
symmetryS S

Article

Parallel Raster Scan for Euclidean Distance Transform

Juan Carlos Elizondo-Leal 1,* , José Gabriel Ramirez-Torres 2, Jose Hugo Barrón-Zambrano 1,
Alan Diaz-Manríquez 1 , Marco Aurelio Nuño-Maganda 3 and Vicente Paul Saldivar-Alonso 1

1 Facultad de Ingeniería y Ciencias, Universidad Autónoma de Tamaulipas, Ciudad Victoria 87149, Mexico;
hbarron@docentes.uat.edu.mx (J.H.B.-Z.); amanriquez@docentes.uat.edu.mx (A.D.-M.);
vpsaldiv@docentes.uat.edu.mx (V.P.S.-A.)

2 Center for Research and Advanced Studies, Cinvestav Tamaulipas, Ciudad Victoria 87149, Mexico;
grtorres@cinvestav.mx

3 Intelligent Systems Department, Polytechnic University of Victoria, Ciudad Victoria 87138, Mexico;
mnunom@upv.edu.mx

* Correspondence: jcaelizondo@docentes.uat.edu.mx

Received: 8 October 2020; Accepted: 30 October 2020; Published: 31 October 2020
����������
�������

Abstract: Distance transform (DT) and Voronoi diagrams (VDs) have found many applications
in image analysis. Euclidean distance transform (EDT) can generate forms that do not vary with
the rotation, because it is radially symmetrical, which is a desirable characteristic in distance
transform applications. Recently, parallel architectures have been very accessible and, particularly,
GPU-based architectures are very promising due to their high performance, low power consumption
and affordable prices. In this paper, a new parallel algorithm is proposed for the computation of
a Euclidean distance map and Voronoi diagram of a binary image that mixes CUDA multi-thread
parallel image processing with a raster propagation of distance information over small fragments of
the image. The basic idea is to exploit the throughput and the latency in each level of memory in
the NVIDIA GPU; the image is set in the global memory, and can be accessed via texture memory,
and we divide the problem into blocks of threads. For each block we copy a portion of the image and
each thread applies a raster scan-based algorithm to a tile of m×m pixels. Experiment results exhibit
that our proposed GPU algorithm can improve the efficiency of the Euclidean distance transform in
most cases, obtaining speedup factors that even reach 3.193.

Keywords: Euclidean distance transform; image processing; CUDA; GPU

1. Introduction

The distance transform is an operator applied, in general, to binary images, composed of
foreground and background pixels. The result is an image, called a distance map, with the same size
of the input image, but where foreground pixels are assigned a numeric value to show the distance
to the closest background pixel, according to a given metrics. Common metrics of distance are city
block or Manhattan distance (four-connected neighborhood), chessboard or Tchebyshev distance
(eight-connected neighborhood), approximated Euclidean distance, and exact Euclidean distance.

There is a wide variety of applications for the distance transform, including bioinformatics [1],
computer vision [2], image matching [3], artistic applications [4], image processing [5], robotics path
planning and autonomous locomotion [6], and computational geometry [7].

The distance map for an input image of n × n pixels can be computed, obviously, in O
(
n4

)
time using brute force. Now, depending on the employed metrics, distance information from the
neighborhood of a pixel can be exploited to compute the distance value, and different algorithms have
been proposed in order to exploit the local information [2]. In general, the algorithms can be classified
in parallel, sequential, and propagation approaches.

Symmetry 2020, 12, 1808; doi:10.3390/sym12111808 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0002-0794-8967
https://orcid.org/0000-0003-2847-8316
https://orcid.org/0000-0003-0102-8227
http://dx.doi.org/10.3390/sym12111808
http://www.mdpi.com/journal/symmetry
https://www.mdpi.com/2073-8994/12/11/1808?type=check_update&version=2

Symmetry 2020, 12, 1808 2 of 19

Parallel and sequential approaches use a distance mask, placed over every foreground pixel of the
input image; the mask size corresponds to the neighborhood size, in order to compute the corresponding
distance value. In parallel algorithms, every pixel is continuously refreshed, individually, until no
pixel value changes. Thus, the number of iterations is proportional to the largest distance in the image.
These algorithms are simple and highly parallelizable.

Sequential algorithms use a raster method, also known as chamfer method, considering that
the modification of a distance value on a pixel affects its neighborhood, leading to highly efficient
algorithms, which are not parallelizable. In 1966 Rosenfeld and Pfaltz proposed the first sequential
Distance transform (DT) algorithms by raster scanning with non-Euclidean metrics [8]. Later, in [9],
they proposed city block and chessboard metrics. Borgefors [10] improved the raster scan method and
presented local neighborhoods of sizes up to 7× 7. Butt and Maragos in [11] present an analysis of the
2D raster scan distance algorithm using mask of 3× 3 and 5× 5.

Danielsson in [12] proposes the 4SED and 8SED algorithms using four masks of relative
displacement pixels. Many improvements have been proposed for Danielsson’s algorithm, one is
presented in [13] which proposes the signed distance map 4SSED and 8SSED. Leymarie and Levine [14]
present an optimized implementation of Danielson’s algorithm, obtaining a similar complexity to other
chamfer methods. Ragnemalm [15] presents another improvement by means of a separable algorithm
for arbitrary dimensions. In [16], Cuisenaire and Macq perform post-processing on Danielson’s 4SED
algorithm, which allows them to correct any errors that may occur in the distance calculation. In [17],
Shih and Wu use a dynamical neighborhood window size and in [18] they use a 3 × 3 window to obtain
the exact Euclidean distance transform.

In [19], Grevera presents the dead reckoning algorithm which, in addition to computing the
distance transformation (DT) for every foreground point (x, y) in the image, also delivers a data
structure p that stores the coordinates of the closest background pixel—i.e., a Voronoy Diagram (VD)
description of the image. This algorithm can produce more accurate results than previous raster
scan algorithms.

Paglieroni in [20] and [21] presents independent sequential algorithms, where firstly the distance
transform is computed independently for each row of the image to obtain an intermediate result along
only one dimension; next, this set of 1D results is used as input for a second phase to obtain the distance
transform of the whole image. Another similar approach is presented by Saito and Toriwaki [22]
with a four-phase algorithm to obtain the Euclidean distance transform and the Voronoi diagram,
by applying n-dimensional filters in a serial decomposition. By exploiting the separable nature of
the distance transform and reducing dimensionality, these algorithms can be implemented in parallel
hardware architectures as a parallel row-wise scanning followed by a parallel column-wise scanning.
However, this restricts the parallelism to only one thread per row and column.

Finally, propagation methods use queue data structures to manage the propagation boundary of
distance information from the background pixels, instead of centered distance masks. These algorithms
are also very difficult to parallelize. Piper and Granum [23] present a strategy that uses a breadth-first
search to find the propagated distance transform between two points in convex and non-convex
domains. Verwer et al. [24] use a bucket structure to obtain the constrained distance transform.
Ragnemalm [25] uses an ordered propagation algorithm, using a contour set that at first contains only
background and adds neighbor pixels, one at a time, until covering the whole image, just as Dijkstra’s
algorithm does. Eggers [26] avoid extra updates adding a list to Ragnemalm’s approach. Sharahia and
Christofides [27] treat the image as a graph and solve the distance transformation as the shortest path
forest problem. Falcao et al. [28] generalize Sharahia and Christofides’ approach to a general tool for
image analysis. Cuisenaire and Macq [29] use ordered propagation, producing a first fast solution and
then use larger neighborhoods to correct possible errors. Noreen et al. [6] solve the robot path planning
problem using a constrained distance transform, dividing the environment in cells and each cell is
marked as free or occupied (similar to black and white pixels) and uses an A* algorithm variation to
obtain the optimal path.

Symmetry 2020, 12, 1808 3 of 19

In recent years, parallel architectures and, particularly, GPU-based architectures are very promising
due to their high performance, low power consumption and affordable prices. Recently GPU-based
approaches have arisen. Cao et al. in [30] proposed the Parallel Banding Algorithm (PBA) on the
GPU to compute the Euclidean distance transform (EDT) and they process the image in three phases.
In phase 1, they divide the image into vertical bands and use a thread to handle each band in each of
the rows and next propagate the information to a different band. In phase 2, they divide the image
into horizontal bands and again use threads for each band and a double-linked list to calculate the
proximate sites. Finally, in phase 3, they compute the closest site for each pixel using the result of phase
2. Since a common data structure for potential sites is required among the threads, the implementation
of this structure and the coordination of threads is relatively complex in a GPU.

Manduhu and Jones in [31] presented a GPU algorithm in which the operations are optimized
using binary functions of CUDA to obtain the EDT in images. They, similar to the PBA algorithm,
make a dimensional reduction solving the problem by rows in a first phase, then by columns in a second
phase, and finally find the closest feature point for every foreground pixel and compute the distance
between them, based on the two previous results.

In [32], the authors present a parallel GPU implementation where they reduce dimensionality.
They split the problem into two phases: during the first phase, every column in the image is scanned
twice, downwards and upwards, to propagate the distance information; during the second phase,
this same process is operated for every row, left-to-right, right-to-left. For its implementation, a CUDA
architecture was used, with an efficient utilization of hierarchical memory.

Rong and Tan [33] proposed the Jump Flooding Algorithm (JFA) to compute the Voronoi map and
the EDT on GPUs to obtain a high memory bandwidth. They utilize texture units and memory access is
regular and coalesced, allowing them to obtain speedup. In [34], Zheng et al. proposed a modification
to the JFA [33] to parallelly render the power diagram.

Schneider et al. [35] modify Danielson’s algorithm [12] in a sweep line algorithm that was
implemented in a GPU. With this approach, distance information can be propagated simultaneously
among the pixels within the same row or column, but only one row or column can be processed at
a time. In [36], Honda et al. apply a correction algorithm to Schneider et al.’s approach [35] in order to
correct errors caused by the vector propagation.

In [37], the authors review PBA [30] implementation and propose some improvements, obtaining
the PBA+ algorithm. They show, through new experimentations, that the new PBA+ algorithm
provides a better performance than the PBA algorithm. In their website, the authors also share the
source code of their algorithm and the appropriate parameters for different GPUs.

In this paper, we present a new parallel algorithm for the computation of the Euclidean distance
map of a binary image. The basic idea is to exploit the throughput and the latency in each level of
memory in the NVIDIA GPU; the image is set in the global memory, and accessed through texture
memory, and we divide the problem into blocks of threads. For each block we copy a portion of image
and each thread applies a raster scan-based algorithm to a tile of m×m pixels.

This document is organized as follows: Section 2 outlines the materials and methods involved
in our approach, Parallel Raster Scan for Euclidean Distance Transform (PRSEDT), to compute the
Euclidean distance transform for a binary image using a GPU architecture. Section 3 presents some
numerical results that show the performance of our method, for different binary images, and these
results are compared with the PBA+ algorithm, which is one of the most performing GPU algorithms
for computing exact Euclidean distance transform. Finally, in Section 4 we present our conclusions and
discussions for future research.

2. Materials and Methods

As stated by Fabbri et al. [2], the distance transform problem can be described as the equation
below, given a binary grid Ω of n×m cells

Symmetry 2020, 12, 1808 4 of 19

Ω = {0, 1, . . . , n− 1} × {0, 1, . . . , m− 1}

that represents the image, on which we can define a binary map I as follows:

I : Ω→ {0, 1}

By convention, 0 is associated with black and 1 with white. Hence, we have an objectO represented
by all the white pixels:

O =
{
p ∈ Ω

∣∣∣ I(p) = 1
}

The set O is called the object or foreground and can consist of any subset of the image domain,
including disjoint sets. The elements of its complement, Oc, the set of black pixels in Ω, are called
background. We can define the distance transform (DT) as the transformation that generates a map D
whose value in each pixel p is the smallest distance from this pixel to Oc:

D(p) = min
{
d(p, q)

∣∣∣q ∈ Oc} = min
{
d(p, q)

∣∣∣I(q) = 0
}

The Euclidean distance transform d(p, q) is taken as the distance, given by:

d(p, q) =

√
(px − qx)

2 +
(
py − qy

)2

The Voronoi diagram is a partition defined in the domain Ω, based on the linear distance of the
sites VD(p). Each Voronoi cell is defined as:

VD(p) =
{
x ∈ Ω

∣∣∣∣ d(x, xi) ≤ d
(
x, x j

)
; xi, x j ∈ O

c and i , j
}

Algorithm 1 shows a sequential raster scan for DT computation based on the Borgefors [10]
approach, which consists of initializing the distance map array d to zero for the characteristic pixels and
∞ for the others, and executing a two-phase raster scan for distance propagation with two different scan
masks. Each pass employs local neighborhood operations in order to minimize the current distance
value assigned to the pixel C = (x,y), located at the center of the mask, by comparing the current
distance value with the distance value assigned to each neighbor cell plus the value specified by the
mask. Scan masks employed for city block, chessboard, and Euclidean metrics are shown in Figure 1.

Algorithm 1. Sequential Raster Scan DT.

REQUIRE Img—A binary image
ENSURE d—A bidimentional matrix with distances of Img

Initialize d
for y = each line from the top of the Img then

for x = each cell in the line from left to right then
d(x,y) = min{ d(x,y), d(x,y) + C(x − 1,y), d(x,y) + C(x − 1,y − 1), d(x,y) + C(x,y − 1),

d(x,y) + C(x + 1,y + 1)}
for y = each line from the bottom of the Img then

for x = each cell in the line from right to left then
d(x,y) = min{ d(x,y), d(x,y) + C(x − 1,y + 1), d(x,y) + C(x,y + 1), d(x,y) + C(x+1,y + 1),

d(x,y) + C(x + 1,y)}

Since it is a separable problem, the exact Euclidean distance problem can be treated by reducing
the dimension of the input data [2,20,21]. Exploiting this property, the Euclidean distance problem can
be solved efficiently using parallelism in columns and rows [30–32,37]. However, this process requires
that each computation thread has access to a complete column of the image, as well as a common

Symmetry 2020, 12, 1808 5 of 19

stack structure for the management of potential sites, so its implementation in GPUs and its thread
coordination process are relatively complex processes.

The proposed algorithm, called Parallel Raster Scan for Euclidean Distance Transform (PRSEDT),
presents a different approach: the image is set in global memory, and can be accessed via texture
memory, and is then processed by a grid of processing blocks. Each block is composed of a set of
threads and deals with a quadrangular region of the image (CUDA block); in turn, each region is
divided into smaller sections (TILES) in which an individual thread applies a raster algorithm for the
propagation of the distance transformation. Each thread works independently until no changes are
detected in the entire block, so only a boolean value is required to determine if the block has finished
processing. The number of iterations is proportional to the size of the block and the maximum distance
in the image, and inversely proportional to the number of regions. The resulting algorithm is highly
parallelizable, with few synchronization points and less access to regular memory, making it suitable
for implementing in modern GPU architectures, which is reflected in better processing times compared
to other state-of-the-art algorithms. Figure 2 shows the representation of what is processed in each
thread (a TILE), the CUDA blocks, and the grid of threads blocks.

Symmetry 2020, 12, 1808 5 of 20

are detected in the entire block, so only a boolean value is required to determine if the block has
finished processing. The number of iterations is proportional to the size of the block and the
maximum distance in the image, and inversely proportional to the number of regions. The resulting
algorithm is highly parallelizable, with few synchronization points and less access to regular
memory, making it suitable for implementing in modern GPU architectures, which is reflected in
better processing times compared to other state-of-the-art algorithms. Figure 2 shows the
representation of what is processed in each thread (a TILE), the CUDA blocks, and the grid of threads
blocks.

(a) (b)

(c) (d)

(e) (f)

Figure 1. Scan mask metrics. (a) City block forward mask; (b) city block backward mask; (c) chess
board forward mask; (d) chess board forward mask; (e) Euclidean forward mask; (f) Euclidean
backward mask.

The algorithm processes an input binary image Img (), of 퐷퐼푀 × 퐷퐼푀 pixels, to produce the
distance map 퐷푇 and a Voronoi map 푉퐷 containing, for each pixel, the coordinates of the closest
characteristic point; both arrays are the same size as the input image. Initially, the array 퐷푇 is
initialized to zero for the characteristic pixels and ∞ for the others, while the array 푉퐷 is initialized
with the characteristic points pointing to themselves and the other cells without an assigned point,
as indicated in Equations (1) and (2).

퐷푇(푥, 푦) = ∞, 퐼푚푔(푥, 푦) = 푤ℎ푖푡푒
0, 퐼푚푔(푥, 푦) = 푏푙푎푐푘 (1)

푉퐷(푥, 푦) = 푁푈퐿퐿, 퐼푚푔(푥, 푦) = 푤ℎ푖푡푒
 (푥, 푦), 퐼푚푔(푥, 푦) = 푏푙푎푐푘 (2)

For processing, the image is divided into 푘 × 푙 blocks, called CUDA blocks. In turn, each block
is divided into 푛 × 푛 tiles that will be processed in parallel by the threads. This scheme guarantees
coalesced access to global memory (for writing data) and texture memory (for reading data),
improving processing times.

Figure 1. Scan mask metrics. (a) City block forward mask; (b) city block backward mask; (c) chess
board forward mask; (d) chess board forward mask; (e) Euclidean forward mask; (f) Euclidean
backward mask.

The algorithm processes an input binary image Img (), of DIM ×DIM pixels, to produce the
distance map DT and a Voronoi map VD containing, for each pixel, the coordinates of the closest
characteristic point; both arrays are the same size as the input image. Initially, the array DT is initialized
to zero for the characteristic pixels and ∞ for the others, while the array VD is initialized with the
characteristic points pointing to themselves and the other cells without an assigned point, as indicated
in Equations (1) and (2).

DT(x, y) =
{
∞, Img(x, y) = white
0, Img(x, y) = black

(1)

VD(x, y) =
{

NULL, Img(x, y) = white
(x, y), Img(x, y) = black

(2)

Symmetry 2020, 12, 1808 6 of 19

For processing, the image is divided into k × l blocks, called CUDA blocks. In turn, each block
is divided into n × n tiles that will be processed in parallel by the threads. This scheme guarantees
coalesced access to global memory (for writing data) and texture memory (for reading data),
improving processing times.

Symmetry 2020, 12, 1808 6 of 20

Figure 2. Grid of thread blocks. The block(k,l) represents each block of CUDA; a block of CUDA
contains a number of threads, T(n,n), and a thread process a TILE; each cell of TILE C(x,y) represents
a pixel of the input image.

For each tile, a processing thread executes a sequential raster distance propagation algorithm,
similar to the chamfer method (Algorithm 1), using mask 1 (Figure 3a) in forwards pass (from left to
right, top to bottom) and mask 2 (Figure 3b) in backward pass (from right to left, bottom to top). Both
masks only indicate the neighbor pixels that will be considered to update the distance value of the
cell 푟 = (푥, 푦) under consideration. For each of the neighbor pixels indicated by the mask, it is
verified whether if the distance from cell 푟 to the pixel pointed by the neighbor is less than the
current recorded distance value. If it is true, the matrix 퐷푇 is updated with the new distance value,
and the matrix 푉퐷 is updated with the identified characteristic point. The above is summarized with
Equations (3) and (4).

퐷푇(푟) = 푚푖푛 퐷푇(푟)
‖푟 − 푉퐷(푣)‖ (3)

푉퐷(푟) = 푉퐷(푣), ‖푟 − 푉퐷(푣)‖ < 퐷푇(푟)
푉퐷(푟), ‖r − VD(v)‖ ≥ 퐷푇(푟) (4)

Rasters on each tile are performed continuously until changes are no longer detected in both 퐷푇
and 푉퐷 arrays. The scan masks used in PRSEDT are shows in Figure 3.

(a) (b)

Figure 3. Scan masks used in Parallel Raster Scan for Euclidean Distance Transform (PRSEDT). (a)
Raster scan mask 1, forward pass, from left to right, top to bottom; (b) raster scan mask 2, backward
pass, from right to left, bottom to top.

Both the size of the tile and the size of the CUDA block are parameters that were determined
experimentally, according to the size of the input image and the architecture of the video card, to
obtain the best processing time. The maximum size is given by the parameter 푚, which indicates the
tile size—i.e., the number of pixels that each thread must process (푚 pixels). The CUDA block size
is determined by the parameter 푛, which determines the number of threads processing a CUDA

Figure 2. Grid of thread blocks. The block(k,l) represents each block of CUDA; a block of CUDA
contains a number of threads, T(n,n), and a thread process a TILE; each cell of TILE C(x,y) represents
a pixel of the input image.

For each tile, a processing thread executes a sequential raster distance propagation algorithm,
similar to the chamfer method (Algorithm 1), using mask 1 (Figure 3a) in forwards pass (from left
to right, top to bottom) and mask 2 (Figure 3b) in backward pass (from right to left, bottom to top).
Both masks only indicate the neighbor pixels that will be considered to update the distance value of the
cell r = (x, y) under consideration. For each of the neighbor pixels indicated by the mask, it is verified
whether if the distance from cell r to the pixel pointed by the neighbor is less than the current recorded
distance value. If it is true, the matrix DT is updated with the new distance value, and the matrix VD is
updated with the identified characteristic point. The above is summarized with Equations (3) and (4).

DT(r) = min
{

DT(r)
‖r−VD(vi)

(3)

VD(r) =
{

VD(vi), ‖r−VD(vi)‖ < DT(r)
VD(r), ‖r−VD(vi)‖ ≥ DT(r)

(4)

Symmetry 2020, 12, 1808 6 of 20

Figure 2. Grid of thread blocks. The block(k,l) represents each block of CUDA; a block of CUDA
contains a number of threads, T(n,n), and a thread process a TILE; each cell of TILE C(x,y) represents
a pixel of the input image.

For each tile, a processing thread executes a sequential raster distance propagation algorithm,
similar to the chamfer method (Algorithm 1), using mask 1 (Figure 3a) in forwards pass (from left to
right, top to bottom) and mask 2 (Figure 3b) in backward pass (from right to left, bottom to top). Both
masks only indicate the neighbor pixels that will be considered to update the distance value of the
cell 푟 = (푥, 푦) under consideration. For each of the neighbor pixels indicated by the mask, it is
verified whether if the distance from cell 푟 to the pixel pointed by the neighbor is less than the
current recorded distance value. If it is true, the matrix 퐷푇 is updated with the new distance value,
and the matrix 푉퐷 is updated with the identified characteristic point. The above is summarized with
Equations (3) and (4).

퐷푇(푟) = 푚푖푛 퐷푇(푟)
‖푟 − 푉퐷(푣)‖ (3)

푉퐷(푟) = 푉퐷(푣), ‖푟 − 푉퐷(푣)‖ < 퐷푇(푟)
푉퐷(푟), ‖r − VD(v)‖ ≥ 퐷푇(푟) (4)

Rasters on each tile are performed continuously until changes are no longer detected in both 퐷푇
and 푉퐷 arrays. The scan masks used in PRSEDT are shows in Figure 3.

(a) (b)

Figure 3. Scan masks used in Parallel Raster Scan for Euclidean Distance Transform (PRSEDT). (a)
Raster scan mask 1, forward pass, from left to right, top to bottom; (b) raster scan mask 2, backward
pass, from right to left, bottom to top.

Both the size of the tile and the size of the CUDA block are parameters that were determined
experimentally, according to the size of the input image and the architecture of the video card, to
obtain the best processing time. The maximum size is given by the parameter 푚, which indicates the
tile size—i.e., the number of pixels that each thread must process (푚 pixels). The CUDA block size
is determined by the parameter 푛, which determines the number of threads processing a CUDA

Figure 3. Scan masks used in Parallel Raster Scan for Euclidean Distance Transform (PRSEDT). (a) Raster
scan mask 1, forward pass, from left to right, top to bottom; (b) raster scan mask 2, backward pass,
from right to left, bottom to top.

Symmetry 2020, 12, 1808 7 of 19

Rasters on each tile are performed continuously until changes are no longer detected in both DT
and VD arrays. The scan masks used in PRSEDT are shows in Figure 3.

Both the size of the tile and the size of the CUDA block are parameters that were determined
experimentally, according to the size of the input image and the architecture of the video card, to obtain
the best processing time. The maximum size is given by the parameter m, which indicates the tile
size—i.e., the number of pixels that each thread must process (m2 pixels). The CUDA block size is
determined by the parameter n, which determines the number of threads processing a CUDA block
(n2 threads). In this way, the dimensions of the subimage, which is processed in each CUDA block,
are (n×m + 2)2 pixels. The two extra pixels ensure an overlap of one pixel with neighbor blocks to
allow the propagation of distance information generated in the block.

To guarantee the proper treatment of the whole input image Img, an array OB of k× l cells (one
cell for each CUDA block) is also used to indicate if each image CUDA block needs to be processed
again to update the distance information. The values for the k and l parameters are obtained directly
from the dimensions of the input image Img, the size of the CUDA block n, and the number of threads
per block m (tile resolution).

The proposed method is divided into two algorithms. The Algorithm 2 Main PRSEDT, is in charge
of reading the image and copying it to the global memory of the device, invoking the kernel that
initializes the DT, VD and OB arrays, and determining the number of CUDA blocks and threads per
block according to the parameters n and m. Next, it invokes the PRSEDTKernel algorithm (Algorithm
3), to propagate the distance information using parallel computing over the CUDA blocks, as many
times as necessary, as long as there are changes in the DT and VD arrays.

Algorithm 2. Main PRSEDT

REQUIRE Img—A binary image
ENSURE DT—A bidimentional matrix with distances of Img

VD—The voronoi diagram of Img
cudaMemcpy(VD, Img, cudaMemcpyHostToDevice)//copy Img from Host to Device
blocks = (DIM/n, DIM/n)//Grid dimensions
threads = (n, n)//Block dimensions
initKernel<<blocks, threads>>(DT, VD, OB)//Init DT Equation (1), VD Equation (2) and OB
blocks = (DIM/(n×m),DIM/(n×m))//Grid dimensions
threads = (n,n)//Block dimensions
cudaBindTexture(VD_Tex, VD) ;//Bind the VD in global memory to VD_Tex in texture
cudaBindTexture(DT_Tex, DT) ;//Bind the VD in global memory to VD_Tex in texture
cudaBindTexture(OB_Tex,OB) ;//Bind the VD in global memory to VD_Tex in texture
count ← 1
ctrl ← 1
repeat

f lag ← f alse //use memSet to set false the flag of the device
blocks(DIM/(n×m),DIM/(n×m))//Grid dimensions
threads(n, n)//Block dimensions
PRSEDTKernel <<blocks,threads>>(DT, VD, OB, f lag, ctrl)
count ← count + 1
if count > 2 then

ctrl← ((count− 2) × n×m/2)2

else
ctrl← count2

Use cudaMemcpy to copy back the flag from device to host
until ! f lag
float *DT_Host = (float*)malloc(imageSize);
cudaMemcpy(DT_Host, DT, cudaMemcpyDeviceToHost);
int *VD_Host = (int*)malloc(imageSize);
cudaMemcpy(VD_Host, VD, cudaMemcpyDeviceToHost);

Symmetry 2020, 12, 1808 8 of 19

Algorithm 3.

PRSEDTKernel (*DT, *VD, *OB, * f lag, *ctrl)
__shared__ bool shOpt
__shared__ int optimized
int optreg← 0
if threadIdx.x == 0 AND threadIdx.y == 0 then

optimized← 0
shOpt← false
if OB_Tex[blockIdx.x + blockIdx.y ∗ gridDim.x] == 1 then

shOpt← true
syncthreads();
if shOpt then

return
shared float memC[n×m][n×m]

shared int ptr[n×m + 2][n×m + 2]
shared bool shEnter;
memC← DT_Tex TILE of m2 (access in a coalesced form)
for each cell in TILE o f memC

if memCcell ≤ ctrl then
optreg ++

atomicAdd(optimized, optreg)
syncthreads()
if optimized == (n×m)2 then

OB[blockIdx.x + blockIdx.y× gridDim.x]← true
return

ptr← VD_Tex TILE of (n×m + 2)2 (access in a coalesced form)
repeat

syncthreads();
if threadIdx.y == 0 and threadIdx.x == 0 then

shEnter ← false
syncthreads();
for each line from the top of the TILE then

for each cell in the line of the TILE from left to right then
apply scan mask 1 (Figure 3a)
evaluate memC and ptr according to Equations (3) and (4).
if any update is made then

shEnter ← true
for each line from the bottom of the TILE then

for each cell in the line of the TILE from right to left then
apply scan mask 2 (Figure 3b)
evaluate memC and ptr according to Equations (3) and (4).
if any update is made then

shEnter ← true
syncthreads()

until !shEnter
if any change in the TILE then

update DT with corresponding TILE of memC
update VD with corresponding TILE of ptr
flag ← true

The PRSEDTKernel algorithm, shown in Algorithm 3, handles the parallel processing of the
CUDA blocks. Initially, the first thread of each block checks if the assigned block requires updating,
using the array OB. If the block requires no processing, the entire block ends. If processing is required,
an array memC is created in the shared memory space, and each thread of the block makes a copy of the

Symmetry 2020, 12, 1808 9 of 19

distance map DT of its respective tile, through a coalesced access to texture memory. Next, the threads
of the block verify if, for each cell within its respective tile, the distance value is less than a threshold
value ctrl (which increases according to the number of iterations, in Algorithm 2 Main PRSEDT). If this
condition is verified for all the pixels of the block, then the block is considered as optimized and
does not require to be processed again, so the corresponding cell in the array OB is updated and the
complete block ends.

If the distance map of this block can still be improved, then each thread makes a copy of
its respective tile of the Voronoi diagram VD, from the texture memory to the shared array ptr,
with coalesced memory access. From this moment, each thread propagates the distance information in
its respective tile, using the sequential raster process described above, until all the threads no longer
generate changes.

Finally, if any changes were made to the block, then the DT and VD arrays in global memory
are updated, with the data stored in the arrays memC and ptr in the block’s shared memory. Figure 4
shows a flowchart of the heterogeneous programming model used in PRSEDT: on the left side we
can see the process running in host, and on the right side the processes running in device, in order
to show the whole coordination of our approach. Briefly, the host is in charge of reading the image
and copying it to the global memory of the device, instantiating the kernels and copying back the
Voronoi diagram and the distance transform; the device, on the other hand, is in charge of initializing
the Voronoi diagram, the distance transform map, and the array OB (initKernel); finally, each thread of
PRSEDTKernel processes a tile of VD and DT.

Symmetry 2020, 12, 1808 9 of 20

required, an array 푚푒푚퐶 is created in the shared memory space, and each thread of the block makes
a copy of the distance map 퐷푇 of its respective tile, through a coalesced access to texture memory.
Next, the threads of the block verify if, for each cell within its respective tile, the distance value is less
than a threshold value 푐푡푟푙 (which increases according to the number of iterations, in Algorithm 2
Main PRSEDT). If this condition is verified for all the pixels of the block, then the block is considered
as optimized and does not require to be processed again, so the corresponding cell in the array 푂퐵
is updated and the complete block ends.

If the distance map of this block can still be improved, then each thread makes a copy of its
respective tile of the Voronoi diagram 푉퐷, from the texture memory to the shared array 푝푡푟, with
coalesced memory access. From this moment, each thread propagates the distance information in its
respective tile, using the sequential raster process described above, until all the threads no longer
generate changes.

Finally, if any changes were made to the block, then the 퐷푇 and 푉퐷 arrays in global memory
are updated, with the data stored in the arrays 푚푒푚퐶 and 푝푡푟 in the block’s shared memory. Figure
4 shows a flowchart of the heterogeneous programming model used in PRSEDT: on the left side we
can see the process running in host, and on the right side the processes running in device, in order to
show the whole coordination of our approach. Briefly, the host is in charge of reading the image and
copying it to the global memory of the device, instantiating the kernels and copying back the Voronoi
diagram and the distance transform; the device, on the other hand, is in charge of initializing the
Voronoi diagram, the distance transform map, and the array OB (initKernel); finally, each thread of
PRSEDTKernel processes a tile of VD and DT.

Figure 4. Flowchart of the heterogeneous programming of PRSEDT.

3. Results

For experimentation purposes, the implementation of the proposed algorithm was carried out
in a desktop computer equipped with an Intel Core i7-7700 processor, with eight cores at 3.6 GHz,
and an NVIDIA GeForce GTX 1070 video card. The operating system used is Ubuntu 18.04 LTS 64-
bit, and the programming language is C++ with CUDA 10.2. We used a NVIDIA “Visual Profiler” to

Figure 4. Flowchart of the heterogeneous programming of PRSEDT.

3. Results

For experimentation purposes, the implementation of the proposed algorithm was carried out
in a desktop computer equipped with an Intel Core i7-7700 processor, with eight cores at 3.6 GHz,

Symmetry 2020, 12, 1808 10 of 19

and an NVIDIA GeForce GTX 1070 video card. The operating system used is Ubuntu 18.04 LTS 64-bit,
and the programming language is C++ with CUDA 10.2. We used a NVIDIA “Visual Profiler” to
obtain information about the data transfer between the device memory and the host memory, as well
as the computation performed by the GPU card.

To evaluate the proposed method, the decision was made to compare it with the PBA+ [37]
algorithm, an updated revision of the PBA algorithm [29]. The original PBA algorithm proved
to be highly competitive compared to the two most representative state-of-the-art algorithms:
Schneider et al.’s [33] and JFA [32]. In its PBA+ version, the authors have achieved significant
improvements to the implementation of their original algorithm, with better processing times.
In addition, on their website, the authors generously share the source code of their implementation,
as well as the recommended values of the different parameters of their algorithm, according to the
characteristics of the input image and the video card used. Due to these two factors, we consider that
the PBA+ algorithm is a representative state-of-the-art algorithm in the calculation of the distance map
in parallel hardware architectures.

It is important to highlight that the distance maps obtained by the PBA+ algorithm and our
proposed algorithm (PRSEDT) are exactly the same for all the input images used in experimentation,
so the difference between both algorithms is in the performance at runtime and not in the precision of
the obtained distance map.

Table 1 shows the parameters proposed by the authors of the PBA+ algorithm for different image
resolutions and the GPU card used in this experimentation, where m1, m2 and m3 are the parameters
of each phase in the PBA+ algorithm. On the other hand, Table 2 shows the parameters used for our
proposed method (PRSEDT), for different image resolutions, obtained by own experimentation.

Table 1. Parameters for the improved Parallel Banding Algorithm (PBA+).

Texture Size m1 m2 m3

512 × 512 8 16 8
1024 × 1024 16 32 8
2048 × 2048 32 32 8
4096 × 4096 64 32 4
8192 × 8192 64 32 4

16,384 × 16,384 128 32 4

Table 2. Parameters for PRSEDT. m is tile resolution and n is the block size.

Texture Size TILERES BSIZE

512 × 512 2 8
1024 × 1024 2 8
2048 × 2048 2 8
4096 × 4096 4 8
8192 × 8192 4 8

16,384 × 16,384 4 8

In order to evaluate the impact of memory transfers from host to device and vice versa, we carried
out a set of experiments from which we obtained the transfer time. From Table 3 it can be noted that
the transfer time is affected only by the dimensions of the image and is similar for both PRSEDT and
PBA+ algorithms. Therefore, in the next experiments, we focus on evaluating the processing time of
the algorithms.

Symmetry 2020, 12, 1808 11 of 19

Table 3. Memory transfer times (milliseconds). Column HostToDevice indicates the transfer time of
the image from the host to the device, while the DeviceToHost columns indicate the transfer time from
the device to the host of the Distance transform (DT) and Voronoi diagram (VD) matrices, respectively.

Texture Size
PRSEDT PBA+

HostToDevice DeviceToHost HostToDevice DeviceToHost

512 × 512 0.082 0.08042 0.0881 0.082 0.0809 0.0811
1024 × 1024 0.598 1.31 1.28 0.593 1.28 1.27
2048 × 2048 2.7979 6.49 6.56 2.91 6.35 6.19
4096 × 4096 12.11 26.95 26.93 12.1 26.79 26.68
8192 × 8192 49.5 108.64 108.89 48.8 108.72 109.01

16,384 × 16,384 191.63 438.94 439.01 194.01 438.61 438.5

In the first phase of experimentation, the performance of the algorithms for input images of
different resolutions and with different densities of randomly generated feature points was compared.
The density of random feature points took values of 1%, 10%, 30%, 50%, 70% and 90%, with resolutions
of 512 × 512, 1024 × 1024, 2048 × 2048, 4096 × 4096, 8192 × 8192 and 16384 × 16384. Figure 5 shows
an example of the set of images of 1024× 1024 pixels of resolution, for different density values.

Symmetry 2020, 12, 1808 11 of 20

Table 3. Memory transfer times (milliseconds). Column HostToDevice indicates the transfer time of
the image from the host to the device, while the DeviceToHost columns indicate the transfer time
from the device to the host of the Distance transform (DT) and Voronoi diagram (VD) matrices,
respectively.

Texture Size
PRSEDT PBA+

HostToDevice DeviceToHost HostToDevice DeviceToHost
512 × 512 0.082 0.08042 0.0881 0.082 0.0809 0.0811

1024 × 1024 0.598 1.31 1.28 0.593 1.28 1.27
2048 × 2048 2.7979 6.49 6.56 2.91 6.35 6.19
4096 × 4096 12.11 26.95 26.93 12.1 26.79 26.68
8192 × 8192 49.5 108.64 108.89 48.8 108.72 109.01

16,384 × 16,384 191.63 438.94 439.01 194.01 438.61 438.5

(a) 1% (b) 10% (c) 30%

(d) 50% (e) 70% (f) 90%

Figure 5. Input images with different densities of black pixels (1024 × 1024). (a) 1%; (b) 10%; (c) 30%;
(d) 50%; (e) 70%; (f) 90%.

Table 4 shows the processing time in milliseconds and the speedup factor obtained for images
of different densities and resolutions. In 512 × 512 resolution images, the PRSEDT improves the
performance of the PBA+ algorithm in all cases, with speedup factors ranging from 1.044 for 1%
density images to 3.441 for images with 90% density.

For 1024 × 1024 pixel resolution images, the PBA+ algorithm performs better on 1% density
images, but our PRSEDT algorithm achieves better results for images with 10% to 90% density,
with speedup factors ranging from 1.763 to 3.717.

In the case of 2048 × 2048 resolution images with 1% density, the speedup factor was 0.745,
so the PBA+ algorithm obtains better results than PRSEDT; however, for densities from 10% to 90%,
our algorithm performs better, with speedup factors ranging from 1.590 to 3.470.

For images with a resolution of 4096 × 4096 pixels, the performance pattern is repeated: for 1%
density there is a speedup factor of 0.800, and the PBA+ algorithm obtains better results than our
method. Nevertheless, for densities from 10% up to 90%, the proposed method performs better,
with speedup factors ranging from 1.253 to 2.346.

Figure 5. Input images with different densities of black pixels (1024 × 1024). (a) 1%; (b) 10%; (c) 30%;
(d) 50%; (e) 70%; (f) 90%.

Table 4 shows the processing time in milliseconds and the speedup factor obtained for images
of different densities and resolutions. In 512 × 512 resolution images, the PRSEDT improves the
performance of the PBA+ algorithm in all cases, with speedup factors ranging from 1.044 for 1% density
images to 3.441 for images with 90% density.

Symmetry 2020, 12, 1808 12 of 19

Table 4. Running time (milliseconds) of each image with different densities of black pixels and
different resolutions.

Density Algorithm
512 × 512 1024 × 1024 2048 × 2048

ms Speedup ms Speedup ms Speedup

1%
PBA+ 0.335

1.044
0.801

0.803
2.545

0.745PRSEDT 0.321 0.998 3.415

10%
PBA+ 0.38

1.827
0.968

1.763
3.111

1.590PRSEDT 0.208 0.549 1.956

30%
PBA+ 0.41

2.343
1.066

2.406
3.214

2.169PRSEDT 0.175 0.443 1.482

50%
PBA+ 0.408

2.684
1.074

3.294
3.181

3.233PRSEDT 0.152 0.326 0.984

70%
PBA+ 0.395

3.110
1.034

3.517
2.996

3.428PRSEDT 0.127 0.294 0.874

90%
PBA+ 0.382

3.441
0.985

3.717
2.87

3.470PRSEDT 0.111 0.265 0.827

Density Algorithm
4096 × 4096 8192 × 8192 16, 384 × 16, 384

ms Speedup ms Speedup ms Speedup

1%
PBA+ 8.89

0.800
30.49

0.881
117.87

0.865PRSEDT 11.11 34.61 136.24

10%
PBA+ 10.25

1.253
36.13

1.401
136.95

1.363PRSEDT 8.18 25.79 100.5

30%
PBA+ 10.21

1.383
36.94

1.564
139.28

1.481PRSEDT 7.38 23.62 94.04

50%
PBA+ 9.93

2.315
35.82

2.588
135.99

2.508PRSEDT 4.29 13.84 54.23

70%
PBA+ 9.44

2.275
34.06

2.604
130.15

2.503PRSEDT 4.15 13.08 52

90%
PBA+ 9.01

2.346
32.78

2.646
121.08

2.478PRSEDT 3.84 12.39 48.86

For 1024× 1024 pixel resolution images, the PBA+ algorithm performs better on 1% density images,
but our PRSEDT algorithm achieves better results for images with 10% to 90% density, with speedup
factors ranging from 1.763 to 3.717.

In the case of 2048 × 2048 resolution images with 1% density, the speedup factor was 0.745,
so the PBA+ algorithm obtains better results than PRSEDT; however, for densities from 10% to 90%,
our algorithm performs better, with speedup factors ranging from 1.590 to 3.470.

For images with a resolution of 4096 × 4096 pixels, the performance pattern is repeated: for
1% density there is a speedup factor of 0.800, and the PBA+ algorithm obtains better results than
our method. Nevertheless, for densities from 10% up to 90%, the proposed method performs better,
with speedup factors ranging from 1.253 to 2.346.

With 8192× 8192 resolution images, we obtained a speedup factor of 0.881 for a density of 1%,
and for densities from 10% to 90%, the speedup factor ranges from 1.401 to 2.646.

Finally, for images with a resolution of 16, 384× 16, 384, the obtained speedup factor for 1% density
is 0.865, while for densities of 10%, 30%, 50%, 70% and 90%, the speedup factors are 1.363, 1.481, 2.508,
2.503 and 2.478, respectively.

From the data of Table 3, we can see that in 31 out of the 36 cases PRSEDT yields better results
than the PBA+. The better performance of PBA+ in low-density images can be explained because, as
mentioned above, the number of iterations of the proposed method is proportional to the maximum
image distance, which is greater in very low-density images. However, it can be observed that in most
cases (21 out of 36) a speedup factor greater than 100% is obtained, even tripling the performance of
the PBA+ algorithm in some cases.

Symmetry 2020, 12, 1808 13 of 19

Figure 6 shows an example of the results obtained for an input image with random feature points
(Figure 6a) with the grayscale distance map (Figure 6b) and the Voronoi diagram (Figure 6c).

Symmetry 2020, 12, 1808 12 of 20

With 8192 × 8192 resolution images, we obtained a speedup factor of 0.881 for a density of
1%, and for densities from 10% to 90%, the speedup factor ranges from 1.401 to 2.646.

Finally, for images with a resolution of 16,384 × 16,384, the obtained speedup factor for 1%
density is 0.865, while for densities of 10%, 30%, 50%, 70% and 90%, the speedup factors are
1.363, 1.481, 2.508, 2.503 and 2.478, respectively.

Table 4. Running time (milliseconds) of each image with different densities of black pixels and
different resolutions.

Density Algorithm
ퟓퟏퟐ × ퟓퟏퟐ ퟏퟎퟐퟒ × ퟏퟎퟐퟒ ퟐퟎퟒퟖ × ퟐퟎퟒퟖ

ms Speedup ms Speedup ms Speedup

1% PBA+ 0.335 1.044 0.801 0.803 2.545 0.745
PRSEDT 0.321 0.998 3.415

10%
PBA+ 0.38

1.827
0.968

1.763
3.111

1.590
PRSEDT 0.208 0.549 1.956

30%
PBA+ 0.41

2.343
1.066

2.406
3.214

2.169
PRSEDT 0.175 0.443 1.482

50% PBA+ 0.408 2.684 1.074 3.294 3.181 3.233
PRSEDT 0.152 0.326 0.984

70%
PBA+ 0.395

3.110
1.034

3.517
2.996

3.428 PRSEDT 0.127 0.294 0.874

90% PBA+ 0.382 3.441 0.985 3.717 2.87 3.470
PRSEDT 0.111 0.265 0.827

Density Algorithm
ퟒퟎퟗퟔ × ퟒퟎퟗퟔ ퟖퟏퟗퟐ × ퟖퟏퟗퟐ ퟏퟔ, ퟑퟖퟒ × ퟏퟔ, ퟑퟖퟒ

ms Speedup ms Speedup ms Speedup

1% PBA+ 8.89 0.800 30.49 0.881 117.87 0.865
PRSEDT 11.11 34.61 136.24

10%
PBA+ 10.25

1.253
36.13

1.401
136.95

1.363 PRSEDT 8.18 25.79 100.5

30%
PBA+ 10.21

1.383
36.94

1.564
139.28

1.481
PRSEDT 7.38 23.62 94.04

50% PBA+ 9.93 2.315 35.82 2.588 135.99 2.508
PRSEDT 4.29 13.84 54.23

70%
PBA+ 9.44

2.275
34.06

2.604
130.15

2.503 PRSEDT 4.15 13.08 52

90% PBA+ 9.01 2.346 32.78 2.646 121.08 2.478
PRSEDT 3.84 12.39 48.86

From the data of Table 3, we can see that in 31 out of the 36 cases PRSEDT yields better results
than the PBA+. The better performance of PBA+ in low-density images can be explained because, as
mentioned above, the number of iterations of the proposed method is proportional to the maximum
image distance, which is greater in very low-density images. However, it can be observed that in
most cases (21 out of 36) a speedup factor greater than 100% is obtained, even tripling the
performance of the PBA+ algorithm in some cases.

Figure 6 shows an example of the results obtained for an input image with random feature points
(Figure 6a) with the grayscale distance map (Figure 6b) and the Voronoi diagram (Figure 6c).

(a) (b) (c)

Figure 6. Example of distance transform and Voronoi diagram for an input image with random features.
(a) Input image with 0.1% density of black pixels; (b) grayscale distance map, the color gradient is
caused by the color table, to better visualize the distances; (c) Voronoi diagram.

Table 5 shows, for each resolution and for each density of black pixels, the number of times the
PRSEDTKernel was instantiated. As can be seen, the higher the density the fewer instances needed,
which is related to the maximum value in the distance map. Figure 7 shows the timeline of the
execution of the PRSEDT algorithm and the PBA+ algorithm for an input image of 2048 × 2048 pixels
and a density of 30%. On the one hand, our PRSEDT algorithm instance only has two kernels: the
initKernel for initialization of DT and VD matrices, and the PRSEDTKernel three times (Figure 7a)
for distance propagation. On the other hand, the PBA+ algorithm requires instantiating 10 different
kernels, making its implementation more complex (Figure 7b).

Table 5. PRSEDTKernel instances.

Density 512 × 512 1024 × 1024 2048 × 2048 4096 × 4096 8192 × 8192 16, 384 × 16, 384

1% 4 4 5 4 4 4
10% 3 3 3 3 3 3
30% 3 3 3 3 3 3
50% 3 3 3 3 3 3
70% 2 2 2 3 3 3
90% 2 2 2 3 3 3

Symmetry 2020, 12, 1808 13 of 20

Figure 6. Example of distance transform and Voronoi diagram for an input image with random
features. (a) Input image with 0.1% density of black pixels; (b) grayscale distance map, the color
gradient is caused by the color table, to better visualize the distances; (c) Voronoi diagram.

Table 5 shows, for each resolution and for each density of black pixels, the number of times the
PRSEDTKernel was instantiated. As can be seen, the higher the density the fewer instances needed,
which is related to the maximum value in the distance map. Figure 7 shows the timeline of the
execution of the PRSEDT algorithm and the PBA+ algorithm for an input image of 2048 × 2048 pixels
and a density of 30%. On the one hand, our PRSEDT algorithm instance only has two kernels: the
initKernel for initialization of DT and VD matrices, and the PRSEDTKernel three times (Figure 7a)
for distance propagation. On the other hand, the PBA+ algorithm requires instantiating 10 different
kernels, making its implementation more complex (Figure 7b).

Table 5. PRSEDTKernel instances.

Density ퟓퟏퟐ × ퟓퟏퟐ ퟏퟎퟐퟒ × ퟏퟎퟐퟒ ퟐퟎퟒퟖ × ퟐퟎퟒퟖ ퟒퟎퟗퟔ × ퟒퟎퟗퟔ ퟖퟏퟗퟐ × ퟖퟏퟗퟐ ퟏퟔ, ퟑퟖퟒ × ퟏퟔ, ퟑퟖퟒ
1% 4 4 5 4 4 4

10% 3 3 3 3 3 3
30% 3 3 3 3 3 3
50% 3 3 3 3 3 3
70% 2 2 2 3 3 3
90% 2 2 2 3 3 3

(a) (b)

Figure 7. Timelines for an input image for 2048 × 2048 pixels and 30% density, showing memory data
transfers and computing times. (a) PRSEDT profiling; (b) PBA+ profiling.

In the second phase of experimentation, the performance of the proposed algorithm for specific
binary images was verified. The Lena, Mandril and Retina images were taken as input images (Figure
8), with resolutions of 512 × 512 , 1024 × 1024 , 2048 × 2048 , 4096 × 4096 , 8192 × 8192 and
16,384 × 16,384 pixels. The results are summarized in Table 6, with the execution time in
milliseconds and the speedup factor with respect to the PBA+ algorithm for each of the images.

Table 7 shows, for each resolution and input image from Figure 8, the number of times that the
PRSEDTKernel was instantiated. Since the Mandril and Lena input images have wider white areas,
the maximum distance value is greater than in the Retina image. This fact is reflected in the greater
number of instantiations required of the PRSEDTKernel to propagate the distance information among
tiles and CUDA blocks in these large white areas, thus delaying the propagation of the distance
transformation. The Retina image requires fewer instances due to smaller areas of white pixels.

Figure 7. Timelines for an input image for 2048 × 2048 pixels and 30% density, showing memory data
transfers and computing times. (a) PRSEDT profiling; (b) PBA+ profiling.

In the second phase of experimentation, the performance of the proposed algorithm for specific
binary images was verified. The Lena, Mandril and Retina images were taken as input images

Symmetry 2020, 12, 1808 14 of 19

(Figure 8), with resolutions of 512 × 512, 1024 × 1024, 2048 × 2048, 4096 × 4096, 8192 × 8192 and
16, 384× 16, 384 pixels. The results are summarized in Table 6, with the execution time in milliseconds
and the speedup factor with respect to the PBA+ algorithm for each of the images.Symmetry 2020, 12, 1808 14 of 20

(a) (b) (c)

Figure 8. Input images. (a) Lena; (b) Mandril; (c) Retina.

Table 6. Running time (milliseconds) of each image with different input images and different
resolutions.

Image Algorithm
512 × 512 1024 × 1024 2048 × 2048

ms Speedup ms Speedup ms Speedup

Lena PBA+ 0.401 1.604 1.029 1.790 2.87 1.535
PRSEDT 0.25 0.575 1.87

Mandril
PBA+ 0.434

1.507
1.074

1.554
2.99

1.187 PRSEDT 0.288 0.691 2.52

Retina
PBA+ 0.402

2.871
0.993

3.193
2.82

3.099
PRSEDT 0.14 0.311 0.91

Image Algorithm
4096 × 4096 8192 × 8192 16,384 × 16,384

ms Speedup ms Speedup ms Speedup

Lena PBA+ 8.68 1.072 29.69 1.107 116.93 0.809
PRSEDT 8.1 26.82 144.51

Mandril
PBA+ 9.24

0.857
30.81

0.812
116.66

0.566 PRSEDT 10.78 37.94 206.29

Retina PBA+ 8.72 2.047 30.24 2.625 114.24 2.587
PRSEDT 4.26 11.52 44.16

Table 7. Number of PRSEDTKernel instances required to process the input image.

Image ퟓퟏퟐ × ퟓퟏퟐ ퟏퟎퟐퟒ × ퟏퟎퟐퟒ ퟐퟎퟒퟖ × ퟐퟎퟒퟖ ퟒퟎퟗퟔ × ퟒퟎퟗퟔ ퟖퟏퟗퟐ × ퟖퟏퟗퟐ ퟏퟔ, ퟑퟖퟒ × ퟏퟔ, ퟑퟖퟒ
Lena 5 8 14 15 27 51

Mandril 6 8 14 14 28 54
Retina 3 4 5 5 7 11

For the Lena image (Figure 8a), it can be seen that the proposed algorithm improves the
performances of the PBA+ algorithm by a factor of 1.604 for the 512 × 512 resolution, 1.790 for the
1024 × 1024 resolution, 1.535 for the 2048 × 2048 resolution, 1.072 for the 4096 × 4096
resolution and finally 1.107 for 8192 × 8192 resolution. In the case of the 16,384 × 16,384
resolution, the PBA+ algorithm showed a better performance, with a speedup factor of 0.809. Figure
9 shows the resulting distance map and Voronoi diagram for the 2048 × 2048-pixel Lena image.

Figure 8. Input images. (a) Lena; (b) Mandril; (c) Retina.

Table 6. Running time (milliseconds) of each image with different input images and different resolutions.

Image Algorithm
512 × 512 1024 × 1024 2048 × 2048

ms Speedup ms Speedup ms Speedup

Lena
PBA+ 0.401

1.604
1.029

1.790
2.87

1.535PRSEDT 0.25 0.575 1.87

Mandril
PBA+ 0.434

1.507
1.074

1.554
2.99

1.187PRSEDT 0.288 0.691 2.52

Retina
PBA+ 0.402

2.871
0.993

3.193
2.82

3.099PRSEDT 0.14 0.311 0.91

Image Algorithm
4096 × 4096 8192 × 8192 16,384 × 16,384

ms Speedup ms Speedup ms Speedup

Lena
PBA+ 8.68

1.072
29.69

1.107
116.93

0.809PRSEDT 8.1 26.82 144.51

Mandril
PBA+ 9.24

0.857
30.81

0.812
116.66

0.566PRSEDT 10.78 37.94 206.29

Retina
PBA+ 8.72

2.047
30.24

2.625
114.24

2.587PRSEDT 4.26 11.52 44.16

Table 7 shows, for each resolution and input image from Figure 8, the number of times that
the PRSEDTKernel was instantiated. Since the Mandril and Lena input images have wider white
areas, the maximum distance value is greater than in the Retina image. This fact is reflected in the
greater number of instantiations required of the PRSEDTKernel to propagate the distance information
among tiles and CUDA blocks in these large white areas, thus delaying the propagation of the distance
transformation. The Retina image requires fewer instances due to smaller areas of white pixels.

Table 7. Number of PRSEDTKernel instances required to process the input image.

Image 512 × 512 1024 × 1024 2048 × 2048 4096 × 4096 8192 × 8192 16, 384 × 16, 384

Lena 5 8 14 15 27 51
Mandril 6 8 14 14 28 54
Retina 3 4 5 5 7 11

For the Lena image (Figure 8a), it can be seen that the proposed algorithm improves the
performances of the PBA+ algorithm by a factor of 1.604 for the 512 × 512 resolution, 1.790 for the

Symmetry 2020, 12, 1808 15 of 19

1024× 1024 resolution, 1.535 for the 2048× 2048 resolution, 1.072 for the 4096× 4096 resolution and
finally 1.107 for 8192× 8192 resolution. In the case of the 16, 384× 16, 384 resolution, the PBA+ algorithm
showed a better performance, with a speedup factor of 0.809. Figure 9 shows the resulting distance
map and Voronoi diagram for the 2048× 2048-pixel Lena image.Symmetry 2020, 12, 1808 15 of 20

(a) (b)

Figure 9. Results obtained from Lena input image for the 2048 × 2048-pixel image. (a) Gray scale
distance map, the color gradient is caused by the color table, to better visualize the distances; (b)
Voronoi diagram.

Figure 10 shows the timelines for the PRSEDT algorithm and the PBA+ algorithm, while
processing the Lena input image of 2048 × 2048 pixels. The PRSEDT algorithm (Figure 10a) is required
to instantiate the PRSEDTkernel 14 times (as reported in Table 6), each instantiation requiring a reset
of the global flag at the beginning and a memcopy from the device to host to verify the result of the
flag at the end of the PRSEDTKernel execution. The times required for these data transfers are
considered in the total processing time. On the other hand, the PBA+ algorithm does not require
additional memory data transfers between host and device; however, the total processing time is
higher than our approach (Table 6).

(a) (b)

Figure 10. Timelines for 2048 × 2048-pixel Lena input image, showing memory data transfers and
computing times. (a) PRSEDT profiling; (b) PBA+ profiling.

For the Mandril image (Figure 8b), it can be seen that our proposal improves the performance of
the PBA+ algorithm in resolutions of 512 × 512 , 1024 × 1024 , and 2048 × 2048 pixels, with
speedup factors of 1.507, 1.554, and 1.187, respectively. The PBA+ algorithm showed better results
for the resolutions of 4096 × 4096, 8192 × 8192, and 16,384 × 16,384 pixels, with speedup factors
of 0.857, 0.812 and 0.566, respectively. The results obtained for the 2048 × 2048-pixel image are
shown in Figure 11.

Figure 9. Results obtained from Lena input image for the 2048× 2048-pixel image. (a) Gray scale distance
map, the color gradient is caused by the color table, to better visualize the distances; (b) Voronoi diagram.

Figure 10 shows the timelines for the PRSEDT algorithm and the PBA+ algorithm, while processing
the Lena input image of 2048× 2048 pixels. The PRSEDT algorithm (Figure 10a) is required to instantiate
the PRSEDTkernel 14 times (as reported in Table 6), each instantiation requiring a reset of the global
flag at the beginning and a memcopy from the device to host to verify the result of the flag at the end
of the PRSEDTKernel execution. The times required for these data transfers are considered in the total
processing time. On the other hand, the PBA+ algorithm does not require additional memory data
transfers between host and device; however, the total processing time is higher than our approach
(Table 6).

Symmetry 2020, 12, 1808 15 of 20

(a) (b)

Figure 9. Results obtained from Lena input image for the 2048 × 2048-pixel image. (a) Gray scale
distance map, the color gradient is caused by the color table, to better visualize the distances; (b)
Voronoi diagram.

Figure 10 shows the timelines for the PRSEDT algorithm and the PBA+ algorithm, while
processing the Lena input image of 2048 × 2048 pixels. The PRSEDT algorithm (Figure 10a) is required
to instantiate the PRSEDTkernel 14 times (as reported in Table 6), each instantiation requiring a reset
of the global flag at the beginning and a memcopy from the device to host to verify the result of the
flag at the end of the PRSEDTKernel execution. The times required for these data transfers are
considered in the total processing time. On the other hand, the PBA+ algorithm does not require
additional memory data transfers between host and device; however, the total processing time is
higher than our approach (Table 6).

(a) (b)

Figure 10. Timelines for 2048 × 2048-pixel Lena input image, showing memory data transfers and
computing times. (a) PRSEDT profiling; (b) PBA+ profiling.

For the Mandril image (Figure 8b), it can be seen that our proposal improves the performance of
the PBA+ algorithm in resolutions of 512 × 512 , 1024 × 1024 , and 2048 × 2048 pixels, with
speedup factors of 1.507, 1.554, and 1.187, respectively. The PBA+ algorithm showed better results
for the resolutions of 4096 × 4096, 8192 × 8192, and 16,384 × 16,384 pixels, with speedup factors
of 0.857, 0.812 and 0.566, respectively. The results obtained for the 2048 × 2048-pixel image are
shown in Figure 11.

Figure 10. Timelines for 2048 × 2048-pixel Lena input image, showing memory data transfers and
computing times. (a) PRSEDT profiling; (b) PBA+ profiling.

For the Mandril image (Figure 8b), it can be seen that our proposal improves the performance of the
PBA+ algorithm in resolutions of 512× 512, 1024× 1024, and 2048× 2048 pixels, with speedup factors
of 1.507, 1.554, and 1.187, respectively. The PBA+ algorithm showed better results for the resolutions
of 4096× 4096, 8192× 8192, and 16, 384× 16, 384 pixels, with speedup factors of 0.857, 0.812 and 0.566,
respectively. The results obtained for the 2048× 2048-pixel image are shown in Figure 11.

Figure 12 shows the timeline of the execution of the PRSEDT algorithm and the PBA+ algorithm
for the 2048 × 2048 pixels Mandril input image. As for the Lena image, we can see in Figure 12a that
PRSEDT algorithm requires to instantiate 14 times the PRSEDTkernel (Table 6) to process the whole

Symmetry 2020, 12, 1808 16 of 19

image, with their respective memory data transfers of the flag value between the Host and the Device.
However, the total processing time is lower than the PBA+ algorithm (Figure 12b).Symmetry 2020, 12, 1808 16 of 20

(a) (b)

Figure 11. Results obtained from Mandril input image for the 2048 × 2048-pixel image. (a) Gray scale
distance map, the color gradient is caused by the color table, to better visualize the distances; (b)
Voronoi diagram.

Figure 12 shows the timeline of the execution of the PRSEDT algorithm and the PBA+ algorithm
for the 2048 × 2048 pixels Mandril input image. As for the Lena image, we can see in Figure 12a that
PRSEDT algorithm requires to instantiate 14 times the PRSEDTkernel (Table 6) to process the whole
image, with their respective memory data transfers of the flag value between the Host and the Device.
However, the total processing time is lower than the PBA+ algorithm (Figure 12b).

(a) (b)

Figure 12. Timeline from Mandril input image for the 2048 × 2048-pixel image showing memory
copy and computing times. (a) PRSEDT profiling; (b) PBA+ profiling.

Finally, for the Retina image (Figure 8c), the proposed method improves the performance of the
PBA+ algorithm in all cases, with speedup factors of 2.871 for the resolution of 512 × 512, of 3.193
in the image of 1024 × 1024 pixels, of 3.099 for the resolution of 2048 × 2048, of 2.047 for the
resolution of 4096 × 4096 , of 2.625 for the 8192 × 8192 -pixel image, and for a resolution of
16,384 × 16,384 pixels the execution time was improved by 2.587. The results obtained for the
Retina image and 2048 × 2048-pixel image are shows in Figure 13.

Figure 11. Results obtained from Mandril input image for the 2048 × 2048-pixel image. (a) Gray
scale distance map, the color gradient is caused by the color table, to better visualize the distances;
(b) Voronoi diagram.

Symmetry 2020, 12, 1808 16 of 20

(a) (b)

Figure 11. Results obtained from Mandril input image for the 2048 × 2048-pixel image. (a) Gray scale
distance map, the color gradient is caused by the color table, to better visualize the distances; (b)
Voronoi diagram.

Figure 12 shows the timeline of the execution of the PRSEDT algorithm and the PBA+ algorithm
for the 2048 × 2048 pixels Mandril input image. As for the Lena image, we can see in Figure 12a that
PRSEDT algorithm requires to instantiate 14 times the PRSEDTkernel (Table 6) to process the whole
image, with their respective memory data transfers of the flag value between the Host and the Device.
However, the total processing time is lower than the PBA+ algorithm (Figure 12b).

(a) (b)

Figure 12. Timeline from Mandril input image for the 2048 × 2048-pixel image showing memory
copy and computing times. (a) PRSEDT profiling; (b) PBA+ profiling.

Finally, for the Retina image (Figure 8c), the proposed method improves the performance of the
PBA+ algorithm in all cases, with speedup factors of 2.871 for the resolution of 512 × 512, of 3.193
in the image of 1024 × 1024 pixels, of 3.099 for the resolution of 2048 × 2048, of 2.047 for the
resolution of 4096 × 4096 , of 2.625 for the 8192 × 8192 -pixel image, and for a resolution of
16,384 × 16,384 pixels the execution time was improved by 2.587. The results obtained for the
Retina image and 2048 × 2048-pixel image are shows in Figure 13.

Figure 12. Timeline from Mandril input image for the 2048× 2048-pixel image showing memory copy
and computing times. (a) PRSEDT profiling; (b) PBA+ profiling.

Finally, for the Retina image (Figure 8c), the proposed method improves the performance of the
PBA+ algorithm in all cases, with speedup factors of 2.871 for the resolution of 512× 512, of 3.193 in
the image of 1024× 1024 pixels, of 3.099 for the resolution of 2048× 2048, of 2.047 for the resolution of
4096× 4096, of 2.625 for the 8192× 8192-pixel image, and for a resolution of 16, 384× 16, 384 pixels the
execution time was improved by 2.587. The results obtained for the Retina image and 2048× 2048-pixel
image are shows in Figure 13.

Figure 14 shows the profiles of the PRSEDT algorithm and the PBA+ algorithm while processing
the 2048 × 2048-pixel Retina input image. Since this image has smaller white areas, the PRSEDT
algorithm only requires five instances of the PRSEDTkernel to process the image. This image shows
the true potential of our algorithm: a simpler algorithm can outperform a more complex algorithm.

Symmetry 2020, 12, 1808 17 of 19

Symmetry 2020, 12, 1808 17 of 20

(a) (b)

Figure 13. Results obtained from Retina input image for the 2048 × 2048-pixel image. (a) Gray scale
distance map, the color gradient is caused by the color table, to better visualize the distances; (b)
Voronoi diagram.

Figure 14 shows the profiles of the PRSEDT algorithm and the PBA+ algorithm while processing
the 2048 × 2048-pixel Retina input image. Since this image has smaller white areas, the PRSEDT
algorithm only requires five instances of the PRSEDTkernel to process the image. This image shows
the true potential of our algorithm: a simpler algorithm can outperform a more complex algorithm.

(a) (b)

Figure 14. Timelines for the 2048 × 2048-pixel Retina input image, showing memory data transfers
and computing times. (a) PRSEDT profiling; (b) PBA+ profiling.

4. Conclusions

In this document, a new parallel algorithm is proposed for the computation of the exact
Euclidean distance map of a binary image. In this algorithm, a new approach is proposed that mixes
CUDA multi-thread parallel image processing with a raster propagation of distance information over
small fragments of the image. The way in which these image fragments are organized, as well as the
coalesced access to global and texture memory, allow better use of the architecture of modern video
cards, which is reflected in the better processing times, both in small and large images.

The PBA algorithm, in 2010, turned out to be a much more competitive algorithm than the other
state-of-the-art approaches at the time. Even now, the PBA algorithm is a reference in the literature
of the research area. On their website, the authors of the PBA+ algorithm show that this variant is
faster than the original algorithm, significantly improving its performance in all cases, particularly in
large-size images with a significant density of feature points.

Therefore, together with the possibility of directly obtaining the source code of this algorithm,
we decided to use the PBA+ algorithm as a reference control to evaluate the proposed approach’s
performance.

Figure 13. Results obtained from Retina input image for the 2048 × 2048-pixel image. (a) Gray
scale distance map, the color gradient is caused by the color table, to better visualize the distances;
(b) Voronoi diagram.

Symmetry 2020, 12, 1808 17 of 20

(a) (b)

Figure 13. Results obtained from Retina input image for the 2048 × 2048-pixel image. (a) Gray scale
distance map, the color gradient is caused by the color table, to better visualize the distances; (b)
Voronoi diagram.

Figure 14 shows the profiles of the PRSEDT algorithm and the PBA+ algorithm while processing
the 2048 × 2048-pixel Retina input image. Since this image has smaller white areas, the PRSEDT
algorithm only requires five instances of the PRSEDTkernel to process the image. This image shows
the true potential of our algorithm: a simpler algorithm can outperform a more complex algorithm.

(a) (b)

Figure 14. Timelines for the 2048 × 2048-pixel Retina input image, showing memory data transfers
and computing times. (a) PRSEDT profiling; (b) PBA+ profiling.

4. Conclusions

In this document, a new parallel algorithm is proposed for the computation of the exact
Euclidean distance map of a binary image. In this algorithm, a new approach is proposed that mixes
CUDA multi-thread parallel image processing with a raster propagation of distance information over
small fragments of the image. The way in which these image fragments are organized, as well as the
coalesced access to global and texture memory, allow better use of the architecture of modern video
cards, which is reflected in the better processing times, both in small and large images.

The PBA algorithm, in 2010, turned out to be a much more competitive algorithm than the other
state-of-the-art approaches at the time. Even now, the PBA algorithm is a reference in the literature
of the research area. On their website, the authors of the PBA+ algorithm show that this variant is
faster than the original algorithm, significantly improving its performance in all cases, particularly in
large-size images with a significant density of feature points.

Therefore, together with the possibility of directly obtaining the source code of this algorithm,
we decided to use the PBA+ algorithm as a reference control to evaluate the proposed approach’s
performance.

Figure 14. Timelines for the 2048× 2048-pixel Retina input image, showing memory data transfers and
computing times. (a) PRSEDT profiling; (b) PBA+ profiling.

4. Conclusions

In this document, a new parallel algorithm is proposed for the computation of the exact Euclidean
distance map of a binary image. In this algorithm, a new approach is proposed that mixes CUDA
multi-thread parallel image processing with a raster propagation of distance information over small
fragments of the image. The way in which these image fragments are organized, as well as the
coalesced access to global and texture memory, allow better use of the architecture of modern video
cards, which is reflected in the better processing times, both in small and large images.

The PBA algorithm, in 2010, turned out to be a much more competitive algorithm than the other
state-of-the-art approaches at the time. Even now, the PBA algorithm is a reference in the literature
of the research area. On their website, the authors of the PBA+ algorithm show that this variant is
faster than the original algorithm, significantly improving its performance in all cases, particularly in
large-size images with a significant density of feature points.

Therefore, together with the possibility of directly obtaining the source code of this
algorithm, we decided to use the PBA+ algorithm as a reference control to evaluate the proposed
approach’s performance.

From the experimentation carried out, we can verify that, in most cases, the proposed algorithm
performs better than the PBA+ algorithm, obtaining speedup factors that even reach 3.193—that is,

Symmetry 2020, 12, 1808 18 of 19

they divide the required processing time by three. There are some situations where the PBA+ algorithm
is better, particularly in images where the largest distance value is relatively large, which occurs in
high-resolution images with a low density of feature points. Even in these cases, the performance loss
of our algorithm is around 20% only in most cases.

Author Contributions: Conceptualization, J.C.E.-L. and J.G.R.-T.; formal analysis, J.H.B.-Z. and M.A.N.-M.;
funding acquisition, V.P.S.-A.; investigation, J.C.E.-L., J.G.R.-T., J.H.B.-Z. and A.D.-M.; methodology, J.C.E.-L.,
J.H.B.-Z. and V.P.S.-A.; project administration, J.C.E.-L. and J.G.R.-T.; software, J.C.E.-L., J.H.B.-Z. and A.D.-M.;
supervision, J.G.R.-T. and A.D.-M.; validation, J.C.E.-L., A.D.-M. and V.P.S.-A.; writing—original draft, J.G.R.-T.,
A.D.-M., M.A.N.-M. and V.P.S.-A.; writing—review and editing, J.C.E.-L., J.H.B.-Z. and M.A.N.-M. All authors
have read and agreed to the published version of the manuscript.

Funding: The APC was funded by Facultad de Ingeniería y Ciencias, Universidad Autónoma de Tamaulipas.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Lo Castro, D.; Tegolo, D.; Valenti, C. A visual framework to create photorealistic retinal vessels for diagnosis
purposes. J. Biomed. Inform. 2020, 108, 103490. [CrossRef] [PubMed]

2. Fabbri, R.; Costa, L.D.F.; Torelli, J.C.; Bruno, O.M. 2D Euclidean distance transform algorithms: A comparative
survey. ACM Comput. Surv. 2008, 40, 1–44. [CrossRef]

3. Ghafoor, A.; Iqbal, R.N.; Khan, S. Image matching using distance transform. In Image Analysis;
Bigun, J., Gustavsson, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2003; Volume 2749, pp. 654–660.
ISBN 9783540406013.

4. de Berg, M.; van Kreveld, M.; Overmars, M.; Schwarzkopf, O.C. Computational Geometry: Algorithms and
Applications; Springer: Berlin/Heidelberg, Germany, 2000; ISBN 9783662042472.

5. Arcelli, C.; di Baja, G.S.; Serino, L. Distance-Driven Skeletonization in Voxel Images. IEEE Trans. Pattern Anal.
Mach. Intell. 2011, 33, 709–720. [CrossRef]

6. Noreen, I.; Khan, A.; Asghar, K.; Habib, Z. A Path-Planning Performance Comparison of RRT*-AB with
MEA* in a 2-Dimensional Environment. Symmetry 2019, 11, 945. [CrossRef]

7. Lam, L.; Lee, S.-W.; Suen, C.Y. Thinning methodologies-a comprehensive survey. IEEE Trans. Pattern Anal.
Mach. Intell. 1992, 14, 869–885. [CrossRef]

8. Rosenfeld, A.; Pfaltz, J.L. Sequential Operations in Digital Picture Processing. J. ACM 1966, 13, 471–494.
[CrossRef]

9. Rosenfeld, A.; Pfaltz, J.L. Distance functions on digital pictures. Pattern Recognit. 1968, 1, 33–61. [CrossRef]
10. Borgefors, G. Distance transformations in digital images. Comput. Vis. Graph. Image Process. 1986, 34, 344–371.

[CrossRef]
11. Akmal Butt, M.; Maragos, P. Optimum design of chamfer distance transforms. IEEE Trans. Image Process.

1998, 7, 1477–1484. [CrossRef]
12. Danielsson, P.-E. Euclidean distance mapping. Comput. Vis. Graph. Image Process. 1980, 14, 227–248.

[CrossRef]
13. Ye, Q.-Z. The signed Euclidean distance transform and its applications. In Proceedings of the 9th International

Conference on Pattern Recognition, Rome, Italy, 14 May–17 November 1988; IEEE Computer Society Press:
Rome, Italy, 1988; pp. 495–499.

14. Leymarie, F.; Levine, M.D. Fast raster scan distance propagation on the discrete rectangular lattice.
CVGIP Image Underst. 1992, 55, 84–94. [CrossRef]

15. Ragnemalm, I. The Euclidean distance transform in arbitrary dimensions. Pattern Recognit. Lett. 1993, 14,
883–888. [CrossRef]

16. Cuisenaire, O.; Macq, V. Fast and exact signed Euclidean distance transformation with linear complexity.
In Proceedings of the ICASSP99 (Cat. No.99CH36258), Phoenix, AZ, USA, 15–19 March 1999; Volume 6,
pp. 3293–3296.

17. Shih, F.Y.; Wu, Y.-T. The Efficient Algorithms for Achieving Euclidean Distance Transformation. IEEE Trans.
Image Process. 2004, 13, 1078–1091. [CrossRef] [PubMed]

18. Shih, F.Y.; Wu, Y.-T. Fast Euclidean distance transformation in two scans using a 3 × 3 neighborhood.
Comput. Vis. Image Underst. 2004, 93, 195–205. [CrossRef]

http://dx.doi.org/10.1016/j.jbi.2020.103490
http://www.ncbi.nlm.nih.gov/pubmed/32640292
http://dx.doi.org/10.1145/1322432.1322434
http://dx.doi.org/10.1109/TPAMI.2010.140
http://dx.doi.org/10.3390/sym11070945
http://dx.doi.org/10.1109/34.161346
http://dx.doi.org/10.1145/321356.321357
http://dx.doi.org/10.1016/0031-3203(68)90013-7
http://dx.doi.org/10.1016/S0734-189X(86)80047-0
http://dx.doi.org/10.1109/83.718487
http://dx.doi.org/10.1016/0146-664X(80)90054-4
http://dx.doi.org/10.1016/1049-9660(92)90008-Q
http://dx.doi.org/10.1016/0167-8655(93)90152-4
http://dx.doi.org/10.1109/TIP.2004.826098
http://www.ncbi.nlm.nih.gov/pubmed/15326850
http://dx.doi.org/10.1016/j.cviu.2003.09.004

Symmetry 2020, 12, 1808 19 of 19

19. Grevera, G.J. The “dead reckoning” signed distance transform. Comput. Vis. Image Underst. 2004, 95, 317–333.
[CrossRef]

20. Paglieroni, D.W. Distance transforms: Properties and machine vision applications. CVGIP Graph. Models
Image Process. 1992, 54, 56–74. [CrossRef]

21. Paglieroni, D.W. A unified distance transform algorithm and architecture. Mach. Vis. Appl. 1992, 5, 47–55.
[CrossRef]

22. Saito, T.; Toriwaki, J.-I. New algorithms for euclidean distance transformation of an n-dimensional digitized
picture with applications. Pattern Recognit. 1994, 27, 1551–1565. [CrossRef]

23. Piper, J.; Granum, E. Computing distance transformations in convex and non-convex domains.
Pattern Recognit. 1987, 20, 599–615. [CrossRef]

24. Verwer, B.J.H.; Verbeek, P.W.; Dekker, S.T. An efficient uniform cost algorithm applied to distance transforms.
IEEE Trans. Pattern Anal. Mach. Intell. 1989, 11, 425–429. [CrossRef]

25. Ragnemalm, I. Neighborhoods for distance transformations using ordered propagation. CVGIP Image
Underst. 1992, 56, 399–409. [CrossRef]

26. Eggers, H. Two Fast Euclidean Distance Transformations in Z2 Based on Sufficient Propagation. Comput. Vis.
Image Underst. 1998, 69, 106–116. [CrossRef]

27. Sharaiha, Y.M.; Christofides, N. A graph-theoretic approach to distance transformations. Pattern Recognit.
Lett. 1994, 15, 1035–1041. [CrossRef]

28. Falcao, A.X.; Stolfi, J.; de Alencar Lotufo, R. The image foresting transform: Theory, algorithms,
and applications. IEEE Trans. Pattern Anal. Mach. Intell. 2004, 26, 19–29. [CrossRef] [PubMed]

29. Cuisenaire, O.; Macq, B. Fast Euclidean Distance Transformation by Propagation Using Multiple
Neighborhoods. Comput. Vis. Image Underst. 1999, 76, 163–172. [CrossRef]

30. Cao, T.-T.; Tang, K.; Mohamed, A.; Tan, T.-S. Parallel Banding Algorithm to compute exact distance transform
with the GPU. In Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games-I3D
10, Maryland, MD, USA, 19–21 February 2010; ACM Press: Washington, DC, USA, 2010; p. 83.

31. Manduhu, M.; Jones, M.W. A Work Efficient Parallel Algorithm for Exact Euclidean Distance Transform.
IEEE Trans. Image Process. 2019, 28, 5322–5335. [CrossRef]

32. de Assis Zampirolli, F.; Filipe, L. A Fast CUDA-Based Implementation for the Euclidean Distance Transform.
In Proceedings of the 2017 International Conference on High Performance Computing & Simulation (HPCS),
Genoa, Italy, 17 July 2017; IEEE: Genoa, Italy, 2017; pp. 815–818.

33. Rong, G.; Tan, T.-S. Jump flooding in GPU with applications to Voronoi diagram and distance transform.
In Proceedings of the 2006 symposium on Interactive 3D graphics and games-SI3D ’06, Redwood City, CA,
USA, 14–17 March 2006; ACM Press: Redwood City, CA, USA; p. 109.

34. Zheng, L.; Gui, Z.; Cai, R.; Fei, Y.; Zhang, G.; Xu, B. GPU-based efficient computation of power diagram.
Comput. Graph. 2019, 80, 29–36. [CrossRef]

35. Schneider, J.; Kraus, M.; Westermann, R. GPU-based real-time discrete Euclidean distance transforms with
precise error bounds. In Proceedings of the Fourth International Conference on Computer Vision Theory and
Applications, Lisboa, Portugal, 5 February 2009; SciTePress—Science and Technology Publications: Lisboa,
Portugal, 2009; pp. 435–442.

36. Honda, T.; Yamamoto, S.; Honda, H.; Nakano, K.; Ito, Y. Simple and Fast Parallel Algorithms for the
Voronoi Map and the Euclidean Distance Map, with GPU Implementations. In Proceedings of the 2017 46th
International Conference on Parallel Processing (ICPP), Bristol, UK, 14 August 2017; IEEE: Bristol, UK, 2017;
pp. 362–371.

37. Cao, T.-T.; Tang, K.; Mohamed, A.; Tan, T.-S. Parallel Banding Algorithm Plus to Compute Exact Distance
Transform with the GPU. Available online: https://www.comp.nus.edu.sg/~{}tants/pba.htm (accessed on
22 September 2020).

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.cviu.2004.05.002
http://dx.doi.org/10.1016/1049-9652(92)90034-U
http://dx.doi.org/10.1007/BF01213529
http://dx.doi.org/10.1016/0031-3203(94)90133-3
http://dx.doi.org/10.1016/0031-3203(87)90030-6
http://dx.doi.org/10.1109/34.19041
http://dx.doi.org/10.1016/1049-9660(92)90050-D
http://dx.doi.org/10.1006/cviu.1997.0596
http://dx.doi.org/10.1016/0167-8655(94)90036-1
http://dx.doi.org/10.1109/TPAMI.2004.1261076
http://www.ncbi.nlm.nih.gov/pubmed/15382683
http://dx.doi.org/10.1006/cviu.1999.0783
http://dx.doi.org/10.1109/TIP.2019.2916741
http://dx.doi.org/10.1016/j.cag.2019.03.011
https://www.comp.nus.edu.sg/~{}tants/pba.htm
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	Results
	Conclusions
	References

