0.1), (0.9, 0))}.

4. Plithogenic neutrosophic hypersoft set

F({octa-core, 8GB, 16MP, 5.5}) ={m5((0.9, 0.7, 0.1), (0.2, 0.3, 0.6), (1, 0.25, 0), (0.75, 0.3, 0.1)),

m8((0.5, 1, 0.25), (0.5, 0.9, 0.5), (0.25, 0.7, 0.1), (0.9, 0.8, 0))}.

3.3. The Third Classification

This classification is based on the properties of attribute values and degree of appurtenance function.

3.3.1. Plithogenic Refined Hypersoft Set

Let (X,A, C, d, c) be a plithogenic hypersoft set and A denote the set of attribute values of
an attribute a. If an attribute value γ ∈ A of the attribute a is subdivided or split into at least
two or more attribute sub-values γ1, γ2, γ3, . . . ∈ A, such that the attribute sub-value degree of
appurtenance function d(x, γi) ∈ P([0, 1]j), for i = 1, 2, 3, . . . and j = 1, 2, 3 for fuzzy, intuitionistic
fuzzy, neutrosophic degree of appurtenance, respectively, then X is called a refined plithogenic
hypersoft set. It is represented as (Xr,A, C, d, c).

3.3.2. Plithogenic Hypersoft Overset

If the degree of appurtenance of any element x ∈ X w.r.t. any attribute value γ ∈ A of
an attribute a is greater than 1, i.e., d(x, γ) > 1, then X is called a plithogenic hypersoft overset.
It is represented as (Xo,A, C, d, c).

3.3.3. Plithogenic Hypersoft Underset

If the degree of appurtenance of any element x ∈ X w.r.t. any attribute value γ ∈ A of
an attribute a less than 0, i.e., d(x, γ) < 0, then X is called a plithogenic hypersoft underset.
It is represented as (Xu,A, C, d, c).

3.3.4. Plithogenic Hypersoft Offset

A plithogenic hypersoft set (X,A, C, d, c) is called a plithogenic hypersoft offset if it is both
an overset and an underset. Mathematically, if d(x1, γ1) > 1 and d(x2, γ2) < 0 for the same or
different attribute values γ1, γ2 ∈ A that correspond to the same or different members x1, x2 ∈ X,
then (Xoff,A, C, d, c) is a plithogenic hypersoft offset.
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3.3.5. Plithogenic Hypersoft Multiset

If an element x ∈ X repeats itself into the set X with same plithogenic components given by

x(c1, c2, . . . , cn), x(c1, c2, . . . , cn),

or with different plithogenic components given by

x(c1, c2, . . . , cn), x(d1, d2, . . . , dn),

then (Xn,A, C, d, c) is called a plithogenic hypersoft multiset.

3.3.6. Plithogenic Bipolar Hypersoft Set

If the attribute value appurtenance degree function is given by

d : X× C → P([−1, 0]j)× P([0, 1]j), ∀ x ∈ X,

where j = 1, 2, 3, then, (Xb,A, C, d, c) is called plithogenic bipolar hypersoft set. It may be noted that,
for an attribute value γ, d(x, γ) allots a negative degree of appurtenance in [−1, 0] and a positive
degree of appurtenance in [0, 1] to each element x ∈ X with respect to each attribute value γ.

Remark 3. The concept of plithogenic bipolar hypersoft set can be extended to plithogenic tripolar hypersoft set
and so on up to plithogenic multipolar hypersoft set.

3.3.7. Plithogenic Complex Hypersoft Set

If for any x ∈ X, the attribute value appurtenance degree function, with respect to any attribute
value γ, is given by

d : X× C → P([0, 1]j)× P([0, 1]j), j = 1, 2, 3,

such that d(x, γ) is a complex number of the form c1.eic2 , where c1 (amplitude) and c2 (phase) are
subsets of [0, 1], then (Xcom,A, C, d, c) is called a plithogenic complex hypersoft set.

Example 3. Consider the same example of choosing a suitable mobile phone from the set X = {m2, m3, m5, m8}.
The attributes are a1, a2, a3, a4, whose attribute values are contained in the sets A1, A2, A3, A4.

1. Plithogenic refined hypersoft set

Consider an attribute a4 = screen size in inches whose attribute values belong to the set
A4 = {4, 4.5, 5, 5.5, 6}. A refinement of A4 is given by

A4 = {4, 4.5, 4.7, 5, 5.5, 5.8, 6},

such that for all x ∈ X,
d(x, γ) ∈ P([0, 1]j), ∀ γ ∈ A4.

Therefore, a plithogenic refined hypersoft set Fr : A4 → P(U ) is given by

Fr({4, 4.5, 4.7, 5, 5.5, 5.8, 6}) ={m5
(
dm5(4), dm5(4.5), dm5(4.7), dm5(5), dm5(5.5), dm5(5.8), dm5(6)

)
,

m8
(
dm8(4), dm8(4.5), dm8(4.7), dm8(5), dm8(5.5), dm8(5.8), dm8(6)

)
}.

2. Plithogenic hypersoft overset
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Let each attribute value has a single-valued fuzzy degree of appurtenance to all the elements of X.
Subsequently, for (octa-core, 8GB, 16MP, 5.5) ∈ C, a plithogenic hypersoft overset Fo : C → P(U ) is
given by

Fo({octa-core, 8GB, 16MP, 5.5}) = {m5(0.9, 0.2, 1.3, 0.75), m8(0.5, 0.5, 0.25, 0.9)}.

It may be noted that dm5(16MP) > 1.

3. Plithogenic hypersoft underset

A plithogenic hypersoft underset defined by the function Fu : C → P(U ) is given by

Fu({octa-core, 8GB, 16MP, 5.5}) = {m5(0.9, 0.2,−0.3, 0.75), m8(0.5, 0.5, 0.25, 0.9)}.

It may be noted that dm5(16MP) < 0.

4. Plithogenic hypersoft offset

A plithogenic hypersoft offset is a function Foff : C → P(U ), as given by

Foff({octa-core, 8GB, 16MP, 5.5}) = {m5(0.9, 0.2,−0.3, 0.75), m8(0.5, 1.5, 0.25, 0.9)}.

Note that dm5(16MP) < 0 and dm8(8GB) > 1.

5. Plithogenic hypersoft multiset

A plithogenic hypersoft multiset Fm : C → P(U ) is given by

Fm({octa-core, 8GB, 16MP, 5.5}) = {m5(0.9, 0.2, 0.3, 0.75), m5(0.7, 0.1, 0.9, 1), m8(0.5, 0.5, 0.25, 0.9)}.

It should be noted that the element m5 repeats itself with different plithogenic components.

6. Plithogenic bipolar hypersoft set

A plithogenic bipolar hypersoft set F2 : C → P(U ) is given by

F2({octa-core, 8GB, 16MP, 5.5}) ={m5({−0.1, 0.9}, {−1, 0.2}, {−0.9, 0.3}, {−0.5, 1}),
m8({−0.5, 0}, {−0.9, 1}, {−0.2, 0.2}, {−1, 0.8})}.

7. Plithogenic complex hypersoft set

A plithogenic complex hypersoft set Fcom : C → P(U ) is given by

Fcom({octa-core, 8GB, 16MP, 5.5}) ={m5(0.9e0.5i, 0.2e0.9i, 0.3e0.25i, 0.75ei),

m8(0.5e0.5i, e0.3i, 0.25e0.75i, 0.9e0.1i)}.

3.4. The Fourth Classification

The attribute value degree of appurtenance may be a single crisp value in [0, 1], a finite discrete
set or an interval value in [0, 1]. Therefore, we have the following classification of PHSS.

3.4.1. Single-Valued Plithogenic Hypersoft Set

A plithogenic hypersoft set is called a single-valued plithogenic hypersoft set if the attribute value
appurtenance degree is a single number in [0, 1].
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3.4.2. Hesitant Plithogenic Hypersoft Set

If the attribute value degree of appurtenance is a finite discrete set of the form {m1, m2, . . . , mi},
1 ≤ i < ∞, included in [0, 1], then such a plithogenic hypersoft set is called a hesitant plithogenic
hypersoft set.

3.4.3. Interval-Valued Plithogenic Hypersoft Set

A plithogenic hypersoft set is known as an interval-valued plithogenic hypersoft set if the attribute
value appurtenance degree function is an interval value in [0, 1]. The interval value may be an open,
closed, or semi open interval.

Example 4. For (octa-core, 8GB, 16MP, 5.5) ∈ C, with each attribute value having fuzzy degree of
appurtenance, we have the following results:

1. Single-valued plithogenic hypersoft set

F({octa-core, 8GB, 16MP, 5.5}) = {m5(0.9, 0.2, 1, 0.75), m8(0.5, 0.5, 0.25, 0.9)}.

Each attribute value is assigned a single value in [0, 1] as a degree of appurtenance to m5 and m8.

2. Hesitant plithogenic hypersoft set

F({octa-core, 8GB, 16MP, 5.5}) ={m5({0.9, 0.75}, {0.2, 0.7}, {1, 0.9}, {0.75, 0.5}),
m8({0.5, 0.1}, {0.5, 0.9}, {0.25, 0}, {0.9, 1})}.

3. Interval-valued plithogenic hypersoft set

F({octa-core, 8GB, 16MP, 5.5}) ={m5([0.25, 0.75], [0.2, 0.6], [0.1, 0.9], [0.75, 1]),

m8([0.5, 0.6], [0.3, 0.9], [0.25, 0.8], [0.9, 1])}.

Each attribute value has an interval value degree of appurtenance in [0, 1] to each element m5 and m8.

4. The Proposed PHSS-Based TOPSIS with Application to a Parking Problem

In this section, we use the concept of PHSS in order to construct a novel MCDM method,
called PHSS-based TOPSIS, in which we extend TOPSIS based on PHSS under fuzzy neutrosophic
environment. Moreover, a parking spot choice problem is constructed in order to employ the newly
developed PHSS-based TOPSIS to prove its validity and efficiency. Two different sets of alternatives
are considered for the application and a comparison is performed with fuzzy TOPSIS in both cases.

4.1. Proposed PHSS-Based TOPSIS Algorithm

Let U be a non-empty universal set, and let X ⊆ U be the set of alternatives under consideration,
given by X = {x1, x2, . . . , xm}. Let C = A1 × A2 × . . . × An, where n ≥ 1 and Ai is the set of all
attribute values of the attribute ai, i = 1, 2, 3, . . . , n. Each attribute value γ has a corresponding
appurtenance degree d(x, γ) of the member x ∈ X, in accordance with some given condition or criteria.
Our aim is to choose the best alternative out of the alternative set X. The construction steps for the
proposed PHSS-based TOPSIS are as follows:

S1: Choose an ordered tuple (γ1, γ2, . . . , γn) ∈ C and construct a matrix of order n×m, whose entries
are the neutrosophic degree of appurtenance of each attribute value γ, with respect to each alternative
x ∈ X under consideration.
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S2: Employ the newly developed plithogenic accuracy function Ap, to each element of the matrix
obtained in S1, in order to convert each element into a single crisp value, as follows:

Ap(Tγ, Iγ, Fγ) =
Tγ + Iγ + Fγ

3
+

Tγd + Iγd + Fγd

3
× cF(γ, γd), (1)

where Tγ, Iγ, Fγ represent the membership, indeterminacy, and non-membership degrees of
appurtenance of the attribute value γ to the set X, and Tγd , Iγd , Fγd stand for the membership,
indeterminacy, and non-membership degrees of corresponding dominant attribute value, whereas
cF(γ, γd) denotes the fuzzy degree of contradiction between an attribute value γ and its corresponding
dominant attribute value γd. This gives us the plithogenic accuracy matrix.

S3: Apply the transpose on the plithogenic accuracy matrix to obtain the plithogenic decision matrix
Mp = [mij]m×n of alternatives versus criteria.

S4: A plithogenic normalized decision matrix Np = [yij]m×n is constructed, which represents the
relative performance of alternatives and whose elements are calculated as follows:

yij =
mij√
m
∑

i=1
m2

ij

, j = 1, 2, 3, . . . , n.

S5: Construct a plithogenic weighted normalized decision matrix Vp = [vij]m×n = NpWn,
where Wn = [w1 w2 . . . wn] is a row matrix of allocated weights wk assigned to the criteria
ak, k = 1, 2, 3, . . . , n and ∑ wk = 1, k = 1, 2, . . . , n. Moreover, all of the selection criteria are assigned
different weights by the decision maker, depending on their importance in the decision making process.

S6: Determine the plithogenic positive ideal solution V+
p and plithogenic negative ideal solution V−p

by the following formula:

V+
p =

{
m

max
i=1

(vij) if aj ∈ benefit criteria,
m

min
i=1

(vij) if aj ∈ cost criteria, j = 1, 2, 3, . . . , n
}

,

V−p =

{
m

min
i=1

(vij) if aj ∈ benefit criteria,
m

max
i=1

(vij) if aj ∈ cost criteria, j = 1, 2, 3, . . . , n
}

.

S7: Calculate plithogenic positive distance S+
i and plithogenic negative distance S−i of each alternative

from V+
p and V−p , respectively, while using the following formulas:

S+
i =

√√√√ n

∑
j=1

(vij − v+i )
2, i = 1, 2, 3, . . . , m,

S−i =

√√√√ n

∑
j=1

(vij − v−i )
2, i = 1, 2, 3, . . . , m.

S8: Calculate the relative closeness coefficient Ci of each alternative by the following expression:

Ci =
S−i

S+
i + S−i

, i = 1, 2, 3, . . . , m.

S9: The highest value from {C1, C2, . . . , Cm} belongs to the most suitable alternative. Similarly,
the lowest value gives us the worst alternative.
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4.2. Parking Spot Choice Problem

Based on the proposed method, a parking spot choice problem is constructed. Parking a vehicle at
some suitable parking spot is an interesting real life MCDM problem. A number of questions arises in
mind, for instance, how much will the parking fee be, how far is it, will it be an open or covered area,
how many traffic signals will be on the way, etc. Thus, it becomes a challenging task in the presence of
so many considerable criteria. This task is formulated in the form of a mathematical model in order
to apply the proposed technique to choose the most suitable parking spot. Consider a person at a
particular location on the road, who wants to park his car at a suitable parking place. Keeping in mind
the person’s various preferences, a few nearby available parking spots are considered, having different
specifications in terms of parking fee, distance between the person’s location and each parking spot,
the number of signals between the car and the parking spot, and traffic density on the way between
the car and the parking spot. Figure 2 shows the location of car to be parked at a suitable parking spot.

Figure 2. A real life parking spot choice problem.

Let U be a plithogenic universe of discourse consisting of all parking spots in the
surrounding area, where

U = {P1, P2, P3, . . . , P10}.

The attributes of the parking spots, chosen for the decision, are a1, a2, a3, a4 given below:

a1 = Parking fee,
a2 = Distance between car and parking spot,
a3 = Number of traffic signals between car and parking spot,
a4 = Traffic density on the way between car and parking spot.

The attribute values of a1, a2, a3, a4 belong to the sets A1, A2, A3, A4, respectively.

A1 = {low fee ( f1), medium fee ( f2), high fee ( f3)},
A2 = {very near (r1), almost near (r2), near (r3), almost far (r4), far (r5), very far (r6)},
A3 = {one signal (s1), two signals (s2)},
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A4 = {low (d1), high (d2), very high (d3)}.

The dominant attribute values of a1, a2, a3, a4 are chosen to be f1, r1, s1 and d1, respectively, and the
single-valued fuzzy degree of contradiction between the dominant attribute value and all other
attribute values is given below.

cF( f1, f2) =
1
3

, cF( f1, f3) =
2
3

,

cF(r1, r2) =
1
6

, cF(r1, r3) =
2
6

, cF(r1, r4) =
3
6

, cF(r1, r5) =
4
6

, cF(r1, r6) =
5
6

,

cF(s1, s2) =
1
2

,

cF(d1, d2) =
1
3

, cF(d1, d3) =
2
3

.

Two different sets of alternatives are considered for the application of PHSS-based TOPSIS, along with
a comparison with fuzzy TOPSIS in each case.

4.2.1. Case 1

In this case, the parking spots under consideration (alternatives) are contained in the set X ⊆ U ,
given by

X = {P1, P2, P3, P4}.

The neutrosophic degree of appurtenance of each attribute value corresponding to each alternative
P1, P2, P3, P4 is given in Table 1.

Let C = A1 × A2 × A3 × A4 and consider an element ( f2, r1, s2, d1) ∈ C for which the
corresponding matrix that was obtained from Table 1 is given below:

(0.7, 0.9, 0.1) (0.6, 0.5, 0.2) (0.2, 0.3, 0.6) (0.7, 0.9, 0.3)
(0.8, 0.1, 0.7) (0.9, 0.4, 0.5) (0.9, 0.4, 0.0) (0.8, 0.4, 0.2)
(1.0, 0.8, 0.6) (0.7, 0.5, 0.5) (0.4, 0.4, 0.7) (0.6, 0.5, 0.7)
(0.1, 0.2, 1.0) (0.3, 1.0, 0.6) (0.7, 0.9, 0.2) (0.9, 0.7, 0.5)

 (2)

Table 1. Degree of appurtenance of each attribute value w.r.t. to each alternative.

Sr. Variables P1 P2 P3 P4

1 f1 (0.5, 0.1, 0.3) (0.5, 0.0, 0.7) (0.1, 0.4, 0.5) (0.2, 0.1, 0.6)
2 f2 (0.7, 0.9, 0.1) (0.6, 0.5, 0.2) (0.2, 0.3, 0.6) (0.7, 0.9, 0.3)
3 f3 (0.5, 0.5, 0.1) (0.0, 0.1, 0.5) (0.1, 0.1, 0.9) (0.5, 0.7, 0.2)

4 r1 (0.8, 0.1, 0.7) (0.9, 0.4, 0.5) (0.9, 0.4, 0.0) (0.8, 0.4, 0.2)
5 r2 (0.9, 0.3, 0.2) (0.6, 0.1, 0.0) (0.5, 0.2, 0.4) (0.9, 0.1, 0.4)
6 r3 (0.9, 0.1, 0.3) (0.8, 0.3, 0.1) (0.6, 0.0, 0.6) (0.2, 0.2, 0.5)
7 r4 (0.8, 0.3, 0.2) (1.0, 0.1, 0.5) (0.8, 0.5, 0.1) (0.7, 0.3, 0.6)
8 r5 (1.0, 0.3, 0.2) (1.0, 0.3, 0.2) (0.8, 0.2, 0.8) (0.6, 0.5, 0.6)
9 r6 (0.8, 0.1, 0.0) (0.6, 0.8, 0.5) (0.9, 0.7, 0.1) (0.4, 0.8, 0.7)

10 s1 (0.0, 0.5, 0.5) (0.4, 0.1, 0.6) (0.2, 0.2, 0.7) (0.8, 0.3, 0.4)
11 s2 (1.0, 0.8, 0.6) (0.7, 0.5, 0.5) (0.4, 0.4, 0.7) (0.6, 0.5, 0.7)

12 d1 (0.1, 0.2, 1.0) (0.3, 1.0, 0.6) (0.7, 0.9, 0.2) (0.9, 0.7, 0.5)
13 d2 (0.1, 0.4, 0.8) (0.2, 0.2, 0.8) (0.2, 0.6, 0.3) (0.2, 0.8, 0.5)
14 d3 (0.5, 0.6, 0.9) (0.9, 0.6, 0.3) (0.9, 0.7, 0.5) (0.6, 0.7, 0.6)

This MCDM problem is solved by the proposed PHSS-based TOPSIS and fuzzy TOPSIS, as follows:
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A. Application of PHSS-based TOPSIS for Case 1

Apply the plithogenic accuracy function (1) to the matrix (2) in order to obtain the plithogenic
accuracy matrix given by: 

0.6667 0.5667 0.4778 0.7333
0.5333 0.6000 0.4333 0.4667
0.9667 0.7500 0.6833 0.8500
0.4333 0.6333 0.6000 0.7000

 .

The plithogenic decision matrix Mp is constructed by taking the transpose of the plithogenic
accuracy matrix. It is a square matrix of order 4, given by

Mp =


0.6667 0.5333 0.9667 0.4333
0.5667 0.6000 0.7500 0.6333
0.4778 0.4333 0.6833 0.6000
0.7333 0.4667 0.8500 0.7000


A corresponding table, as shown in Table 2, of alternatives versus criteria may also be drawn to

see the situation in a clear way.

Table 2. Alternatives versus criteria table.

Al/Cr f2 r1 s2 d1

P1 0.6667 0.5333 0.9667 0.4333
P2 0.5667 0.6000 0.7500 0.6333
P3 0.4778 0.4333 0.6833 0.6000
P4 0.7333 0.4667 0.8500 0.7000

A plithogenic normalized decision matrix Np is obtained as:

Np =


0.5387 0.5205 0.5898 0.3612
0.4579 0.5855 0.4576 0.5280
0.3861 0.4229 0.4169 0.5002
0.5925 0.4555 0.5186 0.5836


A weighted normalized matrix W4 is constructed as:

W4 = [ 0.4, 0.22, 0.15, 0.23 ], (3)

whereas the plithogenic weighted normalized decision matrix Vp = [vij]4×4 is given, as follows:

Vp =


0.2155 0.1145 0.0885 0.0831
0.1832 0.1288 0.0686 0.1214
0.1544 0.0930 0.0625 0.1150
0.2370 0.1002 0.0778 0.1342


The plithogenic positive ideal solution V+

p and plithogenic negative ideal solution V−p are
determined, as follows:

V+
p = {0.1544, 0.0930, 0.0625, 0.0831},

V−p = {0.2370, 0.1288, 0.0885, 0.1342}.
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The plithogenic distance of each alternative from the V+
p and V−p , respectively, is determined as:

S+ =


0.0697
0.0601
0.0320
0.0986

 , S− =


0.0573
0.0588
0.0956
0.0305

 .

The relative closeness coefficient Ci, i = 1, 2, 3, 4, of each alternative is computed as:

C1 = 0.4511,

C2 = 0.4944,

C3 = 0.7494,

C4 = 0.2366.

The highest value corresponds to the most suitable alternative. Since C3 = 0.7494 is the maximum
value and it corresponds to P3, therefore, the most suitable parking spot is P3. The Table 3 is constructed
to rank all alternatives under consideration.

Table 3. PHSS-based TOPSIS ranking table.

S+
i S−

i Ci Ranking

P1 0.0697 0.0573 0.4511 3
P2 0.0601 0.0588 0.4944 2
P3 0.0320 0.0956 0.7494 1
P4 0.0986 0.0305 0.2366 4

A bar graph presented in Figure 3 is given, in which all alternatives P1, P2, P3, P4 are ranked by
PHSS-based TOPSIS.

Figure 3. Ranking of Parking Spots by PHSS-based TOPSIS for Case 1.

It is evident that the parking spot P3 is the most suitable place to park the car while P4 is not a
good choice for parking based on the selection criteria.

B. Application of Fuzzy TOPSIS for Case 1
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In order to see the implementation of fuzzy TOPSIS [32–34] for the current scenario of the parking
problem, we apply the average operator [27,35] to each element of the matrix 2 and take the transpose
of the resulting matrix in order to obtain the decision matrix given by:

M =


0.5667 0.5333 0.8000 0.4333
0.4333 0.6000 0.5667 0.6333
0.3667 0.4333 0.5000 0.6000
0.6333 0.4667 0.6000 0.7000


Applying the fuzzy TOPSIS to the decision matrix M, along with the same weights

given in matrix (3), we obtain the values of positive distance S+, negative distance S−, relative
closeness Ci and ranking of each alternative, as given in Table 4.

Table 4. Fuzzy TOPSIS ranking table.

S+
i S−

i Ci Ranking

P1 0.0888 0.0592 0.4000 3
P2 0.0591 0.0841 0.5872 2
P3 0.0320 0.1176 0.7863 1
P4 0.1170 0.0373 0.2417 4

A bar graph in Figure 4 is given in which all alternatives P1, P2, P3, P4 are ranked by Fuzzy TOPSIS.
A comparison is shown in Table 5, in which it can be seen that the result obtained by the proposed

PHSS-based TOPSIS is aligned with that of fuzzy TOPSIS.

Figure 4. Ranking of Parking Spots by Fuzzy TOPSIS for Case 1.

Table 5. Comparison analysis for case 1.

Sr. Parkings PHSS-Based TOPSIS Ranking Fuzzy TOPSIS Ranking

1 P1 3rd 3rd
2 P2 2nd 2nd
3 P3 1st 1st
4 P4 4th 4th

It is observed in Table 5 that the results obtained by both methods coincide in terms of the ranking
of each alternative, but differ in the values of the relative closeness of each alternative. It is due to
the nature of the MCDM problem in hand in which each alternative needs to be evaluated against
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each attribute value possessing a neutrosophic degree of appurtenance w.r.t. each alternative and a
contradiction degree is defined between each attribute value and its corresponding dominant attribute
value to be taken into consideration in the decision process. In such a case, the proposed PHSS-based
TOPSIS produces a more reliable relative closeness of each alternative, as it can been seen in the
parking spot choice problem that was chosen for the study. Therefore, it is worth noting that the
proposed PHSS-based TOPSIS can be regarded as a generalization of fuzzy TOPSIS [32], because
the fuzzy TOPSIS cannot be directly applied to MCDM problems in which the attribute values have
a neutrosophic degree of appurtenance with respect to each alternative. In the case of the parking
problem, fuzzy TOPSIS is applied after applying simple average operator to the neutrosophic elements
of the matrix (2). However, it does not takes into account the degree of contradiction between the
attribute values, which is the limitation of fuzzy TOPSIS. This concern is precisely addressed by the
proposed PHSS-based TOPSIS.

4.2.2. Case 2

In this case, the set of parking spots under consideration is given by

X = {P1, P5, P6, P7}.

The neutrosophic degree of appurtenance of each attribute value that corresponds to each alternative
of {P1, P5, P6, P7} is given in Table 6.

Table 6. Degree of appurtenance of each attribute value w.r.t each alternative.

Sr. Variables P1 P5 P6 P7

1 f1 (0.5, 0.1, 0.3) (0.6, 0.6, 0.8) (0.7, 0.2, 0.4) (0.9, 0.5, 0.2)
2 f2 (0.7, 0.9, 0.1) (0.8, 0.8, 0.5) (0.4, 0.4, 0.7) (0.7, 0.2, 0.1)
3 f3 (0.5, 0.5, 0.1) (0.4, 0.2, 0.5) (1.0, 0.5, 0.9) (1.0, 0.7, 0.6)

4 r1 (0.8, 0.1, 0.7) (0.9, 0.5, 0.2) (0.5, 0, 0.9) (0.8, 0.6, 0.1)
5 r2 (0.9, 0.3, 0.2) (0.5, 0.4, 0.2) (0.7, 0.5, 0.4) (0.9, 0.6, 0.8)
6 r3 (0.9, 0.1, 0.3) (0.5, 0.7, 0.3) (0.9, 1.0, 0.6) (0.2, 0, 1.0)
7 r4 (0.8, 0.3, 0.2) (1.0, 0.2, 1.0) (1.0, 0.5, 0.7) (0.8, 0.8, 0.9)
8 r5 (0.2, 0.3, 0.9) (1.0, 0.1, 0.8) (0.4, 0.6, 0.8) (0.8, 0.6, 0.6)
9 r6 (0.5, 0.7, 0.5) (0.8, 0.2, 0.0) (0.6, 0.3, 0.7) (0.0, 0.9, 0.9)

10 s1 (0, 0.5, 0.5) (0.8, 0.4, 0.6) (0.9, 0.2, 0.2) (0.8, 0.4, 0.7)
11 s2 (1.0, 0.8, 0.6) (0.7, 1.0, 0.2) (0.2, 0.4, 0.7) (0.9, 0, 1.0)

12 d1 (0.1, 0.2, 1.0) (1.0, 0.4, 0.3) (0.7, 0.5, 0.6) (0.8, 0.5, 0.7)
13 d2 (0.1, 0.4, 0.8) (0.7, 1.0, 0.8) (0.6, 0.6, 1.0) (1.0, 0.8, 0.8)
14 d3 (0.5, 0.6, 0.9) (1.0, 0.6, 0.5) (1.0, 1.0, 0.5) (1.0, 0.5, 0.8)

Let C = A1 × A2 × A3 × A4 and consider an element ( f2, r1, s2, d1) ∈ C for which the
corresponding matrix obtained from Table 6, is given below:

(0.7, 0.9, 0.1) (0.8, 0.8, 0.5) (0.4, 0.4, 0.7) (0.7, 0.2, 0.1)
(0.8, 0.1, 0.7) (0.9, 0.5, 0.2) (0.5, 0.0, 0.9) (0.8, 0.6, 0.1)
(1.0, 0.8, 0.6) (0.7, 1.0, 0.2) (0.2, 1.0, 0.7) (0.9, 0.0, 1.0)
(0.1, 0.2, 1.0) (1.0, 0.4, 0.3) (0.7, 0.5, 0.6) (0.8, 0.5, 0.7)

 (4)

The proposed PHSS-based TOPSIS and fuzzy TOPSIS are employed, as follows:

A. Application of PHSS-Based TOPSIS for Case 2
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The plithogenic accuracy matrix in this case is given by
0.6667 0.9222 0.6444 0.5111
0.5333 0.6000 0.4333 0.4667
0.9667 0.9333 0.6500 0.9500
0.4333 0.6333 0.6000 0.7000

 .

Plithogenic decision matrix Mp is given by

Mp =


0.6667 0.5333 0.9667 0.4333
0.9222 0.6000 0.9333 0.6333
0.6444 0.4333 0.6500 0.6000
0.5111 0.4667 0.9500 0.7000


A plithogenic normalized decision matrix Np is then constructed as:

Np =


0.4748 0.5205 0.5464 0.3612
0.6568 0.5855 0.5275 0.5280
0.4590 0.4229 0.3674 0.5002
0.3640 0.4555 0.5369 0.5836


The plithogenic weighted normalized decision matrix Vp is given, as follows:

Vp =


0.1899 0.1145 0.0820 0.0831
0.2627 0.1288 0.0791 0.1214
0.1836 0.0930 0.0551 0.1150
0.1456 0.1002 0.0805 0.1342


The plithogenic positive ideal solution V+

p and plithogenic negative ideal solution V−p are
determined, such that

V+
p = {0.1456, 0.0930, 0.0551, 0.0831},

V−p = {0.2627, 0.1288, 0.0820, 0.1342}.

The plithogenic positive distance S+, plithogenic negative distance S−, relative closeness Ci, and
ranking of each alternative is shown in Table 7.

Table 7. PHSS-based TOPSIS ranking table.

S+
i S−

i Ci Ranking

P1 0.0561 0.0901 0.6163 3
P5 0.1306 0.0131 0.0912 4
P6 0.0496 0.0929 0.6518 2
P7 0.0576 0.1206 0.6769 1

A graphical representation of the ranking of all alternatives obtained by PHSS-based TOPSIS,
is shown in Figure 5.
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Figure 5. Ranking of Parking Spots by PHSS-based TOPSIS for Case 2.

It can be seen that the parking spot P7 is the most suitable alternative in the light of chosen criteria.

B. Application of Fuzzy TOPSIS for Case 2

In this case, the decision matrix M for the implementation of fuzzy TOPSIS is given by

M =


0.5667 0.5333 0.8000 0.4333
0.7000 0.6000 0.6333 0.6333
0.5000 0.4333 0.6333 0.6000
0.3333 0.4667 0.6333 0.7000


By implementing the fuzzy TOPSIS to the matrix M, with the same weights given in (3), the values

of positive distance S+, negative distance S−, relative closeness Ci, and ranking of each alternative are
shown in Table 8.

Table 8. Fuzzy TOPSIS ranking table.

S+
i S−

i Ci Ranking

P1 0.0908 0.0724 0.4439 3
P5 0.1453 0.0224 0.1337 4
P6 0.0694 0.0863 0.5543 2
P7 0.0516 0.1397 0.7301 1

The ranking of all alternatives can also been visualized as a bar graph in Figure 6, in which all
alternatives P1, P5, P6, P7 are ranked by Fuzzy TOPSIS.

The most suitable parking spot obtained by fuzzy TOPSIS is also P7.
A comparison of rankings obtained by PHSS-based TOPSIS and fuzzy TOPSIS is shown in

Table 9 for case 2.
It may be noted that similar results are obtained in case 2, with the help of proposed PHSS-based

TOPSIS and fuzzy TOPSIS with exactly same ranking of each alternative, but with a considerably
different values of the relative closeness of each alternative as shown in Table 9. Therefore, it is
accomplished that the results that were obtained by the PHSS-based TOPSIS are valid and more
reliable and PHSS-based TOPSIS can be regarded as the generalization of fuzzy TOPSIS on the basis of
the study conducted in the article.
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Figure 6. Ranking of Parking Spots by Fuzzy TOPSIS for Case 2.

Table 9. Comparison analysis for case 2.

Sr. Parkings PHSS-Based TOPSIS Ranking Fuzzy TOPSIS Ranking

1 P1 3rd 3rd
2 P5 4th 4th
3 P6 2nd 2nd
4 P7 1st 1st

5. Conclusions

It has always been a challenging task to deal with real life MCDM problems, due to the
involvement of many complexities and uncertainties. In particular, some real life MCDM problems
are designed in a way that the given attributes need to be further decomposed into two or more
attribute values such that each alternative is then required to be evaluated against each attribute
value in order to perform a detailed analysis to reach a fair conclusion. To deal with such situations,
a novel PHSS-based TOPSIS is proposed in the present study, and it is applied to a MCDM parking
problem with different choices of the set of alternatives and a comparison with fuzzy TOPSIS is done
to prove the validity and efficiency of the proposed method. All of the results are quite promising and
graphically depicted for a clear understanding. Moreover, the algorithm of the proposed method is
produced in MATLAB in order to broaden the scope of the study to other research areas, including
graph theory, machine learning, pattern recognition, etc.
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