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Abstract: This is a sequel to our earlier paper presenting a supersymmetric Nambu–Jona–Lasinio
(NJL)-type model for a real superfield composite. The model in the simplest version has only a
chiral superfield (multiplet), with a strong four-superfield interaction in the Kähler potential that
induces a real two-superfield composite with vacuum condensate. The latter can have supersymmetry
breaking parts, which we have shown to bear nontrivial solutions under a standard nonperturbative
analysis for a Nambu–Jona–Lasinio-type model on a superfield setting. In this article, we generalize
our earlier analysis by allowing a supersymmetric mass term for the chiral superfield, as well as
possible θ2 components for the soft supersymmetry breaking part of the condensate. We present
admissible nontrivial vacuum solutions and an analysis of the resulted low energy effective theory
with components of the composite becoming dynamical. The determinant of the fermionic modes is
shown to be zero, illustrating the presence of the expected Goldstino.

Keywords: NJL model; superfield composite; supersymmetry

PACS: 11.10.Stbound and unstable states; Bethe–Salpeter equations; 11.15.Pg expansions for large
numbers of components (e.g., 1/Nc expansions); 11.30.Pb Supersymmetry

1. Introduction

With the discovery of the Higgs particle at the large hadron collider (LHC), the full success of
the standard model (SM) has been crowned. Unfortunately, we still do not see any clear indication of
experimental features beyond, so long as phenomenology at the TeV scale is concerned. Theorists are
however mostly unsatisfied with the SM, particularly with its Higgs sector and explanation of the
origin of the electroweak symmetry breaking. With a negative mass-square at the right scale put in by
hand, the Higgs mechanism looks like only a phenomenological description of the ‘true’ theory behind
it. Moreover, the other parts of the SM theory have their field content tightly constrained by the gauge
symmetry and no parameters with mass dimensions admissible; everything in the Higgs sector looks
completely arbitrary in comparison. Another way of looking at the issue would be that the only natural
value of any input mass parameter should be like the model cutoff scale. We may need a model with a
dynamical mechanism to generate the extra mass scale substantially below the cutoff.

Practically and experimentally accessible physics is really only about effective (field) theories.
Taking the SM as an effective field theory, one would admit the higher dimensional operators with
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couplings suppressed by powers of the model cutoff scale in the Lagrangian. Actually, a dimension
six term of four-fermion interaction with strong coupling gives interesting nonperturbative dynamics
that can break symmetries and generate masses [1]. That is the Nobel prize-winning classic
Nambu–Jona-Lasinio (NJL) model [2,3], to which Higgs physics may correspond to the low energy
effective theory, with the Higgs boson being identified as a two-quark composite. This beautiful
idea of the top-mode SM [4–9] fails to accommodate the too small phenomenological top quark
mass [1]. At this point, it looks like a holomorphic supersymmetric version that gives the (minimal)
supersymmetric standard model (SSM) with both Higgs supermultiplets as two-superfield composite
maintains phenomenological viability [10].

The SSM is still the most popular candidate theory beyond the SM. The theoretical beauty of
supersymmetry is certainly part of its appeal. While the naive picture of supersymmetry at or below
the TeV scale as a solution to the ‘hierarchy problem’ fails, the dynamical electroweak symmetry
breaking option of a supersymmetric Nambu–Jona–Lasinio (SNJL) model may work with a higher
supersymmetry breaking scale. The first SNJL model was introduced in the early 1980s [11,12],
generalizing the four-fermion interaction to a four-superfield interaction of the same dimension, in the
Kähler potential. A holomorphic version (HSNJL) as an alternative supersymmetrization [13] with a
four-superfield interaction in the superpotential [10] has been introduced, with different theoretical
and phenomenological merits [10,14,15]. However, this kind of supersymmetric NJL-type model
discusses only the formation of composite chiral superfields, for modeling the Higgs sector. There are
more interesting possibilities in the supersymmetrization of NJL-type models. Here, we focus on
a simple one giving a real two-superfield composite from a dimension-six four-chiral-superfield
interaction, first reported in our earlier paper [16]. Following and extending the framework of our
earlier analyses [14–16], we present, in the article, further interesting nontrivial solutions for the soft
mass parameters of the composite, under a more general setting, and the resulting physics. This kind
of model may have the chance of dynamically generating the SNJL model with soft supersymmetry
breaking masses for the further dynamical electroweak symmetry breaking, though the simple NJL
framework is not able to have a firmly conclusive result on the dynamical supersymmetry breaking
beyond its nature of a large-N approximation.

In Section 2, we present the model and the supergraph derivation of the superfield
gap equation, elaborating carefully the extension of our framework of analysis [14,15] with model
parameters and correlation functions taken as superspace parameters, like constant superfields,
containing supersymmetric and supersymmetry breaking parts. The superfield gap equation
contains components which include wavefunction renormalization factor and two different soft
mass parameters. In Section 3, we discuss the effective theory picture with the composite and the
matching effective potential analysis performed at the component field level, further strengthen the
result and illustrate the physics involved. Section 4 is devoted to the analysis of the nontrivial solutions
for the soft supersymmetry breaking parameters. In Section 5, we go further to look at some dynamical
features of the composite superfield or its various components at low energy, focusing on the Goldstino
mode. Some remarks and conclusions will be presented in the last section. Two appendices are given,
the first on some details of the analytical expressions as background for the effective theory analysis and
some results for two-point functions of the various components of the composite superfield relevant
for their low energy dynamics, and the second on propagator expressions for a (chiral) superfield
and components admitting the most general mass parameters. The latter expressions have not been
explicitly presented in the literature.

2. The Model and the Superfield Gap Equation

The model has a dimension six four-superfield interaction similar but somewhat different from
that of the SNJL model [11,12]. We start with the single chiral superfield (multiplet) Lagrangian

L =
∫

d4θ

[
Φ̄Φ +

mo

2
ΦΦδ2(θ̄) +

m∗o
2

Φ̄Φ̄δ2(θ)− g2
o

2
(Φ̄Φ)

2
]

, (1)
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where Φ is the chiral superfield which is a scalar field on the chiral superspace, and θ is the Grassmann
number which is one coordinate of superspace. We have suppressed any multiplet (color) indices,
with basic notation being in line with that of Wess and Bagger [17]. Note the two supersymmetric mass
terms in the superpotential which are absent in our previous study [16]. We present here a standard
NJL gap equation analysis [11,14,15], to check for the dynamical generation of a Φ̄Φ composite and
the related physics.

Before getting into our analysis, some comments on the symmetry issues are in order. Apart from
supersymmetry itself, the model Lagrangian has, independent of the multiplet content of Φa, a U(1)R,
symmetry under which Φa has a unit charge. With vanishing mo, it has a full U(N) symmetry under
which the multiplet can be considered in the fundamental representation [16]. With the condition lifted,
Φa may then be considered as an SO(N), instead of SU(N), multiplet. It is important to note that the
usual 1/N approximation picture can still be valid. The U(1) Φ-number symmetry is only violated by
the mass term, in the Lagrangian. In the naive case of a single superfield, the gap equation analysis
here would correspond to the quenched planar approximation of QED by Bardeen et al. [18–20], which is
commonly believed to give the correct qualitative result in the kind of dynamical symmetry breaking
studies. Some more discussion of the issue in a somewhat different setting is available in Reference [15].

Let us go onto a superfield gap equation analysis following and extending our earlier formulated
framework [14,15]. We consider a superfield two-point proper vertex ΣΦΦ†(p; θ2, θ̄2), which can
be treated as a constant superfield with components explicitly dependent on θ2 and θ̄2. In the full
superfield picture, ΣΦΦ†(p; θ2, θ̄2) can be expanded as

ΣΦRΦ†
R
(p; θ2θ̄2) = Σr(p)− Ση̃(p)θ2 − Σ̄η̃∗(p)θ̄2 − Σm̃(p)θ2θ̄2 . (2)

It contains different components. The supersymmetric part Σr gives only a kinetic term,
hence contributes to wavefunction renormalization. The part Σm̃ in itself is like a proper self-energy
contribution to the scalar but not the fermion component, hence soft supersymmetry breaking.
Note that with Φ = A +

√
2ψθ + Fθ2, the four-superfield interaction after the d4θ integration,

has the part −g2
o AA†(ΦΦ†)|θ,θ̄=0. We have also performed the calculation fully in the component

field framework for cases of Reference [16], but prefer to illustrate the superfield calculation here
in accordance with the formulation under the perspective discussed in Reference [14]. The soft
supersymmetry breaking mass m̃2 as a superfield term is just the θ2θ̄2 component of the kinetic term,
to which ΣΦΦ†(p; θ2, θ̄2) is the quantum correction to the latter. The part Ση̃ , which is not considered in
our earlier study [16], is somewhat less obvious. It is a proper vertex of AF∗, to be matched to another
mass parameter η̃; the η̃AF∗ term gives another kind of soft supersymmetry breaking mass not usually
discussed in the literature.

To keep notation simple, we will present our analysis here onwards with the index suppressed,
as if we are working on a single superfield. What we have in mind is really a N-multiplet of the SO(N)

or SU(N). Retrieving result for a nontrivial N is straightforward. The one-loop contribution such as
the one in ΣΦΦ†(p; θ2, θ̄2) or Σm̃(p) will have to be multiplied by the factor N.

It is then easy to appreciate that a consistent superfield treatment of the standard NJL analysis
should consider modifying the superfield propagator to incorporate plausible nonperturbative
parameter of the generic form given by

Y = y− η̃oθ2 − η̃∗o θ̄2 − m̃2
oθ2θ̄2 (3)

where containing supersymmetric as well as supersymmetry breaking parts. We write here m̃2
o

and η̃o instead of m̃2 and η̃, as the parameters are not physical ones yet. The component y
contributes a (supersymmetric) wavefunction renormalization factor which renormalizes all mass
parameters accordingly, as shown below explicitly. Particularly, in the former work, [16] η̃o = 0 was
assumed for simplicity. However, we do not make such an assumption here to give a more complete
picture of the analysis. Notice that a generation of nontrivial y breaks no symmetry while a generation
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of m̃2 breaks only supersymmetry. Non-vanishing η̃ however breaks the U(1)R symmetry together
with supersymmetry.

To proceed with the derivation of the superfield gap equation, we add and subtract the term YΦ̄Φ,
as the first step of the self-consistent Hartree approximation, and split the Lagrangian as L = Lo +

Lint where

Lo =
∫

d4θ

[
Φ̄Φ(1 + Y) + mo

2
Φ2δ2(θ̄) +

m∗o
2

Φ̄2δ2(θ)

]
(4)

and

Lint =
∫

d4θ

[
−YΦ̄Φ− g2

o
2

Φ̄ΦΦ̄Φ
]

. (5)

To restore the canonical kinetic term in the presence of a plausibly nonzero y, we introduce the
renormalized superfield ΦR ≡

√
ZΦ =

√
1 + yΦ which gives

Lo =
∫

d4θ

[
Φ̄RΦR(1− η̃θ2 − η̃∗ θ̄2 − m̃2θ2θ̄2) +

m
2

Φ2
R δ2(θ̄) +

m∗

2
Φ̄2

R δ2(θ)

]
. (6)

The mass parameters are of course renormalized ones, to be divided by the wavefunction
renormalization parameter Z; explicitly m = mo

1+y , for example. The quantum effective action is

Γ = Φ̄RΦR(1− η̃θ2 − η̃∗ θ̄2 − m̃2θ2θ̄2) +
m
2

Φ2
R δ2(θ̄) +

m∗

2
Φ̄2

R δ2(θ)

−YRΦ̄RΦR −
g2

2
Φ̄RΦRΦ̄RΦR + ΣΦRΦ†

R
Φ̄RΦR + · · · , (7)

where g2 = g2
o

(1+y)2 is the renormalized four-superfield coupling and YR is similarly given by

YR =
Y
Z

=
y

1 + y
− η̃θ2 − η̃∗ θ̄2 − m̃2θ2θ̄2 . (8)

The superfield gap equation under the NJL framework is then given by

−YR + Σ(loop)
ΦRΦ†

R
(p; θ2θ̄2)

∣∣∣∣
on-shell

= 0 . (9)

In component form, we have

y
1 + y

= Σ(loop)
r (p)

∣∣∣
on-shell

,

η̃ = Σ(loop)
η̃ (p)

∣∣∣
on-shell

,

m̃2 = Σ(loop)
m̃2 (p)

∣∣∣
on-shell

, (10)

where, in accordance with the standard NJL analysis, one uses the one-loop contribution to
ΣΦRΦ†

R
(p; θ2θ̄2) from the four-superfield interaction. The diagrammatic illustration of the renormalized

superfield gap equation is given in Figure 1. Note that results reported in Reference [16] correspond
to assuming η̃ remains zero from the beginning, which will be shown to be a consistent solution.
Our interest here is on solutions with nontrivial η̃.
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We perform a supergraph calculation for ΣΦRΦ†
R
(p; θ, θ̄) directly. The relevant superfield

propagator is given by

〈T(Φ(1)RΦ†
R (2))〉 =

−i
p2 + |m|2 δ4

12 − i
η̃(Q− 2|m|2)

Q2 − 4 |m|2|η̃|2 θ1
2δ4

12 − i
η̃∗(Q− 2|m|2)
Q2 − 4 |m|2|η̃|2 θ̄1

2
δ4

12

+i
(m̃2 + |η̃|2)Q− 4|m|2|η̃|2

(p2 + |m|2|)(Q2 − 4 |m|2|η̃|2)

[
D2

1 θ2
1 θ̄1

2D2
1

16

]
δ4

12

+i
(−p2|η̃|2 + m̃2|m|2)Q + 4p2|m|2|η̃|2

(p2 + |m|2|)(Q2 − 4 |m|2|η̃|2) θ2
1 θ̄1

2
δ4

12 , (11)

where Q = p2 + |m|2 + |η̃|2 + m̃2 and δ4
12 = δ4(θ1− θ2). The necessary evaluation of Σ(loop)

ΦRΦ†
R
(p; θ2θ̄2)

∣∣∣∣
on-shell

is much similar to previous cases [14]. The result is given by

Σ(loop)
ΦRΦ†

R
(p; θ2θ̄2)

∣∣∣∣
on-shell

= −g2
∫ E
[

1
k2 + |m|2 +

η̃(Qk − 2|m|2)
Q2

k − 4 |m|2|η̃|2 θ2 +
η̃∗(Qk − 2|m|2)
Q2

k − 4 |m|2|η̃|2 θ̄2

− (m̃2 + |η̃|2)Qk − 4|m|2|η̃|2
(k2 + |m|2|)(Q2

k − 4 |m|2|η̃|2)
(

1− k2θ2θ̄2 + 4kaσa
αα̇θα θ̄α̇

)
− (−k2|η̃|2 + m̃2|m|2)Qk + 4k2|m|2|η̃|2

(k2 + |m|2|)(Q2
k − 4 |m|2|η̃|2) θ2θ̄2

]
, (12)

where the
∫E denotes integration over Euclidean four-momentum k with the measure d4k

(2π)4 and

Qk = k2 + |m|2 + |η̃|2 + m̃2. Each of the five terms in the above expression comes exactly from the
corresponding term in the superfield propagator. The 4kaσa

αα̇θα θ̄α̇ term vanishes upon integration.
The others can be pull together to give the component gap equations as

y
1 + y

= Σ(loop)
r (p)

∣∣∣
on-shell

= −g2
∫ E (k2 + |m|2 + m̃2 + |η̃|2)

(k2 + |m|2 + m̃2 + |η̃|2)2 − 4|m|2|η̃|2 ,

η̃ = Σ(loop)
η̃ (p)

∣∣∣
on-shell

= g2η̃
∫ E (k2 − |m|2 + m̃2 + |η̃|2)

(k2 + |m|2 + m̃2 + |η̃|2)2 − 4|m|2|η̃|2 ,

m̃2 = Σ(loop)
m̃2 (p)

∣∣∣
on-shell

= g2
∫ E 1

(k2 + |m|2)
1

(k2 + |m|2 + m̃2 + |η̃|2)2 − 4|m|2|η̃|2

·
{[

m̃2(k2 − |m|2) + 2k2|η̃|2
]
(k2 + |m|2 + m̃2 + |η̃|2)− 8k2|m|2|η̃|2

}
. (13)

Non-trivial solutions of the three coupled equations with nonvanishing η̃ and/or m̃2 give
supersymmetry breaking solutions, while nontrivial y value gives wavefunction renormalization to
Φ, which does not change the qualitative answer to whether supersymmetry breaking solutions with
the soft mass generation exist. Our analysis will explicitly demonstrate that. However, we postpone
the analysis of the nontrivial solution until after the discussion of the effective theory picture in the
next section.

ΦR Φ†
R

−YR

ΦR Φ†
R

ΦRΦ
†
R

0

Figure 1. The renormalized superfield gap equation, with YR =
y

1+y − η̃θ2 − η̃∗ θ̄2 − m̃2θ2 θ̄2.
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3. The Effective Theory Picture

Following the general effective theory picture of the NJL-type models, we modify the model
Lagrangian by adding to it

Ls =
∫

d4 θ
1
2
(µU + goΦ̄Φ)2 , (14)

where U is an ‘auxiliary’ real superfield and the mass parameter µ is taken as real and positive
(for g2

o > 0). The equation of motion for U, from the full Lagrangian L+ Ls gives

U = − go

µ
Φ̄Φ , (15)

where showing it as a superfield composite of Φ̄ and Φ. The condition says the model with L+ Ls is
equivalent to that of L alone. Expanding the term in Ls, we have a cancellation of the dimension six
interaction in the full Lagrangian, giving it as

Le f f ≡ L+ Ls =
∫

d4θ

[
Φ̄Φ +

µ2

2
U2 + µgoUΦ̄Φ +

mo

2
Φ2δ(θ̄) +

m∗o
2

Φ̄2δ(θ)

]
. (16)

Obviously, if U|D develops a vacuum expectation value (VEV), supersymmetry is broken
spontaneously and the superfield Φ gains a soft supersymmetry breaking mass of m̃2

o = −µgo 〈U|D〉.
The above looks very much like the standard features of NJL-type model. Notice that while U does
contain a vector component, its couplings differ from that of the usually studied ‘vector superfield’
which is a gauge field supermultiplet. That is in addition to having µ as like a supersymmetric mass for
U, which can be compatible only with a broken gauge symmetry. As such, the model with superfield
U is not usually discussed. The superfield can be seen as two parts, as illustrated by the following
component expansion,

U(x, θ, θ̄) =
C(x)

µ
+
√

2θ
χ(x)

µ
+
√

2θ̄
χ̄(x)

µ
+ θθ

N(x)
µ

+ θ̄θ̄
N∗(x)

µ

+
√

2θσµ θ̄vµ(x) +
√

2θθθ̄λ̄(x) +
√

2θ̄θ̄θλ(x) + θθθ̄θ̄D(x) , (17)

where the components C, χ, and N are the first parts which have content like a chiral superfield with,
however, C being real. The µ factor is put to set the mass dimensions right. The rest is like the content
of a superfield for the usual gauge field supermultiplet, with D and vµ real. The effective Lagrangian
in component form is given by

Le f f = (1 + goC)
[
A∗�A + i(∂µψ̄)σ̄µψ + F∗F

]
+

mo

2
(2AF− ψψ) +

m∗o
2

(2A∗F∗ − ψ̄ψ̄)

+µCD− µχλ− µχ̄λ̄ + NN∗ − µ2

2
vνvν − µgoψλA∗ − µgoψ̄λ̄A + µgoDA∗A

−i
go

2
ψ̄σ̄µχ∂µ A + i

go

2
(∂µψ̄)σ̄µχA− goχψF∗ + go NAF∗

+i
go

2
χ̄σ̄µψ∂µ A∗ − i

go

2
A∗χ̄σ̄µ∂µψ− goχ̄ψ̄F + go N∗A∗F

−µgo√
2

ηµνvµiA∗∂ν A +
µgo√

2
ηµνvµi(∂ν A∗)A− µgo√

2
ηµνvµψ̄σ̄νψ . (18)

Notice that, like F, N and D have mass dimension two.
Under the U(1)R symmetry, A and F have charge +1 and −1. The superfield U is uncharged.

However, components N, χ and λ carry nontrivial U(1)R charges −2, −1 and +1, respectively. For the
mo = 0 case, there is an extra U(1) Φ-number symmetry with common charge for all components.
All components of U are not charged under the latter.
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In accordance with the ‘quark-loop’ approximation in the (standard) NJL gap equation analysis
and our particular supergraph calculation scheme above, we consider plausible non-trivial vacuum
solution with non-zero vacuum expectation values (VEVs) for the composite scalars C, D and N.
While N is complex, we can safely take n ≡ 〈N〉 to be real here. At least we can exploit the U(1)R
symmetry to absorb any phase at the expense of having a complex mo, the phase of which does
not show up in the calculation. First note that scalar C couples to kinetic terms of components
of Φ; c ≡ 〈C〉 hence contributes to a supersymmetric wavefunction renormalization of the latter.
It is the supersymmetric part of Σ(loop)

ΦΦ† (p; θ2, θ̄2), an unavoidable part of the one-loop supergraph
in our gap equation calculation in the previous section. Again, we should go to the renormalized
superfield ΦR =

√
(1 + goc)Φ in the following calculations, with renormalized mass m and coupling g.

With n ≡ 〈N〉 and d ≡ 〈D〉, we have −gn and −µgd, corresponding to the supersymmetry breaking
masses η̃ and m̃2 of ΦR. In the former case, it gives a ARF∗R component term. Note that 〈N〉 is the
only VEV that breaks the U(1)R symmetry, as C and D carry no charges, though both 〈N〉 and 〈D〉
break supersymmetry.

With propagators for the components of the renormalized ‘quark’ superfield ΦR, as given in the
Appendix A, one can easily obtain the minimum condition for the effective potential following the
Weinberg tadpole method [21,22]. Firstly, for C-tadpoles, we have a ΦR loop or in component form one
from each of AR, ψR, and FR. Hence, we have up to one loop level

Γ(1)
C = Γ(1)tree

C + Γ(1)
CA

+ Γ(1)
Cψ

+ Γ(1)
CF

= µd− gIC , (19)

where

IC = ICA − 2ICψ
+ ICF ;

ICA =
∫ E k2(k2 + |m|2 + g2|n|2 − µgd)

(k2 + |m|2 + g2|n|2 − µgd)2 − 4g2|n|2|m|2 ,

ICψ
=

∫ E k2

k2 + |m|2 ,

ICF =
∫ E (k2 − µgd)(k2 + |m|2 + g2|n|2 − µgd)

(k2 + |m|2 + g2|n|2 − µgd)2 − 4g2|n|2|m|2 . (20)

Next, the N∗-tadpole is given by

Γ(1)
N∗ = n− gIN , (21)

where

IN =
∫ E gn(k2 − |m|2 + g2|n|2 − µgd)

(k2 + |m|2 + g2|n|2 − µgd)2 − 4g2|n|2|m|2 . (22)

The D-tadpole is given by

Γ(1)
D = µc + µg ID (23)

where

ID =
∫ E k2 + |m|2 + g2|n|2 − µgd

(k2 + |m|2 + g2|n|2 − µgd)2 − 4g2|n|2|m|2 . (24)
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The tadpole diagrams are illustrated in Figure 2. We look for vacuum solution with −Γ(1)
a ≡

∂V(c, n, d)1-loop/∂a = 0 for a = c, n, d. Firstly, note that the vanishing of N∗-tadpole is equivalent to

n(1− g2 IN′) = 0 , (25)

with IN′ given by IN = gnIN′ ; vanishing D-tadpole gives

c = −gID ; (26)

the vanishing C-tadpole condition is

µd = gIC . (27)

To get the physics picture clear, one can identify the soft masses generated for the superfield Φ by
η̃ = −gn and m̃2 = −µgd. We will explore nontrivial solutions for the soft masses below.

It is interesting to see that the effective potential analysis for (the components of) the composite
superfield U can be shown directly to be equivalent to the superfield gap equation, which we illustrated
explicitly in Reference [16] and duplicated here. In terms of the superfield, the potential minimum
condition is given by

µ2 〈U〉+ Utadpole = 0 =⇒ µg 〈U〉 = −g2 I(loop)
ΦRΦ†

R
(28)

where I(loop)
ΦRΦ†

R
is the momentum integral of the ΦRΦ†

R propagator loop (cf. the first diagram in Figure 2).

Note that from the original Lagrangian with two-superfield composite assumed, we can obtain

−g2 〈(ΦRΦ†
R

)〉
= YR, which is equivalent to µg 〈U〉 = YR = Σ(loop)

ΦRΦ†
R
(p; θ2θ̄2)

∣∣∣∣
on-shell

= −g2 I(loop)
ΦRΦ†

R
.

The same loop integral is of course involved in both the gap equation picture and the effective
potential analysis. The results here are in direct matching with the corresponding discussion for
the NJL case presented in Reference [12], though for a superfield theory instead. The component
field effective potential analysis above really serves as a double-check of the superfield gap equation
analysis of the previous section. In terms of component fields, we need the soft mass identifications
above as well as y = goc, or y

1+y = gc.

(a)

U

ΦRΦR

(b)

D

ARAR

(c)

N

ARFR

(d)

C

ARAR

C

ψRψR

C

FRFR

Figure 2. The tadpole diagrams: (a) the superfield diagram; (b) D-tadpole; (c) N-tadpole;
(d) C-tadpoles.
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4. Nontrivial Solutions

Let us pull together the gap equations in terms of y = (1− gc)−1, η̃(= −gn) and m̃2(= −µgd).
We have

η̃(1− g2 I′N) = 0 and m̃2 = −g2 IC ,

as a set of coupled equations to be solved simultaneously. The integrals are complicated expressions
involving the two soft mass parameters. The third equation of

y = (1 + g2 ID)
−1

where independently gives the y value for any solution of η̃ and m̃. The trivial zero soft masses
solution is consistent, as IC vanishes in the supersymmetric limit. Note that the y parameter does
not correspond to any physical quantity and hence may be considered of little interest. The point of
interest is if the nontrivial solutions of supersymmetry breaking masses η̃ and m̃ exist.

The first equation above gives g2 I′N = 1 for non-trivial η̃, for the case of which we have

I′N =
1
2

[(
1− |m||η̃|

)
IF(m2

A−) +

(
1 +
|m|
|η̃|

)
IF(m2

A+
)

]
, (29)

where IF(S)
[
≡
∫ E 1

k2+S

]
has been used to denote integral of the Feynman propagator for field of mass

square S and we have the scalar mass eigenvalues

m2
A∓ = m̃2 + (|m| ∓ |η̃|)2 . (30)

As seen here, the presence of non-zero mη̃ product splits the masses of the scalar and pseudoscalar
part of A and produces mass mixing between them, giving the mass eigenvalues. The interesting point
is that one only needs non-zero mη̃ to have it; even a real value would do.

Similarly, we have

IC = −
(

m2
A− −

m̃2

2

)
IF(m2

A−)−
(

m2
A+
− m̃2

2

)
IF(m2

A+
) + 2|m|2 IF(|m|2) . (31)

If we take m = 0, we would have

I′N −→ IF(|η̃|2 + m̃2)

and
IC −→ −m̃2 IF(|η̃|2 + m̃2)− 2|η̃|2 IF(|η̃|2 + m̃2) .

The second soft mass gap equation becomes

g2 IF(|η̃|2 + m̃2)

(
1 + 2

|η̃|2
m̃2

)
= 1 (32)

which is not compatible with the first one (g2 I′N = 1) unless η̃ = 0. It remains to be seen if there
exist η̃ 6= 0 solutions for some non-zero values of m. After some algebra, one can rewrite the solution
equations in the form

g2 IF(m2
A∓) =

|m|m̃2 ∓ 2|η̃|(|m| ± |η̃|)2

|m|(2|m|2 − 2|η̃|2 + m̃2)
+

2|m|(|m| ± |η̃|)
2|m|2 − 2|η̃|2 + m̃2 g2 IF(|m|2) . (33)

The two equations have the same form only, with the |η̃| variable coming in different signs.
Moreover, both reduce to the same equation for the IF(mA) at the |η̃| = 0 limit, which is the gap
equation for the limiting case [16]. Evaluating the integrals with model cutoff Λ, with all variables and
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parameters casted in terms of dimensionless counterparts normalized to Λ given by G = g2Λ2

16π2 , s = m̃2

Λ2 ,

and t = |m|2
Λ2 , the two equations are equivalent to

1
G(s, t, z)

=
s + 2tz(1− z)
s + 2tz(1− z)2 +

2t(1− z)
s + 2tz(1− z)2 t ln

[
1 +

1
t

]
− s + 2t(1− z2)

s + 2tz(1− z)2 [s + t(1 + z)2] ln
[

1 +
1

s + t(1 + z)2

]
, (34)

for z = ∓ |η̃||m| , respectively. We need simultaneous solutions for s and z for reasonable values of model
parameters G and t. The two equations for positive and negative (but equal) values of z of course
collapse to one at z = 0, which are the vanishing |η̃| solutions. We present them in Figure 3 for
different values of supersymmetric mass m, among which the case of m = 0 has been illustrated in
Reference [16].

0.0 0.2 0.4 0.6 0.8 1.0

1

2

5

10

20

50

m
� 2

L
2

G

Figure 3. Numerical plot of nontrivial solutions to the soft mass gap equation with |η̃| = 0.

Coupling parameter G =
Ng2Λ2

16π2 is plotted against the normalized soft mass parameter s
(
= m̃2

Λ2

)
for t

(
= |m|2

Λ2

)
values of 0 (red), 0.1 (blue), 0.2 (pink), 0.4 (orange), 0.5 (green), from the lowest to the

highest curves, respectively. The red curve (t = 0) has been reported and analyzed in Reference [16].
Here, N is the ‘color’ factor for the case of the basic chiral superfield Φ being an SO(N) or SU(N)

multiplet not shown explicitly in the calculation, and Λ is the model cutoff scale. Notice that the critical
coupling increases from G = 1 for nonzero values of the input supersymmetric mass m.

Actually, in the η̃ = 0 (z = 0) case, all the above integrals simplify analytically. In particular,
we have

ID −→ IF(|m|2 + m̃2)

and
IC −→ −(m̃2 + 2|m|2)IF(|m|2 + m̃2) + 2|m|2 IF(|m|2)

where (I′N is irrelevant). The masses in the Feynman propagators correspond to the scalar and fermion
masses. It is interesting to note that for m = 0 (t = 0), we have the simple result g2 IF(m̃2) = 1,
which is the same as the basic NJL model one except with the soft mass m̃2 replacing the (Dirac)

fermionic mass (see for example Reference [12]) if we take g2

2 as the four-fermion coupling in the
model. Moreover, in this case, we have the gap equation for the renormalization factor, which is
equivalent to the vanishing D-tadpole condition c = −gID, giving c = −gIF(m̃2) hence go c = −0.5.
The wavefunction renormalization factor is Z = 1 + go c = 0.5, of order one but tangible. This is a
clear indication of the nonperturbative nature of the results and that there is nothing improper in the
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analysis. For more details, we see that solutions for nontrivial m̃2 for the case are given by the reduced
form of Equation (34) as 1

G = 1− s ln
[
1 + 1

s

]
obviously giving solution for 0 < s < 1 for the strong

enough coupling G > 1. It can be seen from the numerical plot that the value of the m̃2 solution rises
fast with increasing G. However, nonzero t has a strong limiting effect. It increases the critical coupling
needed for a nontrivial solution to s very substantially. In fact, taking the limit s → 0, the equation
becomes 1

Gc
= 1 + 2t

t+1 − 3t ln
(

1 + 1
t

)
, which gives the critical coupling Gc as a function of t. It can be

seen then as t increases from zero, 1
Gc

decreases and reaches vanishing value ( i.e., Gc → ∞) at a critical
t value of about 0.55, beyond which no coupling G will be strong enough to break the supersymmetry
and generate the soft mass.

Looking for solutions with nontrivial η̃ is more tricky and requires a very careful analysis scanning
the numerical results. Again, we check plots of the effective coupling G as given in Equation (34)
versus s simultaneously for positive and negative values of z of fixed magnitude, at a fixed input
t value. Numerically, within the window of interest, the intersection of the two curves (dubbed G+ and
G−, respectively) gives a solution. Only one then has to numerically scan the plots of the G+ and G−
curves to see all the solutions. The window of interest is restricted to positive G value and 0 < s ≤ 1
plus the extra constraint of both of the mass eigenvalues of the scalar states in Φ to be within the cutoff
Λ [cf. Equation (30)]. This is the generalization of s ≤ 1 to the nontrivial η̃, |z| 6= 0 case. The constraint
is given by

s + t(1 + |z|)2 ≤ 1 . (35)

It is strong. For any t value, it first restricts |z| of interest to ≤ 1√
t
− 1. Close to the upper limit

means s admissible has to be very small. So, the constraint may cut out quite a range, if not all, of the s
value of interest. We find that a solution exists in general, though some of the features of the solution
locations are not somewhat peculiar and not easy to understand.

We scanned the effective coupling G versus s, |z|, and t plots to study the behavior of the
intersecting point solutions and checked for consistency. The results are as follows: for somewhat
large t, solution exists only at large enough |z|, for example the minimal |z| value for solution at
t = 0.3 is about 1. Such a solution certainly violates (35). Actually, solution satisfying the constraint
shows up only for t below about 0.265, which also guarantees the G+ curve to be smooth, at least
within the numerical window of interest. Moreover, the G versus |z| plots for any t and s essentially
always give two solutions for (nonzero) |z|. The larger value |z| solution may not even correspond to
a larger coupling G, as shown in Figure 4. Furthermore, a G value smaller than the |z| = 0 solution
is typical. Another illustration of the same coupling value issue is given in Figure 5 in which we show
G versus s plots with two intersecting points, particularly including one with s = 0. Such non-zero
|z| with s = 0 solutions are not available for t less than about 0.17. For the latter case, the G versus
s plots give a single intersecting point. In Figure 6, we show comparisons of the intersecting point
solutions at the same t. We have again a solution with larger values of the parameter, s and |z|, for the
masses generated corresponding again to smaller coupling G. Recall the standard, obviously physical
sensible, solution features of the NJL-type model which our |z| = 0 solutions shown above bears,
is that nontrivial symmetry breaking mass solution exists for large enough coupling beyond a minimal
critical value and increases with the coupling. The |z| 6= 0 ‘solutions’ behave, however, in ways
difficult to understand. A more careful inspection of the various plots shows that the G− curve in
particular has strange singularities. In fact, each intersecting point ‘solution’ corresponds to a pair of s
and |z| values, with the G− curve either diverging at a smaller s or at a smaller |z| value. It sounds
like in order to ‘get’ to that ‘solution’, one has to bring the coupling value all the way to positive or
negative infinity and back. However, it should be noted that nonzero η̃(= |z|

√
t) increases the mass of

one of the smaller mode but decreases that of the other one [cf. Equation (30)]. It is not so trivial to
consider if larger η̃ or |z| should really be considered to be giving a larger supersymmetry breaking
effect. Another noteworthy feature is that among solutions of fixed |z|, a larger t generally tends
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to give smaller s or m̃2, and among solutions of fixed s, a larger t generally tends to give larger |z|;
larger t always tends to increase coupling G required for a solution. Recall that the |m| or t value also
suppresses the mass generation in the |z| = 0 case, but |m| = 0 gives certainly no |z| 6= 0 solution.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
ÈzÈ2.5

3.0

3.5

4.0

4.5
G

mA+

2
< L

2

�

G+

G-

G-

s = 0.03

t = 0.2

Figure 4. An illustrative of intersecting point solutions, with G versus |z|.
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G-

ÈzÈ = 0.605

t = 0.2

Figure 5. Illustrative intersecting point solution plots, with G versus s.
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ÈzÈ = 0.2

ÈzÈ = 0.605

t = 0.1

0.000 0.005 0.010 0.015
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G- G-
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ÈzÈ = 0.05

ÈzÈ = 0.01

t = 0.1

Figure 6. Illustrative intersecting point solution plots, with G versus s.; two cases in each frame for
comparison. The two colors each corresponds to the case of one set of fixed parameter values as shown.
Intersecting points of G+ and G− curves of the same color give the solution point for the value of |z|.
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5. The Goldstino and Composite (Super) Field Dynamics

Some components of the superfield U, which are auxiliary as introduced, develop kinetic terms
through wavefunction renormalizations in the effective theory below the cutoff Λ. We trace them
here through checking of the relevant loop diagrams, based on the effective Lagrangian in terms
of components of ΦR and couplings all having the Φ wavefunction renormalization from the gap
equation result incorporated (cf. equations in Appendix A). The analysis focuses on results at the
supersymmetry breaking vacuum solutions, i.e. non-zero m̃2 with zero or nonzero η̃. We only sketch
the key results here, leaving some more details in Appendix A.

We start with the two-spinors χ and λ. The chirality conserving part of the self-energy diagrams
gives rise to kinetic terms. We can see that all terms are nonzero in the presence of nonvanishing η̃,
while the χ-λ kinetic mixing vanishes at η̃ = 0. Full results are presented in Appendix A. To look at the
mass values is complicated. One needs first to take a unitary transformation on the hermitian matrix
and kinetic terms to diagonalize it. Denote the eigenvalues by Nf1 and Nf2 , and the diagonalizing
matrix by T. The canonically normalized fermionic modes are given by

(
f1
f2

)
=

 1√
Nf1

0

0 1√
Nf2

 T

(
χ

λ

)
. (36)

Only the mass matrix for the canonical modes can be diagonalized to give the mass eigenvalues.
The mass matrixM f for f1 and f2 is hence given by

M f =

 √
Nf1 0

0
√

Nf2

 T
(
Mχλ

)
TT

 √
Nf1 0

0
√

Nf2

 , (37)

where −Mχλ =

(
0 −µ

−µ 0

)
+ Ω, the first part being the tree-level mass while the last is the matrix

for chirality-flipping pieces of self-energy diagrams. We have

detM f = Nf1 Nf2 detMχλ . (38)

In the case that the matrix of kinetic terms has the full rank, a zero determinant of detM f or
equivalently detMχλ shows the existence of a Goldstino, which is expected as the Nambu–Goldstone
fermion corresponding to the supersymmetry breaking. We are mostly interested only in the kind of
qualitative questions here, which saves us from having to deal with the diagonalization of the matrix
of kinetic terms. For the chirality-flipping diagrams (see Figure 7), dropping the p-dependent parts,
we have the mass terms

Ωχχ =
g2m̃4

η̃
|m|2Nc I3F(|m|2, m2

A− , m2
A+

)− Nc

2η̃

(
g2 IC + m̃2g2 IN′

)
,

Ωχλ = −2µg2m̃2|m|2Nc I3F(|m|2, m2
A− , m2

A+
) + µg2Nc IN′ ,

Ωλλ = µ2g2η̃|m|2Nc I3F(|m|2, m2
A− , m2

A+
) , (39)

where I3F(|m|2, m2
A− , m2

A+
) is the integral of the product of three Feynman propagators with the

mass-squares as specified, and we have expressed the results with the IC and IN′ integrals of the
gap equations (cf. Equations (31) and (29)). Applications of the gap equations kill the term with the
then vanishing

(
g2 IC + m̃2g2 IN′

)
factor and has the µg2Nc IN′ term canceling the tree-level term in the

mass matrix Mχλ, the determinant of which is then exactly zero. Hence, we have established the
existence of a Goldstino mode for the supersymmetry breaking solution with η̃ 6= 0. For the η̃ = 0 case,
only the off-diagonal terms are nonzero, which is a result one can see even simply from the U(1)R
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symmetry considerations. The latter has been presented in [16], with the result that the tree-level Dirac
mass is exactly canceled by Ω-matrix upon application of the corresponding gap equation, givingMχλ

as the zero matrix. No matter m = 0 or not, the qualitative feature does not change. Again, we have
the Goldstino. Supersymmetry is really a local/spacetime symmetry. The Goldstino would be eaten
up by the gravitino, which would then be massive.

The spin one vector boson vµ is an important characteristic of the model. The proper self-energy
diagrams (see Figure 8) for the vector mode give the result

Σv =µ2g2Nc

{
− |m|2 I2F(|m|2, |m|2) + 1

8

∫ 1

0
dx
[

[
x(m2

A− −m2
A+

)−m2
A−

]
I2F

(
−x(m2

A− −m2
A+

) + m2
A− ,−x(m2

A− −m2
A+

) + m2
A−

)
+ IF

(
−x(m2

A− −m2
A+

) + m2
A−

)
+
[

x(m2
A+
−m2

A−)−m2
A+

]
I2F

(
−x(m2

A+
−m2

A−) + m2
A+

,−x(m2
A+
−m2

A−) + m2
A+

)
+ IF

(
−x(m2

A+
−m2

A−) + m2
A+

) ]}
+ p2 µ2g2Nc

2

{
− 1

3
I2F(|m|2, |m|2)

− 1
4

∫ 1

0
dx x(1− x)

[
I2F

(
−x(m2

A− −m2
A+

) + m2
A− ,−x(m2

A− −m2
A+

) + m2
A−

)
+ I2F

(
−x(m2

A+
−m2

A−) + m2
A+

,−x(m2
A+
−m2

A−) + m2
A+

) ]}
+ . . .

η̃=0 −→ µ2g2Nc

{
− |m|2 I2F(|m|2, |m|2) + 1

4

∫ 1

0
dx
[
−m2

A I2F(m2
A, m2

A) + IF(m2
A)
] }

− p2 µ2g2Nc

6

{
I2F(|m|2, |m|2) + 1

4
I2F

(
m2

A, m2
A

)}
, (40)

with InF denoting the integrals with product of n Feynman propagators. There is also a tree-level

mass-squared term of − µ2

2 vνvν to be added. It sure indicates that we have properly behaving kinetic
and mass terms (note our metric convention).

The other scalar modes also acquire kinetic and mass terms accordingly. Mode mixings, however,
make the result a lot less transparent. Details are given in Appendix A.

χ χ
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ψR ψR
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AR AR

χ λ

ψR ψR

FR AR
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ψR ψR

AR AR

λ λ

ψR ψR

AR AR

Figure 7. Diagrams for fermion masses.
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Figure 8. Proper self-energy diagrams for the spin one composite vµ.

6. Conclusions

We have studied the supersymmetric NJL model with a composite real superfield proposed in
Reference [16] in a more general and complete scheme, by admitting a supersymmetric mass term for
the chiral superfield while considering the most general form of the VEV for the composite superfield,
hence allowing the soft supersymmetry breaking components of θ2 as well as θ2θ̄2. Note that admitting
the supersymmetric mass term actually reduces the symmetry of the model. The necessary conditions
for the soft mass generation, and the basic features of the nontrivial solutions were discussed. We also
calculated the contributions of all possible one-loop diagrams of component fields. The most general
expressions for the superfield propagator were given in Appendix B. The analysis is much more
technically involved compared to the previous limiting case though the basic approach is the same.
However, the full analysis has quite interesting new features, as well as further nontrivial solutions.

The full analysis of all nontrivial vacuum solutions is difficult, and we have mostly to rely on
numerical scanning of the multi-dimensional space for the parameters. There are some important
general features to note. Firstly, no η̃ 6= 0 solutions are possible for m = 0. The critical coupling bringing
in plausible nontrivial solutions increases substantially with increasing |m| in general. When the
latter value gets beyond a certain limit, solutions with nontrivial soft mass solutions no longer exist.
For nonzero m within the limit, we find η̃ 6= 0 solutions in general, from the numerical scanning.
There are indications for an η̃ 6= 0 solution to be preferred over the η̃ = 0 in the sense that assuming
fixed m and m̃2 values, the coupling value for an η̃ 6= 0 solution seems to be always lower than the
η̃ = 0 one. For admissible solutions at a fixed coupling, however, the analysis cannot tell which
solution would be more preferable.

We also calculated the contributions to the two-point functions for the component fields from all
possible one-loop diagrams. All the scalar components become dynamical. The fermion mass matrix,
while getting more complicated, clearly gives a zero eigenvalue for a Goldstino state. There is no
indication of any problem. Some details and discussions are given in Appendix A. The results are
useful for further analysis of the model and plausible applications. Meanwhile, it is interesting to note
that applications of supersymmetric NJL models to condensed matter physics have been studied [23].
Studies of our model in the direction may also be considered.

Finally, we emphasize that with the modern effective (field) theory perspective, it is the most
natural thing to consider any theory as an effective description of nature only within a limited
domain/scale. Physics is arguably only about effective theories, as any theory can only be verified
experimentally up to a finite scale, and there may always be a cut-off beyond that. Having a cutoff
scale with the so-called nonrenormalizable higher dimensional operators is hence in no sense an
undesirable feature. Model content not admitting any other parameter with mass dimension in the
Lagrangian would be very natural. Here, we have illustrated a model that gives rise to nonzero values
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for all admissible soft supersymmetry breaking masses for the single superfield, including U(1)R part,
dynamically. Models of the kind may have a chance to be the source for the soft supersymmetry
breaking in a supersymmetric standard model.
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Appendix A. Some More Technical Details of the Model Calculations

Starting with the effective Lagrangian of Equation (18) with c, d, and n denoting VEVs of the
(original) scalars C, D, and N, we have, in terms of the renormalized components AR =

√
ZA,

ψR =
√

Zψ, and FR =
√

ZF of ΦR =
√

ZΦ with the common (supersymmetric) wavefunction
renormalization factor Z = 1 + goc, the quadratic part of the Lagrangian is given by

L(2)e f f = A∗R �AR + i(∂µψ̄R)σ̄
µψR + F∗R FR +

m
2
(2ARFR − ψRψR) +

m∗

2
(2A∗R F∗R − ψ̄Rψ̄R)

+ µCD− µχλ− µχ̄λ̄ + NN̄ − µ2

2
vνvν + µgdA∗R AR + gnARF∗R + gn∗A∗R FR , (A1)

in which we have the renormalized mass and coupling m = m0
Z and g = g0

Z . Here, the scalars
C, N, and D are the physical ones with VEVs already pulled out, though we do not distinguish
them from the original ones with VEVs explicitly in notation. One can easily obtain the following
propagator expressions:

〈T(AR A∗R )〉 =
−i(p2 + |m|2 + g2|n|2 − µgd)

(p2 + |m|2 + g2|n|2 − µgd)2 − 4g2|n|2|m|2 ,

〈T(AR AR)〉 =
2ign∗m∗

(p2 + |m|2 + g2|n|2 − µgd)2 − 4g2|n|2|m|2 ,

〈T(FR F∗R )〉 =
i(p2 − µgd)(p2 + |m|2 + g2|n|2 − µgd)

(p2 + |m|2 + g2|n|2 − µgd)2 − 4g2|n|2|m|2 ,

〈T(FR FR)〉 =
−2ignm∗(p2 − µgd)

(p2 + |m|2 + g2|n|2 − µgd)2 − 4g2|n|2|m|2 ,

〈T(ARFR)〉 =
im∗(p2 + |m|2 − g2|n|2 − µgd)

(p2 + |m|2 + g2|n|2 − µgd)2 − 4g2|n|2|m|2 ,

〈T(ARF∗R )〉 =
ign∗(p2 − |m|2 + g2|n|2 − µgd)

(p2 + |m|2 + g2|n|2 − µgd)2 − 4g2|n|2|m|2 ,

〈T(ψRα ψ̄Rβ̇
)〉 =

−ipµ σ
µ

αβ̇

p2 + |m|2 ,

〈T(ψRα ψ
β

R )〉 =
−im∗δβ

α

p2 + |m|2 . (A2)

Note that −µgd and −gn here correspond to the (renormalized) soft mass terms m̃2 and η̃.
The propagator expressions can be matched to that of the superfield Φ in Equation (11).

The remaining, interaction, terms in the effective Lagrangian read
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Lint
e f f = gC

[
A∗R �AR + i(∂µψ̄R)σ̄

µψR + F∗R FR

]
− µgψRλA∗R − µgψ̄Rλ̄AR + µgDA∗R AR

−i
g
2

ψ̄Rσ̄µχ∂µ AR + i
g
2
(∂µψ̄R)σ̄

µχAR − gχψRF∗R + gNARF∗R

+i
g
2

χ̄σ̄µψR∂µ A∗R − i
g
2

A∗R χ̄σ̄µ∂µψR − gχ̄ψ̄RFR + gN∗A∗R FR

− µg√
2

ηµνvµiA∗R ∂ν AR +
µg√

2
ηµνvµi(∂ν A∗R )AR −

µg√
2

ηµνvµψ̄Rσ̄νψR . (A3)

Note that the above gives essentially all parts of the Lagrangian, apart from a constant. The linear
terms are canceled at the physical vacuum with consistent c, n, d solutions discussed in the main text.

In the following, we present some details of the ‘quark-loop’ contribution to the two-point
functions for the various components of the composite superfield U at the supersymmetry breaking
vacuum solutions, as discussed in Section 5. Though we argue in the text that η̃ 6= 0 solution looks
suspicious and is hard to understand, we present fully generic results for completion. The results may
offer more insight into the problem.

The two-point functions for fermion kinetic terms are given by the diagrams in Figure A1, with the
ip · σ̄Ξ [24] results given as

Ξχχ = − g2Nc

4

[
|m| (|m| − |η̃|) I2F(|m|2, m2

A−) + |m| (|m|+ |η̃|) I2F(|m|2, m2
A+

)

+2IF(m2
A−)− 2

(
2m̃2 + 3|m|2 − 2|η̃||m|

)
I2F(m2

A− , m2
A−)

+2IF(m2
A+

)− 2
(

2m̃2 + 3|m|2 + 2|η̃||m|
)

I2F(m2
A+

, m2
A+

)

−2|m|2
(

m2
A− − 2m̃2 − 3|m|2 + 2|η̃||m|

)
I3F(|m|2, m2

A− , m2
A−)

−2|m|2
(

m2
A+
− 2m̃2 − 3|m|2 − 2|η̃||m|

)
I3F(|m|2, m2

A+
, m2

A+
)
]
+ · · · ,

η̃=0 −→ −
g2Nc

2

[
2IF(m2

A) + |m|2 I2F(|m|2, m2
A)− 2

(
2m̃2 + 3|m|2

)
I2F(m2

A , m2
A)

+2|m|2
(

m̃2 + 2|m|2
)

I3F(|m|2, m2
A , m2

A)
]

, (A4)

Ξχλ = −µg2η̃∗Nc

[ (
1− |m|

4|η̃|

)
I2F(|m|2, m2

A−) +

(
1 +
|m|
4|η̃|

)
I2F(|m|2, m2

A+
)

−m2
A− I3F(|m|2, m2

A− , m2
A−)−m2

A+
I3F(|m|2, m2

A+
, m2

A+
)

]
+ · · · ,

η̃=0 −→ 0 . (A5)

Ξλλ = −µ2g2Nc

[
I2F(m2

A− , m2
A−) + I2F(m2

A+
, m2

A+
)

−|m|2 I3F(|m|2, m2
A− , m2

A−)− |m|
2 I3F(|m|2, m2

A+
, m2

A+
)
]
+ · · · ,

η̃=0 −→ −2µ2g2Nc

[
I2F(m2

A , m2
A)− |m|2 I3F(|m|2, m2

A , m2
A)
]

, (A6)

where InF denote integrals each of a product of n Feynman propagators with the mass-square
parameters as given. We have given, besides the general result also, the simplified expression at
the η̃ = 0 limit. Recall

m2
A∓ = m̃2 + (|m| ∓ |η̃|)2
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and at the limit η̃ = 0, we have used m2
A ≡ m̃2 + |m|2 = m2

A− = m2
A+

. The vanishing kinetic mixing
between χ and λ can also be easily seen from U(1)R symmetry considerations.

χ χ

ψR ψR

FR FR

χ χ

ψR ψR

AR AR

χ χ

ψR ψR

AR FR

χ λ

ψR ψR

FR AR

χ λ

ψR ψR

AR AR

λ λ

ψR ψR

AR AR

Figure A1. Diagrams for the generation of kinetic terms for the fermionic modes.

For the scalars, results for the various proper self-energy diagrams are very tedious. Apart from InF,
we further introduce

I34(m2
a, m2

b) ≡ 3I3F(m2
a, m2

b, m2
b)− 4m2

b I4F(m2
a, m2

b, m2
b, m2

b) , (A7)

where to present the results. Again, we give the general result and the η̃ = 0 limit, with the diagrams
being given in the Figures A2–A8. Note that they are one-loop contributions, which have to be summed
up with the tree-level terms in the Lagrangian. We have:

ΣDD = p2 µ2g2Nc

4
[
I34(m2

A− , m2
A−) + I34(m2

A+
, m2

A+
)
]

+
µ2g2Nc

4
[
I2F(m2

A− , m2
A−) + I2F(m2

A+
, m2

A+
)
]
+ · · · ,

η̃=0 −→ p2 µ2g2Nc

2
I34(m2

A , m2
A) +

µ2g2Nc

2
I2F(m2

A , m2
A) , (A8)

ΣCD = p2 µg2Nc

2

{ [
m2

A− + (|m| − |η̃|)2
]

I34(m2
A− , m2

A−) +
[
m2

A+
+ (|m|+ |η̃|)2

]
I34(m2

A+
, m2

A+
)
}

+
µg2Nc

2

{ [
m2

A− + (|m| − |η̃|)2
]

I2F(m2
A− , m2

A−) +
[
m2

A+
+ (|m|+ |η̃|)2

]
I2F(m2

A+
, m2

A+
)

−IF(m2
A−)− IF(m2

A+
)
}
+ · · · ,

η̃=0 −→ p2 µg2Nc

(
m2

A + |m|2
)

I34(m2
A , m2

A)

+µg2Nc

[ (
m2

A + |m|2
)

I2F(m2
A , m2

A)− IF(m2
A)
]

, (A9)

ΣNN∗ = p2 g2Nc

2

{
(|m| − |η̃|)2 I34(m2

A− , m2
A−) + (|m|+ |η̃|)2 I34(m2

A+
, m2

A+
)

+|m| (|m|+ |η̃|) I34(m2
A− , m2

A+
) + |m| (|m| − |η̃|) I34(m2

A+
, m2

A−)
}

+
g2Nc

2

{
(|m| − |η̃|)2 I2F(m2

A− , m2
A−) + (|m|+ |η̃|)2 I2F(m2

A+
, m2

A+
)

+2|m|2 I2F(m2
A− , m2

A+
)− IF(m2

A−)− IF(m2
A+

)
}
+ · · · ,

η̃=0 −→ p2 2g2|m|2Nc I34(m2
A , m2

A) + g2Nc

[
2|m|2 I2F(m2

A , m2
A)− IF(m2

A)
]

, (A10)
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ΣCC = p2 g2Nc

8

{
16|m|2

[
3I2F(|m|2, |m|2)− 4|m|2 I3F(|m|2, |m|2, |m|2)

]
− 16|m|4 I34(|m|2, |m|2)

−6
(

m2
A− + (|m| − |η̃|)2

)
I2F(m2

A− , m2
A−)

+8
(

m2
A− + (|m| − |η̃|)2

)
m2

A− I3F(m2
A− , m2

A− , m2
A−)

−6
(

m2
A+

+ (|m|+ |η̃|)2
)

I2F(m2
A+

, m2
A+

)

+8
(

m2
A+

+ (|m|+ |η̃|)2
)

m2
A+

I3F(m2
A+

, m2
A+

, m2
A+

)

+2
(

m2
A− + (|m| − |η̃|)2

)2
I34(m2

A− , m2
A−) + m2

A+

(
m2

A− −m2
A+

)
I34(m2

A− , m2
A+

)

+m2
A−

(
m2

A+
−m2

A−

)
I34(m2

A+
, m2

A−) + 2
(

m2
A+

+ (|m|+ |η̃|)2
)2

I34(m2
A+

, m2
A+

)
}

+
g2Nc

8

{
24|m|2 IF(|m|2)− 16|m|4 I2F(|m|2, |m|2) +

(
m2

A+
− 5m2

A− − 8(|m| − |η̃|)2
)

IF(m2
A−)

−
(

5m2
A+
−m2

A− + 8(|m|+ |η̃|)2
)

IF(m2
A+

)

+2
(

m2
A− + (|m| − |η̃|)2

)2
I2F(m2

A− , m2
A−)

+
(

2m2
A−m2

A+
−m2

A+
m2

A+
−m2

A−m2
A−

)
I2F(m2

A− , m2
A+

)

+2
(

m2
A+

+ (|m|+ |η̃|)2
)2

I2F(m2
A+

, m2
A+

)
}
+ · · · ,

η̃=0 −→ p2 g2Nc

2

{
4|m|2

[
3I2F(|m|2, |m|2)− 4|m|2 I3F(|m|2, |m|2, |m|2)

]
− 4|m|4 I34(|m|2, |m|2)

−3
(

m2
A + |m|2

)
I2F(m2

A , m2
A) + 4

(
m2

A + |m|2
)

m2
A I3F(m2

A , m2
A , m2

A)

+
(

m2
A + |m|2

)2
I34(m2

A , m2
A)
}

+
g2Nc

2

{
6|m|2 IF(|m|2)− 4|m|4 I2F(|m|2, |m|2)− 2

(
m2

A + 2|m|2
)

IF(m2
A)

+
(

m2
A + |m|2

)2
I2F(m2

A , m2
A)
}

. (A11)

There are more mixing terms which vanish with η̃, as follows:

ΣNN = p2 g2Nc

4
η̃2

|η̃|2
[
(|m| − |η̃|)2 I34(m2

A− , m2
A−) + (|m|+ |η̃|)2 I34(m2

A+
, m2

A+
)

−|m| (|m| − |η̃|) I34(m2
A− , m2

A+
)− |m| (|m|+ |η̃|) I34(m2

A+
, m2

A−)
]

+
g2Nc

4
η̃2

|η̃|2
[
(|m| − |η̃|)2 I2F(m2

A− , m2
A−) + (|m|+ |η̃|)2 I2F(m2

A+
, m2

A+
)

−2|m|2 I2F(m2
A− , m2

A+
)
]

, (A12)

D D

AR AR

AR AR

D D

AR AR

AR AR

Figure A2. Proper self-energy diagrams for the DD term.



Symmetry 2020, 12, 1818 20 of 23

ΣCN∗ = p2 g2Nc

2
η̃

|η̃|
{
(|m|+ |η̃|)

[
m2

A+
+ (|m|+ |η̃|)2

]
I34(m2

A+
, m2

A+
)−m2

A+
|m|I34(m2

A− , m2
A+

)

+m2
A− |m|I34(m2

A+
, m2

A−)− (|m| − |η̃|)
[
m2

A− + (|m| − |η̃|)2
]

I34(m2
A− , m2

A−)
}

+
g2Nc

2
η̃

|η̃|
{
(3|m| − 2|η̃|) IF(m2

A−)− (3|m|+ 2|η̃|) IF(m2
A+

)− 4|m|2|η̃|I2F(m2
A− , m2

A+
)

− (|m| − |η̃|)
[
m2

A− + (|m| − |η̃|)2
]

I2F(m2
A− , m2

A−)

+ (|m|+ |η̃|)
[
m2

A+
+ (|m|+ |η̃|)2

]
I2F(m2

A+
, m2

A+
)
}

, (A13)

ΣDN∗ = p2 µg2Nc

2
η̃

|η̃|
[
(|m|+ |η̃|) I34(m2

A+
, m2

A+
)− (|m| − |η̃|) I34(m2

A− , m2
A−)

−|m|I34(m2
A− , m2

A+
) + |m|I34(m2

A+
, m2

A−)
]

+
µg2Nc

2
η̃

|η̃|
{
(|m|+ |η̃|) I2F(m2

A+
, m2

A+
)− (|m| − |η̃|) I2F(m2

A− , m2
A−)
}

, (A14)

with also the complex conjugates for the last three, i.e., −ΣN∗N∗ , −ΣCN , and −ΣDN .
It is somewhat surprising that all the scalar actually becomes dynamic, including D and N.

The latter are introduced as auxiliary components of mass dimension two. One should hence
consider D

µ and N
µ instead. For the general case, the complex N

µ has to be expanded into the real
components first. One has then to diagonalize the kinetic term matrix for all the real scalars to find the
proper wavefunction renormalization factors for the canonical modes, and subsequently diagonalize
the mass-square matrix, with the tree-level terms included, of the latter for the eigenvalues.

C D

AR AR

AR AR

C D

FR AR

FR AR

C D

AR AR

AR AR

C D

FR AR

FR AR

Figure A3. Proper self-energy diagrams for the CD term.

N N

FR AR

AR FR

N N

AR AR

FR FR

Figure A4. Proper self-energy diagrams for the NN∗ term.
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C C

AR AR

AR AR

C C

AR FR

AR FR

C C

FR FR

FR FR

C C

ψR ψR

ψR ψR

C C

ψR ψR

ψR ψR

C C

AR AR

AR AR

C C

AR FR

AR FR

C C

FR FR

FR FR

Figure A5. Proper self-energy diagrams for the CC term.

N N

FR AR

AR FR

N N

FR FR

AR AR

Figure A6. Proper self-energy diagrams for the NN term.

C N

AR AR

AR FR

C N

AR FR

AR AR

C N

FR AR

FR FR

C N

FR AR

FR FR

Figure A7. Proper self-energy diagrams for the CN∗ term.

D N

AR AR

AR FR

D N

AR FR

AR AR

Figure A8. Proper self-energy diagrams for the DN∗ term.

Appendix B. Propagator Expressions for the Most General Case

We give here the superfield propagator expressions for the most general case, i.e., all soft
supersymmetry breaking parameters are included. The propagator(s) used in our model above is
the case with the soft mass term − 1

2 ηθ2Φ2 in the superpotential vanishing. The expressions have,
apparently, not been explicitly given before, and may be useful in some future studies.



Symmetry 2020, 12, 1818 22 of 23

The free-field Lagrangian for a single chiral superfield Φ = A +
√

2ψθ + Fθ2 admitting all
supersymmetric and (soft) supersymmetry breaking mass parameters can be written as

Lo =
∫

d4θ Φ̄Φ(1− η̃θ2 − η̃∗ θ̄2 − m̃2θ2θ̄2) +

[∫
d2θ

1
2
(m− ηθ2)Φ2δ2(θ̄) + h.c.

]
. (A15)

Again, we allow a complex m. Soft supersymmetry breaking parameters η̃ and η are also complex
while the most familiar soft mass m̃2 is real. The superfield propagators are given by

〈T(Φ(1)Φ†(2))〉 = −i
p2 + |m|2 δ4

12 −
i[η̃(Q− 2|m|2) + m∗η]

Q2 − |η − 2mη̃|2 θ1
2δ4

12 −
i[η̃∗(Q− 2|m|2) + mη∗]

Q2 − |η − 2mη̃|2 θ̄1
2
δ4

12

+i
(−p2|η̃|2 + m̃2|m|2)Q + 4p2|m|2|η̃|2 − (p2 − |m|2)(m∗ηη̃∗ + mη∗η̃)− |m|2|η|2

(p2 + |m|2|)(Q2 − |η − 2mη̃|2) θ2
1 θ̄1

2
δ4

12

+i
(m̃2 + |η̃|2)Q− |η − 2mη̃|2

(p2 + |m|2)(Q2 − |η − 2mη̃|2)

[
D2

1 θ2
1 θ̄1

2D2
1

16

]
δ4

12 , (A16)

and

〈T(Φ(1)Φ(2))〉 = i m∗

p2(p2 + |m|2)
D2

1

4
δ4

12 −
i(η∗ − 2m∗η̃∗)

Q2 − |η − 2mη̃|2
D2

1 θ̄1
2

4
δ4

12

+i
2m∗η̃(p2 + m̃2) + m∗2η + η∗η̃2

Q2 − |η − 2mη̃|2
D2

1 θ1
2

4p2 δ4
12

+i
m∗[(m̃2 + |η̃|2)Q− |η − 2mη̃|2]− η̃(η∗ − 2m∗η̃∗)(p2 + |m|2)

(p2 + |m|2)(Q2 − |η − 2mη̃|2)

[
D2

1 θ2
1 θ̄1

2

4
+

θ̄1
2
θ2

1 D2
1

4

]
δ4

12 .

(A17)

where Q = p2 + |m|2 + m̃2 + |η̃|2. The corresponding component field propagators are given by

〈T(A A∗)〉 =
−i(p2 + |m|2 + m̃2 + |η̃|2)

(p2 + |m|2 + m̃2 + |η̃|2)2 − |η − 2mη̃|2 ,

〈T(A A)〉 =
i(η∗ − 2m∗η̃∗)

(p2 + |m|2 + m̃2 + |η̃|2)2 − |η − 2mη̃|2 ,

〈T(F F∗)〉 =
i[(p2 + m̃2)(p2 + |m|2 + m̃2 + |η̃|2)− |η −mη̃|2 + |mη̃|2]

(p2 + |m|2 + m̃2 + |η̃|2)2 − |η − 2mη̃|2 ,

〈T(F F)〉 =
i[2m∗η̃(p2 + m̃2) + m∗2η + η∗η̃2]

(p2 + |m|2 + m̃2 + |η̃|2)2 − |η − 2mη̃|2 ,

〈T(A F)〉 =
i[m∗(p2 + |m|2 + m̃2 − |η̃|2) + η∗η̃]

(p2 + |m|2 + m̃2 + |η̃|2)2 − |η − 2mη̃|2 ,

〈T(AF∗)〉 =
−i[η̃∗(p2 − |m|2 + m̃2 + |η̃|2) + mη∗]
(p2 + |m|2 + m̃2 + |η̃|2)2 − |η − 2mη̃|2 ,

〈T(ψRα ψ̄Rβ̇
)〉 =

−ipµ σ
µ

αβ̇

p2 + |m|2 ,

〈T(ψRα ψ
β

R )〉 =
−im∗δβ

α

p2 + |m|2 . (A18)

Note that the Lagrangian without all the masses has a U(1) and a U(1)R symmetry to which
Φ carries both charges (of 1). U(1)R charges for the components A and F are 1 and −1, with ψ

neutral. We can assign corresponding charges to the mass parameters and use them to trace and check
the role of the parameters in the component field propagators and the corresponding terms of the
superfield propagators.
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