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Abstract: Control of the maglev system is one of the most significant technologies of the maglev
train. The common proportion integration differentiation (PID) method, which has fixed control
parameters, ignores the non-linearity and uncertainty of the model in the design process. In the
actual process, due to environmental changes and interference, the inherent parameters of the system
will drift significantly. The traditional PID controller has difficulty meeting the control requirements,
and will have poor control effect in the actual working environment. Therefore, a radial basis
function (RBF)-PID controller is designed in this article, which can use the information from the
levitation system identified by the RBF network to adjust the parameters of the controller in real
time. Compared with the traditional PID control method, it is shown that the RBF-PID method can
improve the control performance of the system through simulation and experiment.
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1. Introduction

As a new type of transportation with many advantages such as little noise and vibration,
less abrasion and environmental dependence, the maglev train will play a crucial role in future traffic
systems. It meets the needs of comfort, safety, convenience and high efficiency [1]. The controller
of the maglev train is arranged symmetrically on the left and right sides of the train. Normally,
we focus on the controller on one side of the maglev train, and the other side is the same to a certain
extent. With the symmetrical structure in the control system of the maglev train, research on control
technology in the maglev train can be simpler. The control algorithm for maglev is one of the most
important technologies, which often needs to establish an accurate model of the maglev system.
Maria Hypiusova designed the proportion integration differentiation (PID) controller for the magnetic
levitation model with a method accomplished with performance specification in terms of phase margin
and the modification of the Neimark D-partition method, which ensures the desired phase margin [2].
Ishtiaq Ahmad presented the design of the PID controller for a magnetic levitation system based on an
efficient method of tuning controller parameters using the genetic algorithm [3]. Since the maglev
system is a highly non-linear system, traditional PID control with fixed controller parameters will have
poor control performance when the system is interfered with by the external environment changing or
with some internal parameters drifting. In the maglev levitation module, the air gap between the track
and the electromagnet is generally kept unchanged at about 8 mm [4,5], and the deterioration of the
control performance may cause more severe consequences, so a better method is needed.

At present, the research into artificial intelligence, machine learning and big data is in a stage
of rapid development. The intelligent control currently appearing in the field of control provides
new methods and new theories in the research on robots, drones, etc. [6]. Artificial intelligence and
other new theories can solve some difficult problems in the traditional control field [7]. The neural
network built by imitating the neuron structure in the brain can approximate non-linear functions
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to some extent, and it is very helpful for the identification and control of the non-linear system.
Compared with the previous traditional control method, it improves the control performance, and has
a certain robustness to some disturbances and uncertain factors. Many previous studies applied
neural networks to the control of maglev systems, and achieved some results. Dragan Antić [8] used
the NARX (Nolinear Autoregressive with Exogenous Input) neural network model to describe the
magnetic levitation ball system, and gave the input and output models of the non-linear system.
From simulation and experiment, it was verified that the appropriate neural network model can be
used to simulate the magnetic system. Anon and Suebsran [9] proposed an adaptive neural network
control structure, which used the radial basis function (RBF) network to approximate the non-linear
links in the magnetic levitation system in electromagnetic suspension (EMS). Yongzhi Jing et al. [10]
introduced a non-contact inductive gap sensor method for compensating high-speed maglev trains
based on the RBF network. This scheme can accurately estimate the correct air gap distance in a wide
temperature range. The experiment showed that the compensated gap signal can meet the requirements
of the control system. Yougang Sun et al. [11] used the RBF model to estimate the non-linear part
of the mathematical model of the maglev system, and applied the estimation link to the controller
online. The adaptive sliding mode controller based on the RBF model was used for the maglev system,
which experimentally demonstrated that the robustness and anti-interference were satisfactory.

The radial basis function artificial neural network (RBF ANN) proposed in 1988 has the
characteristics of approximation of any non-linear function. Besides, RBF has a simple network
structure and fast speed of network convergence so that it can be applied to real-time control. Therefore,
in this article, the RBF network is used to identify the information of the maglev system for adjusting
parameters of the PID controller to solve the problems of external interference and internal system
parameters changing.

The main contribution of the article is to design the RBF-PID controller and apply it to the maglev
system. By adjusting parameters of the controller in real time, it is numerically and experimentally
demonstrated that the RBF-PID controller has better control performance compared with the traditional
PID method in complex working conditions. We hope the research can promote the combination of
intelligent control technology and levitation control technology.

2. Maglev Levitation System Modeling

The single electromagnet levitation system is the most basic control unit in the levitation module.
Although it is much easier to analyze the model and dynamic characteristics of the single electromagnet
levitation system than the whole vehicle, the research and analysis of the single electromagnet is very
helpful to understand the essential characteristics of the entire levitation system.

Figure 1 shows the model of the single electromagnet and rail. The relative reference dynamic model
considers the motion relationship of the electromagnet relative to the track. For most laboratory-scale
maglev systems, the test track is usually fixed on a structure that is much heavier than the levitation
locomotive; using this model for design and analysis can obtain results with sufficient accuracy [12].

In Figure 1, ϕm is the air gap flux, ϕT is the main pole flux, ϕL is the leakage flux, i(t) is the
control current of the coil, u(t) is the voltage across the control coil, z(t) is the air gap between rail and
electromagnet, mg is the gravity of the electromagnet, F(i, z) is the electromagnetic attraction force.

Besides, there are some other notations in the model. N is the turns of coil, Fm is the magnetic
potential, R is the magnetic circuit reluctance, A is the cross-sectional area of iron core, ψ is the air gap
flux leakage.

Assumptions in the system are:

(1) Ignore the leakage magnetic flux of the winding (ϕL = 0);
(2) Ignore the magnetic resistance in the magnet core and the rail, that is, the magnetic potential is

evenly reduced on the air gap z(t);
(3) Ignore the magnetic saturation characteristics of the materials of the track and the iron core;
(4) The track is regarded as a rigid track; ignore elastic vibration and dynamic deformation;
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(5) The mass distribution of the entire system is uniform, and the module center coincides with the
geometric center.

Figure 1. Schematic diagram of single electromagnet rail model.

Then the air gap flux ϕm is

ϕm ≈ ϕT =
Fm

Rm
=

Ni(t)
2z(t)/(µ0A)

(1)

The voltage equation in the electromagnet winding circuit is

u(t) = Ri(t) + dψ
dt ≈ Ri(t) + d

dt

(
N Ni(t)µ0A

2z(t)

)
= Ri(t) + µ0N2A

2z(t)
di(t)
d(t) −

µ0N2A
2[z(t)]2

dz(t)
d(t)

(2)

F(i, z) at any instant is

F(i, z) =
dWm

dz
=

d
dz

∫
wmdv =

d
dz

(1
2

BHV
)
=

d
dz

(
B2Az
µ0

)
=
µ0N2A

4
[

i(t)
z(t)

]
2

(3)

Here, wm is the magnetic field energy density and Wm is the magnetic field energy in the volume
V. Obviously, the electromagnetic attraction force F and the air gap z(t) have a non-linear relationship,
which is the essential reason why the electromagnetic suspension system is unstable. The equation of
motion of the electromagnet in the vertical direction is:

m
d2z(t)

dt2 = −F(i, z) + mg + fd(t) (4)
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Here, fd(t) is the interference. In summary, the dynamics of the electromagnet suspension system
is completely determined by the following equation:

m
..
z(t) = −F(i, z) + mg + fd(t)

u(t) = Ri(t) + µ0N2A
2

i(t)
z(t) −

µ0N2Ai(t)
2

.
z(t)

[z(t)]2

F(i, z) = µ0N2A
4 [

i(t)
z(t) ]

2
(5)

Rewrite by the state variable:

x1(t) = z(t), x2(t) =
.
z(t), x3(t) = i(t) (6)

Then the dynamic model can be expressed as:
.
x1 = x2
.
x2 = − K

m

[ x3
x1

]2
+ g + fd

m
.
x3 = x3x2

x1
−

Rx1x3
2K + x1u

2K

(7)

Here, K =
µ0N2A

4 .

3. RBF-PID Controller

The RBF network is a three-layer forward network with a single hidden layer. It simulates the
neural network structure of the receptive fields, which is locally adjusted in human brain. The RBF
network is a local approximation network, which has been proved to be able to approximate arbitrary
continuous non-linear functions with arbitrary precision [13].

3.1. The Structure of the RBF Network

The structure of the RBF neural network includes the input layer, hidden layer and output layer.
The schematic diagram is shown in Figure 2:
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As is shown in Figure 2, the input of network is:

x = [x1 x2 x3 . . . xi]
T (8)

The hidden layer output is:
h = [h1 h2 h3 . . . hm]

T (9)

The weight of network is:
w = [w1, w2, . . .wm]

T (10)
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The output of network is:

y(t) = wTh = w1h1 + w2h2 + . . .+ wmhm =
m∑

j=1

w jh j (11)

The activation function used in the hidden layer of the RBF network is a non-negative, non-linear
function with a locally distributed center point. The performance of different activation functions in
the RBF network is quite different, and the selection needs to be analyzed according to actual problems.
Here, the Gaussian function (12) is selected as the activation function of the RBF network.

h j = exp

−
∣∣∣∣∣∣x− c j

∣∣∣∣∣∣2
2b2

j

 (12)

The schematic diagram of the Gaussian function is shown in Figure 3.
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It can be known from the expression of the Gaussian function that there are two key parameters
in the Gaussian function, which are c j and b j, respectively. The selection of these two parameters has
certain principles as follows.

b j represents the width of the Gaussian function of the jth neuron in the hidden layer. The larger
the value of b j, the wider the Gaussian function. The width of the Gaussian function is an important
factor, which has significant effect on the mapping ability of the neural network model.

c j is the coordinate vector of the center point in the Gaussian function of the jth neuron in the
hidden layer. The closer the value of c j is to the input value, the more sensitive the Gaussian function
is to the input. On the contrary, the less sensitive. It is necessary to ensure that c j is within the valid
input mapping range when selected. Under normal circumstances, it is necessary to determine the
coordinate vector of the center point in the Gaussian function by a certain method to ensure that the
Gaussian function operates in a proper range.

In practice, the clustering method is commonly used to determine the coordinate vector c j of the
center point in the Gaussian function. The clustering method is an unsupervised learning method,
which is classified according to the degree of similarity between samples. By clustering the input of
all samples, the center value of each node in the hidden layer is obtained. Usually the value of the b j
parameter is appropriately selected and then verified.

3.2. The Design of the RBF-PID Controller

The RBF network has the advantages of simple structure, fast learning speed and good real-time
performance, so it can be applied to real-time control. The RBF network can be used to identify the
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system information, and apply the information to adjust the parameters of the PID controller online
according to the actual external conditions and working status. This is the basic principle of the
RBF-PID control method, which realizes self-tuning and self-adjustment of parameters in the controller
according to actual information, and improves the robustness and adaptability of the system.

The RBF-PID controller of the single electromagnet levitation system is designed below. The output
of the levitation system is z and the output identified by the RBF network is zm. The input of the RBF
network recognizer is:

x(1) = ∆u(k), x(2) = z(k), x(3) = z(k− 1) (13)

The structure of the RBF network is selected by the method of design first, and then test. Too many
neurons will cause large computational expenses and too little neurons may not reflect the characteristics
of the system properly. Therefore, we choose an appropriate number of neurons in the hidden layer
first, and then the number is determined by the performance of the simulation. The final structure
adopted is 3-8-1. That means the number of neurons in the hidden layer is 8, the number of neurons in
the input layer is 3 and the number of neurons in the output layer is 1.

After completing the structure design of the RBF network, it is necessary to select the training
method of the network parameters. Here, parameters in the RBF network use the gradient descent
method with additional inertial terms for iteration.

The weight of the output w j is:

∆w j = [z(k) − zm(k)]h j (14)

w j(k) = w j(k− 1) + α∆w j + β
[
w j(k− 1) −w j(k− 2)

]
= w j(k− 1) + α[z(k) − zm(k)]h j + β

[
w j(k− 1) −w j(k− 2)

] (15)

Here, α(0 < α < 1) is the learning rate. β(0 < β < 1) is the coefficient of inertia.
The Gaussian function coordinate center of the hidden layer is:

∆c ji = [z(k) − zm(k)]w j
xi − c ji

b2
j

(16)

c ji(k) = c ji(k− 1) + α∆c ji + β
[
c ji(k− 1) − c ji(k− 2)

]
= c ji(k− 1) + α[z(k) − zm(k)]w j

xi−c ji

b2
j

+ β
[
c ji(k− 1) − c ji(k− 2)

] (17)

The width parameter of the Gaussian function is:

∆b j = [z(k) − zm(k)]w jh j

∣∣∣∣∣∣x− c j
∣∣∣∣∣∣2

b3
j

(18)

b j(k) = b j(k− 1) + α∆b j + β
[
b j(k− 1) − b j(k− 2)

]
= b j(k− 1) + α[z(k) − zm(k)]w jh j

∣∣∣∣∣∣x−c j
∣∣∣∣∣∣2

b3
j

+ β
[
b j(k− 1) − b j(k− 2)

] (19)

The following is the design of the parameter adjustment link in the PID controller. The control
error of the gap signal in the levitation system is:

e(t) = z(t) − z0 (20)
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Here, z0 is the reference value of the gap under steady-state conditions. The output expression of
the PID control method according to the current outer loop and the gap inner loop is [12]:

u(t) = kC

[
kpe(t) + ki

∫
e(t) + kd

.
e(t) − i(t)

]
(21)

Here, kC is the proportional parameter of the current outer loop and kp, ki, kd are proportional,
integral, differential parameters of the gap inner loop, respectively. i(t) is the value of current in the
current loop. The output of the incremental PID controller is:

∆u(t) = kC
[
kp[e(t) − e(t− 1)] + kie(t) + kd

[ .
e(t) −

.
e(t− 1)

]
− i(t) + i(t− 1)

]
(22)

According to the above Formula (22), we can get:

∂∆u
∂kp

= kC[e(t) − e(t− 1)] (23)

∂∆u
∂ki

= kC e(t) (24)

∂∆u
∂kd

= kC
[ .
e(t) −

.
e(t− 1)

]
(25)

Due to the large inductance of the electromagnet in the levitation system, if there is no current
loop in the system, there will be a significant lag between the control voltage and the current of the
electromagnet, which has a serious effect on the performance of the levitation control. The main
function of current feedback is to reduce the time constant of the current loop, overcome the influence
of the electromagnet inductance and ensure the response speed of the levitation system. Here, in the
online adjustment of PID parameters according to the RBF network, the parameter of the current loop
kC can be fixed at an appropriate value, which can reduce the difficulty of controller design.

The index performance function of the PID controller is:

E(t) =
1
2
[z(t) − z0]

2 =
1
2

e2(t) (26)

Then we can get:
∂E
∂∆u

= e(t)
∂z
∂∆u

(27)

Using the gradient descent method, we can get the adjustment of PID control parameters:

∆kp = αp
∂E
∂kp

= αp
∂E
∂∆u

∂∆u
∂kp

= αpe(t)
∂z
∂∆u

kC[e(t) − e(t− 1)] (28)

∆ki = αi
∂E
∂ki

= αi
∂E
∂∆u

∂∆u
∂ki

= αie(t)kC
∂z
∂∆u

e(t) (29)

∆kd = αd
∂E
∂kd

= αd
∂E
∂∆u

∂∆u
∂kd

= αde(t)
∂z
∂∆u

kC
[ .
e(t) −

.
e(t− 1)

]
(30)

Here αp,αi,αd are the learning rate factors of each parameter. ∂z
∂∆u is also known as the Jacobian

information of the system, using zm obtained by the RBF network identification system instead of z.
Then we can get:

∂z
∂∆u

≈
∂zm

∂∆u
=
∂
(∑m

j=1 w jh j
)

∂∆u
=

∂

(∑m
j=1 w jexp

(
−

∣∣∣∣∣∣x−c j
∣∣∣∣∣∣2

2b2
j

))
∂∆u

=
m∑

j=1

w jh j
c j − x1

b2
j

(31)
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Because discrete control is used in the actual control, the continuous time variable of the above
formula needs to be converted into discrete variables; Formula (28)–(30) can be rewritten as follows:

∆kp = αp
∂E
∂kp

= αp
∂E
∂∆u

∂∆u
∂kp

= αpe(k)
∂z
∂∆u

kC[e(k) − e(k− 1)] (32)

∆ki = αi
∂E
∂ki

= αi
∂E
∂∆u

∂∆u
∂ki

= αie(k)kC
∂z
∂∆u

e(k) (33)

∆kd = αd
∂E
∂kd

= αd
∂E
∂∆u

∂∆u
∂kd

= αde(k)
∂z
∂∆u

kC
[ .
e(k) −

.
e(k− 1)

]
(34)

By adjusting the parameters of the controller through real-time signals, the changing law of each
parameter in the PID controller can be obtained:

kp = kp0 + αpe(k)
∂z
∂∆u

kC[e(k) − e(k− 1)] (35)

ki = ki0 + αie(k)
∂z
∂∆u

kCe(k) (36)

kd = kd0 + αde(k)
∂z
∂∆u

kC
[ .
e(k) −

.
e(k− 1)

]
(37)

In order to ensure the stability of the maglev system, the adjustment range of the RBF network
weight is limited, so that the control parameters can be changed within an appropriate range to form a
stable RBF-PID controller. Ensure that the parameters of the controller meet the requirement as follows:

kp min ≤ kp ≤ kp max (38)

ki min ≤ ki ≤ ki max (39)

kd min ≤ kd ≤ kd max (40)

Here, kp min, kp max, ki min, ki max, kd min, kd max are the minimum and maximum boundary values
of parameters that satisfy the system stability in the PID controller relatively. The specific value can be
obtained experimentally.

According to the process of the controller design, the block diagram of the entire system using the
RBF-PID controller is shown in Figure 4.
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4. Simulation

After the design of the RBF-PID controller, a model based on the levitation system in the maglev
train is established to numerically verify the effect of the controller. The parameters in the simulation
system are shown in the following Table 1.

Table 1. Table of parameters in single electromagnet simulation system.

Symbol Quantity Value

A Cross-sectional area of iron core 0.01848 m2

Rm Coil resistance 0.55 Ω
µ0 Permeability of air 4π× 10−7

N Number of turns of coil 360
M Quality of electromagnet system and load 1100 kg

The PID method is commonly used in the control of the maglev train and has some achievements
with its advantages. The research in the article mainly aims to improve the performance of the PID
controller by adjusting parameters in real time with the RBF network. By comparing the experimental
effects of the original PID method and the RBF-PID method, the advantages of the new method are
highlighted. The initial values of the RBF-PID controller parameters remain consistent with the PID
parameters. Here, the current outer loop and gap inner loop are used in the PID method as in Formula
(21). Parameters of the PID controller are fixed and optimized by genetic algorithm [14].

4.1. Simulation of Square Wave Tracking

Due to changes in the actual working environment, the track of the maglev train will have
irregularities such as track joints, which will affect the safety and comfort of the train. This is a common
external environmental interference in levitation systems, so it is necessary to ensure that the control
algorithm in the levitation module has a better control effect for such situations. Here, the square wave
response experiment of the levitation module is used to approximate the gap change in the track.

In the simulation, the stable gap was set at z0 = 9 mm. When the system stabilized at the
equilibrium position at t = 3 s, by superimposing a square wave signal with an amplitude of ±0.5 mm
and a period of 5 s on the stable gap, the gap response of the two control methods is shown in Figure 5.
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It can be seen from Figure 5 that the peak value is 9.543 mm of the gap signal in the RBF-PID
control method, which is significantly smaller than that of 9.656 mm in the traditional PID control
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method, and the time for the gap signal to recover to the stable state is about 0.4 s faster than that of the
PID control method. That means when some sudden change in the track happens, the gap signal under
the RBF-PID control method has a smaller fluctuation range and a shorter fluctuation time. In this
case, applying the RBF-PID control method is shown to adjust the PID control parameters in real time;
the levitation system has a better control effect on the change of the track than the original PID method.
Figure 6 demonstrates changes of control parameters in square wave tracking of the RBF-PID method.
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4.2. Simulation of Load Quality Changing

The maglev train is used as a means of transportation for people, and the number of passengers
will cause a change of the load of the train. Actually, passengers getting on and off the vehicle bring
about a sudden change in the load weight in the levitation system; this situation can be regarded as
a change in the internal parameters of the system. This is in order to ensure the comfort and safety
of the maglev train. The levitation system needs to have a better control effect on the change of the
load quality.

In the simulation, the quality of the simulation model of the levitation system was changed from
1100 kg to 1300 kg at t = 8 s under the condition of stable state, and the quality was changed from
1300 kg back to 1100 kg at t = 8.25 s. With the actual load change on the train, the response of the
levitation system is shown in Figure 7.
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It can be seen from the result that the RBF-PID control method has a maximum gap fluctuation
of 9.239 mm in the case of a sudden change in system load, which is significantly smaller than the
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maximum fluctuation 9.322 mm of the original PID control method, and the time it takes to return to
stable state is about 0.5 s faster than the original PID control method. In the case of a sudden change
in system load, the RBF-PID control method is shown to have a smaller fluctuation range and faster
speed to return to the stable state. With parameter changing in the controller in real time, the control
performance is improved. Figure 8 shows the changes of control parameters of the RBF-PID control
method in simulation.
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5. Experiments

5.1. Introduction of the Small Levitation Platform

After completing the simulation of the levitation system based on the RBF-PID control method,
further experiments are needed on the real levitation system to verify the effect of the control algorithm.
The small levitation platform is a prototype of the levitation system in the maglev train, and the
sampling frequency of the control program in the platform is 4000 Hz. It is often used for testing new
control methods of the levitation system. The processor is PowerPC MPC 8260. The eddy current
displacement sensor of TR 81 series is applied as the gap sensor. The power supply is −15 V and
+15 V, the linear measurement range is 0~15 mm and the range of output voltage is 0~5 V. Mutual
inductance current sensor is selected to measure the current signal. The range of the power supply
is −15 V and +15 V, the measurement range is 0~60 A and the range of output current is 0~30 mA.
The small levitation platform is shown in Figure 9.
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Because the small levitation platform is a prototype of the levitation system in the maglev train,
parameters of the small levitation platform are different from parameters in simulation. Parameters of
the small levitation platform are shown in Table 2.

Table 2. The table of parameters in the small levitation platform.

Symbol Quantity Value

A Cross-sectional area of iron core 0.0014 m2

Rm Coil resistance 2 Ω
z0 Stable levitation gap 6.5 mm
N Number of turns of coil 663
M Mass of electromagnet system and load 12 kg

5.2. Hardware Implementation of RBF Network

Although the structure and calculation method of the RBF network are relatively simpler than
other networks, there are still some difficulties in real-time control processing, especially when the
dimensionality of the input data and the number of hidden layer nodes are too large—the speed of
calculation cannot meet the requirement of real-time control.

As we can see in Formula (12), the Gaussian function contains an exponential function with
natural logarithm as the base. In embedded systems, the processing of floating-point numbers takes
up too much hardware resources and computing time. The calculation of the exponential function
directly requires a longer calculation time. Generally speaking, any complex calculations can be
finally converted into multiplication and addition operations. In general hardware, the basic forms of
operations are multiplication and addition operations. Therefore, converting the operation in the RBF
network into multiplication and addition operations can better improve the operation efficiency, and it
is also necessary to ensure a certain degree of accuracy.

Therefore, the method of piecewise polynomial fitting is applied here. By dividing the function
into different ranges, a simple function form is used for fitting in different ranges. Since addition
and multiplication are the most basic operations in hardware, the polynomial function is used for
fitting. By using the function fitting toolbox in Matlab with the principle of the least squares algorithm,
the highest degree of polynomial is chosen as 3 to fit the exponential function in the Gaussian function.
The specific fitting situation can be seen in Table 3.
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Table 3. The table of polynomial piecewise fitting function.

Range Polynomial Function MSE

(−1, 0) y = 0.1025x3 + 0.4625x2 + 0.9921x + 0.9996 1.219× 10−4

(−2,−1) y = 0.03771x3 + 0.2833x2 + 0.8184x + 0.9405 4.484× 10−5

(−3,−2) y = 0.01387x3 + 0.1458x2 + 0.5511x + 0.7651 1.65× 10−5

(−4,−3) y = 0.005103x3 + 0.06896x2 + 0.3252x + 0.543 6.069× 10−6

(−7,−4) y = 0.0007708x3 + 0.01511x2 + 0.1003x + 0.2269 1.088× 10−5

(−9,−7) 0.0004 /
(−∞,−9) 0 /

The specific fitting error can be seen in Figure 10.
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It can be seen from Figure 10 that, using the method of piecewise polynomial function for fitting,
the final absolute value of the error of each point is basically less than 4 × 10−4. It shows that the
method of piecewise polynomial fitting is feasible, and the accuracy of fitting can be guaranteed.
In the hardware microcomputer of the controller, each coefficient of the polynomial function used for
fitting is stored in a certain data format, and can be directly called during the actual program running.
The method of piecewise polynomial fitting can greatly improve the computational efficiency of the
neural network in the hardware system, and ensure the real-time performance of the RBF-PID controller.
Therefore, in the hardware implementation of the RBF-PID control algorithm, the exponential function
in the RBF network function is replaced by the piecewise polynomial function.

5.3. Experiment of Square Wave Tracking

This is similar to the simulation, superimposing a square wave signal with an amplitude of
±0.5 mm and a period of 4 s on the stable gap in the experiment. Figure 11 shows the gap response of
two control methods; it is clearly shown that the control performance of the RBF-PID method is better
in square wave tracking than that of the PID control.
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5.4. Experiment of Load Quality Changing

In the experiment of load quality changing, after the system gets a stable levitation state, a 2 kg
counterweight is suddenly added to the original load, and then the counterweight is removed after
about 5 s, and this process is repeated a few times. Figure 12 shows the gap response of two control
methods; it can be seen from the result that the fluctuation of the system in the RBF-PID method is
6.686 mm, which is smaller than 6.727 mm of the PID control.
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6. Conclusions

This paper mainly discussed the application of the RBF-PID control method in the maglev system.
The PID control method with fixed parameters may have poor control effect due to external interference
and changes of internal parameters. Therefore, by using the ability of describing any non-linear system,
the RBF network was applied in the adjustment of parameters in the controller to improve the control
performance. The combination of the RBF network and the PID control can solve the control problem
of the non-linear system more effectively. After completing the analysis and design of the RBF-PID
controller, simulations were carried out with the model of the maglev system; the traditional PID
control method was compared with the RBF-PID method. By simulating the conditions of square wave
tracking and load quality changing, it was notably shown that the RBF-PID method has better control
performance with parameters of controller changing in real time. Then experiments were carried
out on the small levitation platform to verify the result of simulation. It was demonstrated that the
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RBF-PID method has a better control effect in dealing with external interference and internal parameter
changing in the maglev system.
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