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Abstract: For uninterrupted traffic flow, it is well-known that the fundamental diagram (FD) describes
the relationship between traffic flow and density under steady state. To study the characteristics of
interrupted traffic flow on a signalized link, a link fundamental diagram (LFD) for urban roads is
proposed in this paper. First, a new variable, which synthesizes traffic flow with the speed of each
vehicle, is defined. Then, the link fundamental diagram is obtained by drawing a scatter-plot of the
velocity-weighted flow versus queue length, which takes on a unimodal curve with an approximately
symmetric shape. Finally, simulation studies are conducted by modeling an urban link based
on the traffic simulation software VISSIM. Compared with the traditional fundamental diagram,
the proposed link fundamental diagram is more intuitive for showing the relationship between traffic
condition and queue length. The impacts of the cycle time, green time, and split on the proposed link
fundamental diagram are studied. Simulation results show that the shape of the link fundamental
diagram fundamentally is determined by the split. The critical point is correlated to split values,
and the green time exerts a great influence on both the velocity-weighted flow and the critical queue
length. The cycle time has little effect on the critical queue length but has a great influence on the
velocity-weighted flow.

Keywords: fundamental diagram; interrupted traffic flow; queue length; VISSIM

1. Introduction

Fundamental diagrams (FDs) show the speed-density or flow–density relationship, which has
been considered as the foundation of traffic flow theory. The FD was first observed by Greenshields
and derived a parabolic equation to describe the flow–density curve [1], and many studies on speed
and density have been proposed based on the empirical data for freeways [2,3]. Edie points out that
traffic behavior appears to be different at high and low concentrations and proposes a discontinuous
exponential form [3]. The discontinuity between uncongested and congested flow regions of the FD is
described by using an extensive data set collected on the Queen Elizabeth Way in Ontario [4]. For the
phenomenon that high density and low average velocity of cars can spontaneously appear in a region,
its nonlinear theory is presented in an initially homogeneous traffic flow [5]. Hypotheses and some
results of the three-phase traffic theory are compared with the results of the fundamental diagram [6].
By defining the equilibrium in a new manner, a mixed-integer programming approach is proposed
for piecewise constructing linear FD [7]. A family of speed–density models with a variable number
of arguments are presented in [8]. Numerical and empirical results of the field theory are provided
and the benchmarking was conducted for some traffic flow models [9]. The single-regime model was
developed with a novel calibration approach using as few, albeit useful, parameters as possible [10].
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A non-equilibrium traffic model considering the vehicle velocity was presented, which is hyperbolic
and has two characteristic fields, and it is shown to exhibit correct queue-end behavior and can explain
some of the observed traffic phenomena that challenge old models [11] To date, FDs have been used for
traffic state evaluation, ramp control, variable speed limit control, highway capacity analysis, and level
of service [12].

However, most of these studies on FDs have focused on uninterrupted traffic flows (e.g., freeway
traffic flow), there is limited related research on interrupted traffic flows (e.g., an isolated signalized
intersection, a signalized coordinated link, a network with signalized intersections). A two-step
approach was proposed to deal with the flow–density relationship calibration for an urban environment
rather than freeways, which required a series of data processing steps that include the data aggregation,
data selection, and the calibration of flow–density relationships [13]. A simulation study was conducted
to investigate the problem of interrupted traffic flow, which examined the relationship between traffic
flow and density on a ring road [14]. An arterial fundamental diagram, describing the relationship
between traffic flow and occupancy, was researched based on traffic data from a major artery [15–17].
The difficulty of studying the FD for interrupted traffic flows is that the relationship between traffic
flow and density is significantly affected by signal operations [15], which leads to the complexity of
the interrupted flow and frequent uneven fluctuations [16].

Daganzo, together with Geroliminis, provided empirical evidence for the existence of an
urban-scale macroscopic fundamental diagram (MFD) for a network with many intersections by using
field data and simulation data [18–20]. It was observed that, when the highly scattered plots of flow vs.
density from individual fixed detectors were aggregated, the phenomenon of high divergence is nearly
disappeared and points are concentrated along a well-defined curve [21]. However, the MFD and its
analyses were applicable only when the number of links was large [15], and MFD is not well-defined
for heterogeneous networks and often appears with a high scatter and hysteresis phenomena [22–27].

MFD reveals spatio-temporal patterns of macro-mobility; however, it is not enough for promoting
local mobility. Micro-mobility also has its positive impacts, thus an explicit understanding of the
spatio-temporal usage patterns is an urgent need for making urban planning and policies or laws to
promote sustainable development of the micro-mobility [28]. Many studies have conducted on the
large georeferenced data-sets for individuals mobility, studying the statistical laws at the base of human
movements [29–31] and the dynamic properties of human mobility in urban environment [32,33].
Some statistical and dynamic properties of pedestrian mobility in Venice are studied in [34].
These research activities can provide new knowledge tools for improving the sustainability of the
mobility demand in future cities under the framework of Complex Systems Physics.

Original studies usually described either the flow–density relationship or the velocity–density
relationship, in other words, most of these approaches focus on using data from this point of view.
However, the links and intersections of the urban road networks achieve mutual coordination [35],
and also have frequent queuing and stopping phenomenon which was usually modeled separately.
Therefore, it is necessary to explore methodologies describing traffic characters by synthesizing
multiple data sources [36–38], rather than simply using the original flow–density relationship. Since the
queuing phenomenon is more common in the urban links and the queue length can be easily detected
by cameras, the density can be replaced with the queue length. By considering the differences
in uninterrupted and interrupted traffic flows, the spatio-temporal patterns of macro-mobility are
investigated based on queue data and integrated data.

The primary contribution of this study can be summarized as follows:

(a) A variable named the velocity-weighted flow combining the flow and space-mean velocity of
each vehicle is proposed, which contains characteristics of both velocities and flows.

(b) A new kind of link fundamental diagram (LFD) based on the velocity-weighted flow and queue
length is presented in this paper, which can show the relationship between traffic condition and
queue length.
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(c) Features of the proposed LFD related to cycle times, green times, and splits are presented:
The LFD shape is generally determined by the splits. Both the critical queue length and critical
velocity-weighted flow increase with increasing green time. The critical queue length is more
closely related to the green time than the cycle time.

The rest of the paper is structured as follows: a brief description of the test platform and
the problem formulation are presented in Section 2. Section 3 provides a detailed description of
the velocity-weighted flow and the LFD based on the velocity-weighted flow and queue length.
Features of the LFD is presented in Section 4. Conclusions and suggestions for future work are
presented in Section 5.

2. Problem Formulation

2.1. Traffic Flow Description

Before describing the model, some mathematical symbols are introduced in Table 1, and the
piecewise functions are used to describe the model in different situations. The queue length is
defined as the distance between the stop line of a link and the position of the last vehicle in a queue.
The traditional flow q (veh/h) is the number of vehicles passing through a point or section of a road in
a unit [39]; the commonly used formula is

q =
N
∆t

(1)

where N is the number of vehicles passing through a point or section of a road during ∆t.

Table 1. List of Symbols.

Symbol Explanation

vi(t) the velocity of vehicle i at time step t
Vf ree free-flow velocity
Vf following velocity
xi(t) distance from vehicle i to stop line at time step t
l(t) queue length at time step t
α Discharge shock wave
β queuing shock wave
km density when following with vehicles
kj jam density
s saturation flow
g green time
r red time
C cycle time
t0 beginning of the cycle
q traffic flow
qC traffic flow passing an intersection in one cycle
qg arriving flow during green time
q̄ velocity-weighted traffic flow

The relationship of flow and queue length in one cycle can be described with the following model:

qC = k jl(t0) + qg, if l(t0)k j < gs

qC =
gs
C

, if l(t0)k j > gs
(2)

where t0 is the beginning of the cycle, that is, traffic light turns green. The number of queuing vehicles
l(t0)k j is queue length l(t0) multiplied by the queue density (jam density) k j, the number of discharged
vehicles in one cycle is the green time g multiplied by saturated flow s. If l(t0)k j < gs, the existing
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queued vehicles will be discharged before the end of green time, and arriving flow qg will also flow
toward the downstream. Assuming the distribution of qg is uniform, q will increase with the increasing
l(t0) until link capacity is reached. If l(t0)k j > gs, the discharged vehicles are only gs because when
the queue is longer than a certain length, the link facilities can not serve so many vehicles, such that
congestion. At the end of one cycle, l(t0) will update, and the flow will once again follow the law of
Equation (2).

To validate this model, we utilize the micro traffic simulation software VISSIM to simulate an
urban link to study the relationship of q and l. VISSIM is an advanced and flexible traffic simulation
software. It can simulate complex vehicle interactions realistically on a microscopic level, and it can
also model demand, supply, and behavior in detail. A 580-m long urban link is simulated in VISSIM,
which is controlled by a traffic signal, as shown in Figure 1, and the background is Southern College
Road, Haidian District, Beijing.

Figure 1. The diagram of a link in VISSIM.

The traffic data are produced under a random demand from no vehicles to the maximal flow.
The flow can be directly measured according to the flow detector, and the queue length can be obtained
by the queue detector in VISSIM. In fact, current transportation facilities at the intersection are also
capable of measuring these data. The vehicle’s information can also be obtained, as shown in Table 2.

Table 2. Vehicle data information.

Symbol Quantity Sample

i vehicle number No. 549
ti moment of being positioned 600 (s)
vi instantaneous velocity 31.27 (km/h)
di distance from vehicle to link entrance 386.48 (m)
linki The number of the link where the vehicle is located No. 30
Li length of the link 826.41 (m)

When the signal cycle and the split are fixed, the relationship of queue length versus flow is as
shown in Figure 2a. It can be observed that when the queue length l is less than 100 m, the flow q
increases with increasing queue length. When the queue length l is greater than 100 m, q reaches the
maximum value and remains unchanged. This phenomenon is caused by the limit of the link capacity:
when the queue length is shorter than a certain value, the queue can be served and discharged with
increasing flow. Once reaching the limit of link capacity, the traffic flow is the maximum that the link
can provide.
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Because the traffic is supposed to be congested when the queue length is long, however,
this phenomenon can’t be reflected from Figure 2a since its flow remains unchanged when the queue
length is long. The FD with the shape of a single peak curve will more match people’s expectations
and is conducive to the analysis of traffic congestion.
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Figure 2. Comparison of the traditional FD and the proposed urban link FD: (a) scatter diagram of
traditional flow and queue length; (b) scatter diagram of the velocity-weighted flow and queue length.

2.2. Vehicle Velocity Description

However, only the flow does not contain all traffic information, such as speed. When the queue
length is short or even nonexistent, the driver simply needs to keep pace with the other vehicles;
usually, without stopping, vehicles on an urban road can travel at a faster velocity, as shown in Figure 3
with the black line, and the average speed of the vehicle on the road is fast, but the flow is small. As the
queue length increases, vehicles have to stop many times, as shown in Figure 3 with the blue line.
The average speed of the vehicle is slowed down, but the flow is increasing until it doesn’t change if
the downstream links have space.
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short queue
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Figure 3. Vehicle speed versus driving distance for different queue length.

To describe these dynamics and better understand the usefulness of considering vehicle velocity,
a model of velocity concerning queue length and time is established. To facilitate understanding
and modeling, vehicle speed was divided into three categories, i.e., free flow velocity Vf ree,
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following velocity Vf and stop velocity Vs = 0, and the velocity of a vehicle in a link will be evolving
with the queue length and time.

When a cycle time begins, which is defined as that traffic light turns green from red, there exist
three conditions, that is, the vehicle isn’t queuing and is moving toward the end of the queue at
free-flow velocity (Condition S1); the vehicle is queuing at a stop velocity (Condition S2); and the
vehicle is following the vehicle in front at velocity Vf (Condition S3). A vehicle may transform its state
among S1, S2, and S3 when going through a link after many cycles.

Condition S1 means the vehicle i is running with free-flow speed at time step t0, which is the
green time beginning. Vehicle i will run with velocity vi from t0 to t0 +

xi(t0)−l(t0)
Vf ree

, as Formula (3)
describes. Because the discharge shock wave α also begins propagating from the stop line to the end
of queue, if the discharge shock wave arrive the end of queue late than the vehicle i, the vehicle will
queue with speed vi = 0, as Formula (4) describes. Until the discharge shock wave arrives, then
vehicle i will start and follow the vehicle in front with a relatively low speed Vf , as Formula (4a)
describes. Note that this is under a precondition that the queue vehicles can not be discharged in
one cycle (i.e., l(t0)k j > gs). When the green time finishes, there are l(t0)k j − gs vehicles left and the

length is
l(t0)kj−gs

km
, and the queue shock wave will begin, if the queue shock wave meets vehicle i (i.e.,

time t0 + g +
l(t0)kj−gs

km β ), vehicle i will stop and begin queue until the end of this cycle, as Formula (4b)
describes. If the discharge shock wave arrives, and the end of queue is earlier than vehicle i, vehicle i
will run longer until t0 +

xi(t0)−l(t0)
Vf ree−Vf

, as Formula (5) describes. In addition, if vehicle i catches up with
the front vehicle before the end of green time, it will run with speed Vf until the end of green time, as
Formula (5a) describes. If vehicle i exits the link during this time, its speed is Vf all the time. If vehicle
i doesn’t exit the link during this time, the vehicle will run with Vf until the queue shock wave meets
vehicle i, as Formula (5b) describes. Then, vehicle i will stop until the end of the cycle, as Formula (5c)
describes.

Condition S1:

vi(t) = Vf ree, t0 ≤ t < t0 +
xi(t0)− l(t0)

Vf ree
(3)

vi(t) = 0, t0 +
xi(t0)− l(t0)

Vf ree
≤ t < t0 +

l(t0)

α
, if

l(t0)

α
>

xi(t0)− l(t0)

Vf ree
(4)

vi(t) = Vf , t0 +
l(t0)

α
≤ t < t0 + g +

l(t0)k j − gs
kmβ

, if l(t0)k j − gs > 0 (4a)

vi(t) = 0, t0 + g +
l(t0)k j − gs

kmβ
≤ t < t0 + C (4b)

vi(t) = Vf ree, t0 +
xi(t0)− l(t0)

Vf ree
≤ t < t0 +

xi(t0)− l(t0)

Vf ree − Vf
, if

l(t0)

α
≤ xi(t0)− l(t0)

Vf ree
(5)

vi(t) = Vf , t0 +
xi(t0)− l(t0)

Vf ree − Vf
≤ t < t0 + g, if

xi(t0)− l(t0)

Vf ree − Vf
< g (5a)

vi(t) = Vf , t0 + g ≤ t < t0 + g +
l(t0)k j − gs

kmβ
, if l(t0)k j − gs > 0 (5b)

vi(t) = 0, t0 + g +
l(t0)k j − gs

kmβ
≤ t < t0 + C (5c)

Condition S2 means that the vehicle i is queuing at time step t0, which is the green time beginning,
it needs to wait for the discharge shock wave and then run, as Formula (6) describes. If vehicle
i begins to run, it will follow the front vehicle with a speed of Vf . However, there are also two

situations: vehicle i will directly exit the link if l(t0)k j < gs after xi(t0)−l(t0)
Vf ree−Vf

, as Formula (7) describes.

If l(t0)k j > gs, vehicle i will meet the queue shock wave, as Formula (8) describes. However, if vehicle
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i does not meet the queue shock wave when the cycle time finishes, it will run with speed Vf until the
end of this cycle, as Formula (8a) describes, and the condition of vehicle i will turn to S2 for the next
cycle. If vehicle i does not meet the queue shock wave when the cycle time finishes, it will run with
speed 0 until the end of this cycle, as Formula (8b) describes.

Condition S2:

vi(t) = 0, t0 ≤ t < t0 +
l(t0)

α
(6)

vi(t) = Vf , t0 +
l(t0)

α
≤ t < t0 +

l(t0)

α
+

l(t0)

Vf
, if l(t0)k j < gs (7)

vi(t) = Vf , t0 +
l(t0)

α
≤ t < t0 + g +

l(t0)k j − gs
kmβ

, if l(t0)k j > gs (8)

vi(t) = Vf , t0 + g +
l(t0)k j − gs

kmβ
≤ t < t0 + C if r ≤

l(t0)k j − gs
kmβ

(8a)

vi(t) = 0, t0 + g +
l(t0)k j − gs

kmβ
≤ t < t0 + C if r >

l(t0)k j − gs
kmβ

(8b)

Condition S3 means that vehicle i is following the front vehicle at time step t0, which is the green
time beginning, it will meet the queue shock wave, as Formula (9) describes. There must be a queue
l(t0) after the end of a cycle; otherwise, the situation is S1. If vehicle i meets the queue shock wave,
its speed becomes zero and this remains for a while until the discharge shock wave passes through, as
Formula (10) describes, where xi(t0)− l(t0))km/k j + l(t0) is the meeting place. If vehicle i meets the
discharge shock wave before the end of green time, vehicle i will run with speed Vf until meeting the
queue shock wave, as Formula (10a,b) describe. Then, if the red time is enough, vehicle i will queue

with 0 speed until the end of the cycle. However, if the red time r <
(xi(t0)−l(t0))km+l(t0)kj−gs

km β , vehicle i
will exit the link with speed Vf . If vehicle i meets the discharge shock wave after the end of green time,
the time meeting the queue shock wave is different with Formula (10a,b), but the basic principle is the
same, so vehicle i will run with speed Vf , as Formula (11) describes; and then turns to zero until the
end of cycle, as Formula (11a) describes.

Condition S3:

vi(t) = Vf , t0 ≤ t < t0 +
xi(t0)− l(t0)

β
(9)

vi(t) = 0, t0 +
xi(t0)− l(t0)

β
≤ t < t0 +

(xi(t0)− l(t0))km/kj + l(t0)

α
(10)

vi(t) = Vf , t0 +
(xi(t0)− l(t0))km/kj + l(t0)

α
≤ t < t0 + g, if g >

(xi(t0)− l(t0))km/kj + l(t0)

α
(10a)

vi(t) = Vf , t0 + g ≤ t < t0 + g +
(xi(t0)− l(t0))km + l(t0)kj − gs

kmβ
(10b)

vi(t) = 0, t0 + g +
(xi(t0)− l(t0))km + l(t0)kj − gs

kmβ
≤ t < t0 + C, (10c)

if r >
(xi(t0)− l(t0))km + l(t0)kj − gs

kmβ

vi(t) = Vf , t0 +
(xi(t0)− l(t0))km/kj + l(t0)

α
≤ t < t0 + 2

(xi(t0)− l(t0))km/kj + l(t0)

α
− g (11)

+
(xi(t0)− l(t0))km + l(t0)kj − gs

kmβ
, if g ≤

(xi(t0)− l(t0))km/kj + l(t0)

α

vi(t) = 0, t0 + 2
(xi(t0)− l(t0))km/kj + l(t0)

α
− g +

(xi(t0)− l(t0))km + l(t0)kj − gs
kmβ

(11a)

≤ t < t0 + C
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In the next section, we will introduce a new definition including flow and velocity and link
fundamental diagram, which will better fit people’s cognition of the traffic phenomenon.

3. Link Fundamental Diagram Based on Queue

3.1. The Definition of Velocity-Weighted Flow

A new definition called velocity-weighted flow, including flow and average velocity is given
as follows:

q̄ =

N
∑

i=1

vi
Vf ree

∆t
(12)

where ∆t is a time interval passing through the link, N is the number of vehicles passing through the
link during ∆t, vi is the average velocity of vehicle i passing through the entire link, and Vf ree is the free
flow velocity. Formula (12) can be understood as a transformation of Formula (1), where the traditional
traffic flow (1) is weighted by the average velocity of each vehicle in the flow. Thus, q̄ includes both the
information describing the number of vehicles passing through a link in a period and the information
about the average speed of each vehicle passing through the link. To make sure that the dimension of
q̄ is still (veh/h), the velocity needs to be normalized in Formula (12), that is, vi/Vf ree.

We can use the proposed queue-flow model and queue-velocity model to explain this appearance.
The velocity of vehicles under condition S1 is likely to be Vf ree when the queue length is short according
to Formula (3) series. The velocity of vehicles under conditions S2 and S3 is likely to be Vf when the
queue length is short according to Formula (6) series, and they all have fewer stops.Because the flow q
is low according to Formula (2), the weighted flow is correspondingly low. With the increasing queue,
the flow is correspondingly increased, and the velocity of vehicles under condition S1, S2 and S3 is
likely to be Vf when the queue length is middling; moreover, the difference between Vf and Vf ree is not
very great, so the weighted flow is correspondingly increased and maintain a large value. When the
queue length is long, the vehicle velocity is low because some vehicles will stop and the vehicle even
had to exit the link after several cycles, so the velocity-weighted flow is correspondingly decreased.

In summary, we can suggest that, when the link has few vehicles, the flow is small but the vehicle
is fast, so q̄ is not too small. Even if the traffic volume of a link reaches its maximum, but the vehicle is
moving at a slower speed due to congestion, q̄ is reduced until the link is completely blocked.

3.2. Drawing Link Fundamental Diagram

The scatter plot of traditional flow q versus queue length l is shown in Figure 2a, and the scatter
plot of weighted flow q̄ versus queue length l is shown in Figure 2b. Both of them are under the same
simulation environment, but the proposed FD can present more dynamics of the traffic condition,
which clearly demonstrates that traffic capacity will first increase and then decrease as queue lengths
increase. The reasons are that: when the queue is short, less traffic flow means less q̄; Traffic flow
increases with the long queue, and the vehicle average velocity is relatively fast under this condition,
so q̄ is increasing. However, when the queue reaches a certain level, the long queue and increasing
number of stops will lead to a decrease in the average speed of the vehicle, leading to a decrease in
q̄. Figure 2 shows that, when the queue length l is less than 100 m, q̄ increases with the increase of l.
When the queue length l is greater than 100 m, q̄ decreases with an increase of l. This indicates that
the average speed of vehicles passing through a link is significantly reduced when the queue length l
is greater than 100 m, and it can be considered that the road traffic situation is congested. When the
queue length l is approximately 100 m, which can be considered a critical queue length, both the traffic
flow and the average speed of each car runs at a moderate speed.

In terms of traffic management, we assume the high traffic flow where the vehicles achieve a
faster speed rate when passing through the link is more efficient. The definition of q̄ considers both the
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number of vehicles passing in unit time and the average speed; moreover, the relationship of queue
length versus q̄ is an approximately symmetric curve which has an equilibrium point, so using this
link fundamental diagram to distinguish the road traffic conditions will be clearer and more effective.

4. Characters of the Link Fundamental Diagram

4.1. Impact of Green Time on the Link Fundamental Diagram

The previous chapter outlines the proposed link fundamental diagram under the condition of a
fixed signal cycle and green time. We now study additional characters of the link fundamental diagram
with different signal cycles and green times.

In this chapter, we study q̄ and l scatter plots under a fixed cycle but with different green times.
Taking the period length of 60 s as an example, the scatter plots are shown in Figure 4a–e. The plot
shows a single-peak curve, especially in Figure 4a–c. In Figure 4d,e, only the first half of the curve
has high dispersion; since there is a long green time under this condition, the queue will be quickly
dissipated, so the points in the second half are going to be sparse. According to Figure 4a–e, we can
conclude that the green time can influence the shape of the link fundamental diagram. Summarizing
the curves in Figure 4a–e, Figure 4f shows both the critical queue length and the velocity-weighted
flow increase with the increasing of green time. These critical points are marked with a green hollow
circle and are fitted as the dotted green line in Figure 4f, and the growth trend is also indicated by the
green arrow line.

To study the generality of this relationship, scatter plots of q̄ and l under different green times of
60 s and 120 s are presented, as shown in Figures 5 and 6, respectively. They also show the existence of
the link fundamental diagram for other cycle times and green times, and both the critical queue length
and the velocity-weighted flow increase with increasing green time.

We have studied the link fundamental diagram under a condition where the cycle time is fixed
with different green times. Furthermore, we study the link fundamental diagram under the condition
of a fixed green time with different cycle times. The critical points are marked with a green hollow
circle for three signal cycles, and it can be seen that the critical weighted flow descends along the arrow
from 530 to 220 for Figure 7a as well as Figure 7b,c, which means that the critical weighted flow varies
greatly with the signal cycle. However, the critical queue length changes little with the signal cycle,
which indicates that the critical queue length is more closely related to the green time than the cycle
time, but the critical queue length changes little with the signal cycle.

4.2. The Impact of Split on the Link Fundamental Diagram

Figures 4–6 have shown that green time can influence the critical weighted flow and the critical
queue length, respectively. Figure 7 shows that cycle time can also influence the critical weighted flow
and the critical queue length, but the critical queue length is relatively little affected by the cycle time.
Because split is the ratio of effective green light time and cycle length for a phase, we will study the
influence of split for the shape of the link fundamental diagram, critical weighted flow, and the critical
queue length in this section.
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Figure 4. q̄ versus queue length for different green times with a cycle time of 60 s: (a) cycle time C is
60 s, green time g is 10 s; (b) cycle time C is 60 s, green time g is 20 s; (c) cycle time C is 60 s, green time g
is 30 s; (d) cycle time C is 60 s, green time g is 40 s; (e) cycle time C is 60 s, green time g is 30 s; (f) the
summary figure and the fitting curve of the critical point.
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(f)

Figure 5. q̄ versus queue length for different green times with a cycle time of 90 s: (a) cycle time C is
90 s, green time g is 20 s; (b) cycle time C is 90 s, green time g is 30 s; (c) cycle time C is 90 s, green time g
is 40 s; (d) cycle time C is 90 s, green time g is 50 s; (e) cycle time C is 90 s, green time g is 60 s; (f) the
summary figure and the fitting curve of the critical point.
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Figure 6. q̄ versus queue length for different green time with a cycle time of 120 s: (a) cycle time C
is 120 s, green time g is 30 s; (b) cycle time C is 120 s, green time g is 40 s; (c) cycle time C is 120 s,
green time g is 50 s; (d) cycle time C is 120 s, green time g is 60 s; (e) cycle time C is 120 s, green time g
is 70 s; (f) the summary figure and the fitting curve of the critical point.
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Figure 7. q̄ versus queue length for different split: (a) split is 1/3; (b) split is 1/2; (c) split is 2/3.

The link fundamental diagram under different splits is shown in Figure 8. Figure 8a shows the
weighted flow q̄ versus length under the conditions where the split is 1/3, that is, cycle time is 60 s
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with the green time of 20 s; the cycle time is 90 s with the green time of 30 s; the cycle time is 120 s
with the green time of 40 s. Figure 8b,c shows the weighted flow q̄ versus length under the conditions
where the split is 1/2 and 2/3. It can be seen that the link fundamental diagram has a similar shape
for the same split. We mark the critical weighted flow and the critical queue length with the green
hollow circles, which indicates that the critical weighted flow and the critical queue length are very
close for the same split. Therefore, we can conclude that the shape of the link fundamental diagram is
usually determined by the split.
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Figure 8. q̄ versus queue length for different cycle times: (a) green time g is 20 s; (b) green time g is
30 s; (c) green time g is 40 s.
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4.3. The Impact of Cycle Time on the Link Fundamental Diagram

To further study the impact of the split on the critical points, more experimental results are shown
in Figure 9. The colored points represent the critical points (critical queue length, critical weighted
flow), the number next to which represents the split value.

The closed splits are highlighted on a light red background in Figure 9, and it can be seen that they
have similar critical weighted flow. Moreover, the critical weighted flow increases with the increase of
the split. Thus, we can conclude that the critical weighted flow is closely related to the split with a
positive correlation.

Figure 9. Scatter diagram of critical q̄ vs. critical queue length for different splits.

5. Conclusions

A link fundamental diagram is presented in this paper according to queue length and the defined
velocity-weighted flow. This study sets out to describe the properties of urban road traffic flow in
a heuristic way. The results of this investigation show that the scatter plots take a relatively clear
form of unimodal curves, that is, the velocity-weighted flow first increases and then decreases as the
queue length increases, which means that the traffic ability increases first and then declines. Moreover,
the characteristics of the link fundamental diagram are examined, including the impacts of green
time, cycle time, and split. The correlation of critical weighted flow, critical queue length, green
time, cycle time, and split are discussed. The new link fundamental diagram might help the traffic
manager to evaluate the state of link congestion, or make appropriate control objectives, for example,
keeping queue length below a certain value as a preventive means for avoiding congestion.

In the future, this study could be verified through field data and explained by a mathematical
model, and the link fundamental diagram can also be used in traffic condition evaluations.
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Abbreviations

The following abbreviations are used in this manuscript:

FD Fundamental diagram
MFD Macroscopic fundamental diagram
LFD Link fundamental diagram
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