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Abstract: Without the mass-energy equivalence available on Minkowski spacetime M, it is not
possible on 4-dimensional non-relativistic Galilei/Newton spacetime G to combine 3-momentum
and total mass-energy in a single tensor object. However, given a fiducial frame, it is possible to
combine 3-momentum and kinetic energy into a linear form (particle) or (1, 1) tensor (continuum) in
a manner that exhibits increased unity of classical mechanics on flat relativistic and non-relativistic
spacetimes M and G. As on M, for a material continuum on G, the first law of thermodynamics
can be considered a consequence of a unified dynamical law for energy-momentum rather than an
independent postulate.

Keywords: Lorentz invariance; Galilei invariance; spacetime; continuum mechanics; fluid dynamics;
first law of thermodynamics

1. Introduction

Traditional points of departure for non-relativistic and relativistic classical mechanics (e.g., [1–3])
feature distinct pictures of space and time. The traditional non-relativistic picture is that tensor fields
on 3-dimensional Euclidean position space E3 evolve as functions of absolute time t. In contrast,
underlying the relativistic picture is a unified 4-dimensional spacetime; for present purposes let this
be flat Minkowski spacetime M. Tensor fields on M embody the history of the system—a kind of
static, eternal reality governed by equations more in the character of constraints than evolution. On M,
the 3-momentum and energy that are separate in the non-relativistic case are combined in a single
geometric object, the 4-momentum.

The attitude towards the traditional non-relativistic and relativistic formulations of classical
mechanics is often limited to deriving the former as a limit of the latter. As 4-dimensional equations
are split into 3 + 1 dimensions, unified balance of 4-momentum on M is decomposed into balance of
3-momentum and balance of energy. Then the c→ ∞ (infinite speed of light) limit of the relativistic
equations in 3 + 1 dimensions coincides with the non-relativistic equations.

It is intriguing to consider the extent to which the conceptual relationship can be exploited in the
reverse direction, by reformulating non-relativistic physics in light of the relativistic perspective:
Can the non-relativistic evolution equations on position space also be understood as constraint
equations on spacetime?

The answer has been yes, to a certain extent. At least by the 1920s, Weyl [4] and Cartan [5–7] considered
the combination of Euclidean position space E3 and Euclidean absolute time E into a non-relativistic
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4-dimensional spacetime. Works by Toupin and Truesdell [8,9], Trautmann [10,11], and Küntzle [12]
bear mention as example entry points into what has been a rather mathematically-oriented literature
across the intervening decades. A recent work of mine [13] compares—with additional discussion and
references—Minkowski spacetime M and what I call Galilei/Newton spacetime G, both of which are
flat 4-dimensional manifolds, and indeed 4-dimensional affine spaces. That work illustrates that kinetic
theory on spacetime provides an intuitive understanding of fluid dynamics from a mostly 4-dimensional
perspective on both relativistic and non-relativistic spacetimes, expressed by the same 4-dimensional
equations for the fluxes of baryon number, 3-momentum, and kinetic+internal energy on both M and G.

However, a perceived inability to unite 3-momentum and energy in a single tensor in the
non-relativistic case has remained notable. In the 1970s Duval and Künzle [14] used a variational
principle to derive for a non-relativistic material continuum a tensor unifying stresses and internal
energy flux, but it excludes mass flow; its 4-divergence does not vanish in the absence of an external
4-force, but is equated to a bulk acceleration term. More recently, de Saxcé and Vallée constructed
a tensor of vanishing divergence that includes the non-relativistic kinetic energy of bulk motion,
and exhibits the transformation properties of the latter under Galilei boosts, by assembling an
“energy-momentum-mass-tensor” on a 5-dimensional extended non-relativistic spacetime [15–17].
The extra dimension, and the associated transformation of this object in part under the Bargmann
group (a central extension of the Galilei group), are necessary to capture the transformation properties
of non-relativistic kinetic energy.

Here I present a tensor equation on 4-dimensional spacetime that encompasses both the
3-momentum and kinetic+internal energy of a material continuum; consists of a vanishing divergence
in the absence of external 4-force per baryon; and does so in a conceptually unified way in both the
relativistic and non-relativistic cases, that is, on both M and G. This is an equation for the divergence of
what I call the “relative energy-momentum flux tensor” S (the adjective “relative” betrays the fact that it
is defined in terms of a fixed family of fiducial frames, in such a way that the transformation properties
of kinetic energy are not manifest). A key point is that S is a (1, 1) tensor, with components Sµ

ν,
satisfying a linear form equation—in contrast to the (2, 0) “total inertia-momentum flux tensor” (a.k.a.
energy-momentum or stress-energy tensor) T, with components Tµν, satisfying a vector equation.
What happens is that Galilei invariance forbids energy contributions to 4-momentum and a time
component of 4-force when these are considered as vectors. However, this restriction does not apply
to 4-momentum and 4-force regarded as linear forms. In this work I motivate S and its governing
equation on both M and G.

The approach taken here is to use relativistic mechanics on M with its natural 4-dimensional
perspective as a starting point, and discover what 4-dimensional perspective can make sense on
non-relativistic spacetime G by considering what happens as c→ ∞. As the speed of light c ultimately
plays no role in non-relativistic mechanics, there is irony in the fact that it plays a role in constructing a
non-relativistic approach, in the negative sense that the tensors on G that emerge from the exercise
can only be those from which c disappears. Such can be the nature of backporting insights from a
superseding theory into the one it supersedes.

2. Relativistic Classical Mechanics on Minkowski Spacetime

Recall some aspects of the geometry of Minkowski spacetime M before outlining geometric
treatments of classical particle and continuum mechanics thereon.

2.1. Minkowski Spacetime M

On Minkowski spacetime M the history of a particle of mass m is a worldline X (τ) parametrized
by the proper time τ measured by a clock riding along with the particle. The tangent vector to
the worldline, U = dX (τ)/dτ, is the 4-velocity of such a “comoving observer.” It satisfies the
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normalization g(U, U) = −c2, where g is the spacetime metric. The components of g and its inverse
←→g are gathered by the 3 + 1 block matrices

g =

(
−c2 0

0 1

)
, ←→g = g−1 =

(
−1/c2 0

0 1

)
(1)

in any inertial frame.
Select a fiducial frame, a global inertial frame on M. Associated with this frame is a family of

“fiducial observers” whose uniform 4-velocity field w = ∂/∂t (also normalized as g(w, w) = −c2) is
the tangent vector field to the coordinate lines of the global time coordinate t. The level surfaces St of
the global time coordinate t foliate M into affine hyperplanes; these represent 3-dimensional position
space with Euclid geometry embodied by a 3-metric γ, and are associated with a uniform linear form
t = dt = ∇t. With the fiducial frame components of w and t gathered by 4-column and 4-row

w =

(
1
0

)
, t =

(
1 0

)
(2)

respectively (in 3 + 1 block form), it is clear from Equation (1) that t is related to w by

t = − 1
c2 g ·w = − 1

c2 w. (3)

In this work the dot operator (·) introduced in Equation (3)—which reads tµ = −gµα wα/c2 = −wµ/c2

in components—never denotes a scalar product of vectors, but only contraction with the first available
index. Instead, a scalar product of vectors will always be expressly given in terms of a metric tensor, for
instance g(w, w) or γ(v, v). The linear form w is the index-lowered metric dual of w, with components
wµ = gµα wα.

The 3-metric γ and its index-raised siblings ←−γ , −→γ and ←→γ on St, with components γij, γj
i =

γi
j = δ

j
i , and γij respectively, can also be regarded as tensors on M (with components γµν, γν

µ,
γµ

ν, and γµν) that behave as projection tensors to St. (Warning: this convention on over-arrows
for index-raising differs from that in [13]). These can be expressed in terms of the metric tensor g,
inverse←→g , and identity tensor δ =←−g = −→g on M:

γ = g +
1
c2 w⊗w, ←→γ =←→g +

1
c2 w⊗w, (4)

←−γ = δ +
1
c2 w⊗w, −→γ = δ +

1
c2 w⊗w. (5)

The components of these tensors all transform differently under Lorentz transformations.
However, in the fiducial inertial frame the single matrix

γ =←−γ = −→γ =←→γ =

(
0 0

0 1

)
(6)

gathers the components of all of them.
As the projection tensors to St have vanishing contractions with w and/or w, they can be

used to decompose tensors on M into spacelike and timelike pieces. For instance, the 4-velocity U
decomposes as

U = Λv (w + v) , (7)

in which Λv =
(
1− γ(v, v)/c2)−1/2 is the Lorentz factor following from the normalization, and the

3-velocity v defined from the projection Λvv = ←−γ ·U = U · −→γ is a vector on M that happens to be
tangent to St (and therefore as needed could also be regarded as simply a vector on St).
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We will also need decompositions relative to U. Such decompositions allow specification of
material properties by defining quantities measured by a comoving observer. They are accomplished
at any point X of M with the projection tensors

h = g +
1
c2 U ⊗U,

←→
h =←→g +

1
c2 U ⊗U, (8)

←−
h = δ +

1
c2 U ⊗U,

−→
h = δ +

1
c2 U ⊗U (9)

to a local hyperplane SU(X ) that is the orthogonal complement of U(X ).
Note also projections of the spacetime covariant derivative operator ∇. We have

∂( )

∂t
= w ·∇( ), (10)

D( ) = −→γ ·∇( ) (11)

for the projections relative to w of the spacetime covariant derivative on M, where D is the covariant
derivative on St associated with its Euclidean 3-metric γ. Alternatively

d( )
dτ

= U ·∇( ), (12)

D( ) =
−→
h ·∇( ) (13)

are the projections relative to U.

2.2. Particle Mechanics on M

Consider now the dynamics of a relativistic material particle. In relativistic mechanics the vector

I = m U (14)

(or Iµ = m Uµ) and its metric dual, the linear form I = m U, where U = g · U (or Iµ = m Uµ,
where Uµ = gµα Uα), are both known as the energy-momentum, or simply 4-momentum. They are
represented by a 4-column and 4-row respectively:

I =

(
m Λv

m Λv v

)
, I =

(
−mc2 Λv m Λv v

T
)

(15)

(see Equations (1), (2), and (7); v is the 3-column gathering the components of v on St). The spatial
parts of both of these consist of the 3-momentum, but their time components differ: the contravariant
component I0 = m Λv is the relativistic inertia, while the covariant component I0 = −mc2 Λv is
the (negative of) relativistic total energy, including rest mass. This distinction between inertia and
energy is a technicality in relativistic mechanics, in which metric duality unifies the two concepts.
However, the distinction remains important in non-relativistic mechanics, which certainly has inertia,
but in which the concept of rest mass does not exist (mc2 is nonsense as c→ ∞). Therefore, in order
to treat the relativistic and non-relativistic cases in parallel in Section 4, in this paper I use the
non-standard nomenclature “inertia-momentum vector” for I, which exists on both M and G;
and “total energy-momentum form” for I, which exists only on M. It will turn out in Section 4
that what I call a “relative energy-momentum form” P, which excludes rest mass, does not depend on
c and therefore can be defined on both M and G.

Returning to the relativistic case, linear form and vector versions of Newton’s second law for
particles on M read

d
dτ

I = Υ,
d

dτ
I =
−→
Υ (16)
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in terms of the 4-force linear form Υ and vector
−→
Υ = Υ · ←→g (that is, Υµ = Υα gαµ). The 4-force vector

can be decomposed relative to either U or w,

−→
Υ =

θ

c2 U +
−→
f =

Θ
c2 w +

−→
F , (17)

with heating rates per baryon and 3-force vectors θ,
−→
f or Θ,

−→
F measured by comoving or fiducial

observers respectively, projected out by contraction with U,
−→
h or w,−→γ . Note that θ = −U · −→Υ = 0 for

an “elementary” particle of constant rest mass m. Note that the 4-force Υ—and 3-forces f (according to
a comoving observer) and F (according to a fiducial observer)—are here taken to be most naturally
regarded as linear forms. Regarding force primarily as a linear form is more natural because it allows
it to be contracted with displacement or velocity (vectors both) to yield work or power without the
need for a metric.

2.3. Continuum Mechanics on M

Turning to a material continuum, its classical mechanics onM are governed by the spacetime constraints

∇ · N = 0, (18)

∇ · T = n
−→
Υ (19)

on the baryon number flux vector N and total inertia-momentum flux tensor T , a (2, 0) tensor, where ∇
is the spacetime covariant derivative operator. There is of course more than one way to arrive
at these relativistic conservation laws. One approach is to derive the mechanics of one kind of
material continuum—a gas of classical particles—from relativistic kinetic theory (e.g., [13]). This is
a very direct and “hands-on” way of developing intuition for the physical meaning of the several
scalars and tensors into which N and T can be decomposed. However, not all material continua
are gases, and the kinetic theory of classical particles is not a fundamental physical theory. In fact
Equations (18) and (19) do not depend on any particular microphysical model, and can be motivated on
more general grounds (e.g., [2]). Here I present a modified version of this latter approach, streamlined
with physical reasoning.

The idea of a material continuum is that there is some connected region of measurable “stuff,”
a quantity of matter, which can be neither created nor destroyed. Understanding that mass is
not conserved in a relativistic setting, take this quantity of matter to be baryon number instead.
In mathematizing the conservation of baryon number, Equation (18) amounts to a description of the
kinematics of the material continuum. As a balance equation for inertia-momentum (equivalent
to energy-momentum on M if not on G), Equation (19) characterizes the dynamics of the material
continuum: it is, for infinitesimal elements of the continuum, what the relativistic version of Newton’s
second law in Equation (16) is for point particles.

Consider what Equation (18) signifies for infinitesimal elements of the material continuum,
thereby relating the baryon number flux N to a 4-velocity field U of comoving observers and the
baryon number density n measured by those observers. Let each element consist of a particular piece of
material with fixed baryon number N , confined to an infinitesimal region of 3-space whose spacetime
position and 3-volume V vary with the flow of the continuum on spacetime, defined by N. As with
the particles discussed in Section 2.2, each material element has a worldline X (τ) with tangent vector
U at each point. Taken together, the wordlines of the continuum elements compose a congruence of
curves filling M, giving rise to a 4-velocity field U thereon. This field is defined by its alignment with
N, that is,

N = n U, (20)
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where the scalar field n = N/V is the baryon number density measured by an observer riding
along with a fluid element (“comoving observer”). Using Equations (12) and (20), baryon number
conservation as expressed by the vanishing divergence in Equation (18) is equivalent to

1
V

dV
dτ

= ∇ ·U, (21)

relating the rate of change of a continuum element’s 3-volume V along its worldline to the local spread
of neighboring elements’ worldlines, as represented by the divergence of U.

Having defined a comoving velocity field U by the flow of conserved material (here taken to
be baryon number), the flux of inertia-momentum T can be decomposed into quantities measured
by the associated comoving observers—that is, with respect to the infinitesimal material elements,
characterizing intrinsic material properties apart from their motion.

Begin consideration of the flux of inertia-momentum T by separating that portion of
inertia-momentum which corresponds to the very existence of the matter (baryon number) constituting
the material continuum:

T = n U ⊗ I −−→Σ . (22)

Here I = m U is the particle inertia-momentum vector introduced in Equation (14), with m now
interpreted as the mass per baryon. (Separation of baryon rest mass is somewhat artificial in a
relativistic context, but is physically insightful and will prove important in back-porting relativistic
insights to the non-relativistic case. In practice the baryon mass m may reflect a variable average in
allowance of multiple nuclear species, or may be set to a reference constant, with energy associated with
nuclear composition changes included in the internal energy density ε to be introduced shortly [18].)
In the first term of Equation (22), the vector I—the second factor of the tensor product—represents
the intrinsically baryonic portion of inertia-momentum per baryon; meanwhile, the first factor of the
tensor product represents the fact that this inertia-momentum per baryon moves in the direction n U,
being carried along as an intrinsic property of the material element itself. Thanks to Equations (12),
(14), (18), (20), and (22), the inertia-momentum balance expressed in Equation (19) is equivalent to

n
dI
dτ

= n
d

dτ
(m U) = n

−→
Υ +∇ · −→Σ . (23)

This is Newton’s second law for an infinitesimal element of the material continuum, governing the
curvature of its 4-velocity U. In addition to the body 4-force n

−→
Υ , the divergence ∇ · −→Σ describes the

net surface 4-force from neighboring continuum elements. If the 4-stress
−→
Σ vanishes, Equation (23)

manifestly reduces to Equation (17), Newton’s second law for a relativistic particle.
Note that the 4-stress

−→
Σ appearing in Equation (22)—which distinguishes an infinitesimal element

of a material continuum from a mere particle—has an index raised in order to include it in a (2, 0)
tensor equation: an important point of this paper is that the 4-stress is to be regarded most naturally as
a (1, 1) tensor, so that in Equation (22) it appears as

−→
Σ = Σ · ←→g (that is, Σµν = Σµ

α gαν). A flux is a
“vector-type” (upper index) entity, while inertia-momentum and energy-momentum are respectively of
“vector-type” (upper index) and “linear-form-type” (lower index), as discussed in Section 2.2. Thus the
flux of inertia-momentum T is a (2, 0) tensor, while the flux of energy-momentum is a (1, 1) tensor,
as mentioned in Section 1 and to be elaborated in Sections 3 and 4.

While Equations (19), (22), and (23) provide an initial understanding of the relationship of
inertia-momentum balance to the motion of an individual continuum element, further understanding
of the 4-stress

−→
Σ is needed. This is obtained from the observation that an element of a material

continuum is distinguished from a particle by the fact that, as a piece of matter with non-vanishing
(if infinitesimal) extent, it is to be regarded as a tiny thermodynamic system in and of itself. Recognizing
that all forms of energy contribute to inertia in relativity, and that the thermodynamic internal energy
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is (like baryon mass) an internal property of a continuum element carried along with its motion in the
direction n U, continue the dissection of T by rewriting Equation (22) as

T = n U ⊗ I + n U ⊗ ε

c2n
U −−→Σ ′ (24)

= n U ⊗
(

m +
ε

c2n

)
U −−→Σ ′. (25)

Here ε is the internal energy density, so that the middle term of Equation (24) separates from the
4-stress

−→
Σ the contribution of a continuum element’s internal energy to the flux of inertia-momentum

inherent to its motion. This completes isolation of the “time-time” portion of T .
The remaining part of the 4-stress tensor describes another consequence of a continuum element’s

(infinitesimally) extended nature: the inertia-momentum that flows through the boundaries of the
infinitesimal 4-volume swept out by the element’s 3-volume V in time dτ. The purely spatial part of−→
Σ (and

−→
Σ ’) is well-known as the 3-stress −→ς , the 3-force exerted on the walls of a continuum element

by neighboring elements, leaving

−→
Σ ′ = n U ⊗ ε

c2n
U −−→Σ ′′ −−→ς . (26)

With the “time-time” and “space-space” pieces accounted for, what remains in
−→
Σ ′′ are the “time-space”

and “space-time” pieces. Recall from the properties of relativistic spacetime (e.g., in general relativity)
that T is symmetric; this is consistent with the manifest symmetry of the U ⊗U term, and with the
familiar fact that the 3-stress −→ς is symmetric (as a consequence of angular momentum conservation).
Recognizing that

−→
Σ ′′ must also be symmetric, and noting that we have not yet accounted for heat

exchange between neighboring material elements, take

−→
Σ ′′ = −U ⊗ q

c2 −
q
c2 ⊗U, (27)

interpreting q as the 3-flux of internal energy out of a continuum element, orthogonal to U. (Just as
angular momentum conservation and the resulting symmetry of −→ς follow from the rotational
invariance of 3-space and the material continuum, so also invariance of M under “pseudo-rotations”
or Lorentz boosts underlies the symmetry of

−→
Σ ′′.) For the 4-stress as a whole, write

−→
Σ = −n U ⊗ ε

c2n
U − n U ⊗ q

c2n
− q⊗ U

c2 +−→ς . (28)

The presence of two terms involving q, forced upon us by the symmetry of the inertia-momentum
tensor T and therefore the 4-stress tensor

−→
Σ , represents the dual role it plays in the relativistic case.

In one term (the third in Equation (28)), it represents internal energy flux. In the other (appearing
with factors of n in the second term of Equation (28)), it constitutes an additional thermodynamic
contribution to the 3-momentum carried by a continuum element in the direction n U. In connection
with this last insight, it makes sense to define an “internal energy flux vector” Ξ by

Ξ = ε U + q, (29)

in terms of which the 4-stress reads

−→
Σ = −n U ⊗ Ξ

c2n
− q⊗ U

c2 +−→ς , (30)

and Equation (22) for the inertia-momentum tensor becomes

T = n U ⊗
(

I +
Ξ

c2n

)
+ q⊗ U

c2 −
−→ς . (31)
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In physical terms, this separates the inertia-momentum per baryon I + Ξ/c2n carried by the
infinitesimal elements of the material continuum themselves from the heat and momentum fluxes
passing through their surfaces, as represented by the last two terms in Equation (31).

One orthogonal decomposition of the 4-stress—that relative to comoving observers with 4-velocity
U—is given in Equation (28), but it is not the only decomposition of potential interest. The internal
energy density ε and 3-flux q, and the 3-stress ς, measured by a comoving observer can be projected
out from

−→
Σ by the appropriate contractions with U and

−→
h . Alternatively,

−→
Σ can be decomposed as

−→
Σ = −w⊗ E

c2 w−w⊗ Q
c2 −

Q
c2 ⊗w +−→σ (32)

in terms of internal energy density E and 3-flux Q, and 3-stress σ, measured by a fiducial observer and
projected out by contractions with w,−→γ ; these will include contributions from the bulk motion of the
continuum relative to the fiducial observers.

Decomposed to 3+ 1 dimensions and in the limit c→ ∞, Equations (18) and (19) reduce to various
non-relativistic formulations. These are obtained with the decompositions in Equations (7), (14), (17),
(20), (22), (28), (32), and projections along w or U and perpendicular to them using Equations (4) and
(5) or (8) and (9) respectively. In the non-relativistic limit as c→ ∞,

d( )
dτ

→ d( )
dt

, (33)

D( ) → D( )− t (v · D)( ), (34)

where
d( )
dt

=
∂( )

∂t
+ v · D( ) (35)

is the non-relativistic material derivative.

3. Galilei/Newton Spacetime, Baryon Conservation, and Mass Conservation

While index raising and lowering via the spacetime metric preserves information on M,
the geometry of Galilei/Newton spacetime G provides only information-destroying projection
operators to go from (1, 1) tensors to (2, 0) or (0, 2) tensors. This has no major consequence for
baryon conservation, which is governed by the spacetime divergence of the vector field N. However,
on G the (2, 0) stress-inertia tensor T loses information about internal energy and stresses, so that
a timelike projection of its divergence reduces to mass conservation rather than a full expression of
energy conservation as on M.

3.1. Galilei/Newton Spacetime G and Its Geometric Consequences

While Galilei/Newton spacetime G—the non-relativistic analogue of Minkowski spacetime
M—has a qualitatively distinct geometric character, in many ways it can be understood as the c→ ∞
limit of the latter [13]. The absolute object on M governing causality is the metric g (with inverse
←→g ), which embodies the lightcones. As c → ∞ these lightcones are “pressed down” into fixed
spatial hyperplanes St with a unique linear form field t embodying absolute time. A spacetime metric
no longer makes sense (see Equation (1))—G is not a pseudo-Riemann manifold—but the inverse
metric←→g limits sensibly to the degenerate inverse “metric”←→γ (compare Equations (1), (4) and (6)),
whose Galilei invariance is the remnant of Lorentz invariance that survives the limit. The projection
tensors γ,←−γ , and −→γ also exist (now regarded as separate tensors on G unrelated by spacetime metric
duality), and the 4-vector field w has the same role associated with a fiducial inertial frame. While the
contraction t ·w = 1 still holds, the metric relationship←→g · t = −c−2w on M degenerates to←→γ · t = 0
on G.
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The congruence of worldlines of continuum elements exists on G, with tangent vector field
U. This 4-velocity is still related to baryon number flux by Equation (20), but is now related to the
3-velocity by

U = w + v. (36)

Baryon number conservation is still expressed by Equation (18).
Even without the notions of a (pseudo-)norm or orthogonality afforded by a spacetime metric,

spacelike projections and in particular decompositions with respect to timelike vector fields are still
available on G, but care must be taken to understand their geometric implications.

On M the tensors←−γ and
←−
h and their siblings project to spacelike hyperplanes St and SU(X ) that

are orthogonal to w and U respectively. The corresponding availability of orthogonal decompositions
allows some flexibility in how these are expressed—various combinations of up and down indices,
without information loss.

On G the situation is different. Absolute time means that St are the only spacelike hypersurfaces,
and the degeneracy of←→γ means that projections to St are not unique;

←→
h and its siblings also project

to St. While on G the tensors←−γ , −→γ and
←−
h ,
−→
h with vanishing contractions with w and U respectively

can be expressed

←−γ = δ−w⊗ t, −→γ = δ− t⊗w, (37)
←−
h = δ−U ⊗ t,

−→
h = δ− t⊗U, (38)

their siblings
←→
h =←→γ , h = γ− t⊗ v− v⊗ t (39)

exist but cannot be expressed in terms of a spacetime metric or identity tensor. (Note Equation (3); and
also, that while linear forms on M such as U dual to vectors with time components do not exist on G,
the particular combination

− 1
c2 U = Λv

(
t− 1

c2 v
)
→ t (40)

does limit sensibly as c → ∞. The index-lowered v is v = γ · v.) Due to the identity tensor in
Equations (37) and (38), information-preserving decompositions of (1, 1) tensors are possible on G,
while projections involving (2, 0) or (0, 2) tensors via Equation (39) entail information loss.

3.2. Mass Conservation on G

Decomposition of Equation (19) on G for inertia-momentum balance provides an instructive
example. In the c→ ∞ limits of Equations (17) and (28)–(32), the index-raised 4-force

−→
Υ and 4-stress−→

Σ lose their timelike components: the index-raising
−→
Σ = Σ · ←→g on M that limits to

−→
Σ = Σ · ←→γ on

G (and similarly for Υ) has a projective character that nullifies information on internal energy and
heating. Spacelike projections of Equations (19) and (22) give the usual non-relativistic momentum
balance. However, the only timelike projection available on G—contraction with t—produces

∇ · (m N) = 0, (41)

which together with Equations (12), (18), and (20) implies the conservation of mass dm/dτ = 0 that
held sway until Einstein.

Thus inertia of a continuum, represented in the (2, 0) tensor T , has been decoupled from its energy
in the passage from M to G. The apparent consequence, long assumed, has been that a complete
picture of the energy of a continuum on G requires the first law of thermodynamics as an independent
postulate (e.g., [2]).
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4. A More Unified View of Classical Mechanics on Minkowski and Galilei/Newton Spacetimes

While the inertia-momentum vector I = m U of a particle exists on G, the total energy-momentum
form I = m U does not because of the absence of a spacetime metric (note that the first and second
equations of Equation (15) do and do not make sense respectively as c → ∞). Thus at first glance it
looks as though the vector version of Newton’s second law in Equation (16) can exist on G, but the
linear form version cannot.

However, information on internal energy and external heating need not be regarded as completely
lost in the passage from M to G. To motivate this I introduce the concepts of “relative 4-velocity” V
and “relative 4-momentum” P of a particle as a vector and linear form respectively on both M and G.
Give the relative 4-velocity the unified definition

V = U −w, (42)

which from Equations (7) and (36) results in the more specific expressions

V = (Λv − 1)w + Λv v (on M), (43)

V = v (on G). (44)

Define the relative 4-momentum as

P = −mc2(Λv − 1) t + m Λv v (on M), (45)

P = −1
2

m γ(v, v) t + m v (on G), (46)

where γ ·U = Λv v on M and v on G. While the relation P = m V = m g · V on M (see Equations (3)
and (43)) does not exist on G, Equation (46) is the perfectly sensible c → ∞ limit of Equation (45).
Thanks to the constancy of t on M, the dynamical law

dP
dτ

= Υ (47)

for an “elementary” particle of constant mass m is equivalent to the linear form version of Equation (16).
This equation also applies on G, where thanks to Equation (3) and (40) the 4-force linear form limits to

Υ = −θ t + f = −Θ t + F. (48)

Thus on G, contraction of Equation (47) with←−γ gives Newton’s second law

dp
dt

= F (49)

in terms of the non-relativistic 3-momentum p = m v. Additionally, on G, contraction of Equation (47)
with U vanishes, and contraction with V or w gives the Work-Energy Theorem

dev

dt
= F · v (50)

in terms of the particle kinetic energy ev = m γ(v, v)/2. (Beware that unlike their vector counterparts
−→
F =

−→
f since←→γ =

←→
h on G, the linear forms F = Υ · ←−γ and f = Υ ·

←−
h are not equal!)
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The case of a material continuum is a straightforward generalization. In its natural (1, 1)
incarnation, the 4-stress of Equations (28) and (32) limits as c→ ∞ to the alternative decompositions

Σ = n U ⊗ ε

n
t + q⊗ t + ς (51)

= w⊗ E t + Q⊗ t + σ (52)

on G. As a (1, 1) tensor, information on internal energy density and flux survive the c → ∞ limit.
A unified 4-dimensional version of Newton’s second law for an infinitesimal continuum element on
M and G, including both an external force and internal stresses, reads

n
d

dτ

(
Π

n

)
= nΥ +∇ · Σ (53)

with Π = n P. Thanks to Equations (12), (18) and (20) this is equivalent to

∇ · S = nΥ, (54)

where
S = n U ⊗ P− Σ (55)

is the (1, 1) “relative energy-momentum flux tensor”; compare Equation (22). On both M and
G, contraction of Equation (53) or (54) with ←−γ , U, V , and w respectively yield balance of
3-momentum, internal energy (first law of thermodynamics), kinetic energy (work-energy theorem),
and internal + kinetic energy (in conservative form). On G, the first three respectively turn out to be
the familiar non-relativistic relations

n
d
dt

(π

n

)
= n F + D · σ, (56)

n
d
dt

( ε

n

)
= n θ − D · q + σ : Dv, (57)

n
d
dt

( εv

n

)
= n F · v + (D · σ) · v, (58)

where π = n p is the 3-momentum density and εv = n ev is the bulk kinetic energy density, while σ is
the Cauchy 3-stress, defined here as a (1, 1) tensor field with components σi

j, so that σ : Dv = σa
b Davb;

and finally the contraction with w yields

∂εkin
∂t

+ D · (εkin v + q− σ · v) = n (θ + F · v) , (59)

where εkin = ε + εv. This last equation, for bulk kinetic plus internal energy—that is, macroscopic and
microscopic kinetic energy—also follows from the sum of Equations (57) and (58), as obtained in the
traditional approach when one regards Equations (56) and (57) as independent postulates on E3.

5. Conclusions

Greater conceptual unity of the relativistic and non-relativistic classical mechanics of material
particles and continua is achieved by combining kinetic energy and 3-momentum in a linear form
P (particles) or (1, 1) tensor S (continua) on Minkowski and Galilei–Newton spacetimes M and
G (see Equations (45), (46) for P and (55) for S). Defining P as a linear form instead of as a
vector geometrizes the deep principle that momentum is conjugate to displacement (a vector).
Additionally, as noted by Weyl [4], it is natural that force be regarded as a linear form, so that
direct contraction—without a scalar product—with displacement (or velocity) yields work (or power).

As on M, this perspective allows the first law of thermodynamics to be regarded on G as a
consequence of a unified dynamical law, Equation (53) or (54), rather than an independent postulate.
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Perhaps long familiarity with the luxury of a spacetime metric and insufficient attention to a thoroughly
geometric perspective on the non-relativistic case have led to this possibility being long overlooked.

Nevertheless, this viewpoint retains some limitations inherent to the non-relativistic case.
While the total (internal + bulk) kinetic energy is governed by Equation (54), inertia remains separate
and is governed by the more familiar Equation (19) with different implications on M and G.
Moreover the definitions of the relative energy-momentum form and tensor P and S, as indicated by
the adjective “relative,” depend on the selection of a (family of) fiducial frames associated with w
(cf. Equation (42)). Thus, while P and S are tensors on M and G, as tensors defined in terms of a family
of fiducial observers w their timelike components with respect to other frames do not manifest the
non-relativistic transformation rule for kinetic energy.

In connection with this dependence of P (and therefore also S) on the selection of w,
it is worth mentioning again two works cited in Section 1 regarding the non-relativistic case.
Exploring non-relativistic covariance in four dimensions, Duval and Künzle found the internal 4-stress
tensor Σ, the part of S that does not depend on a choice of reference observer w (see Equations (51) and
(55)). Exhibiting the transformation of the non-relativistic bulk kinetic energy requires an additional
dimension, as emphasized by de Saxcé and Vallée [15–17]; from the perspective of the present work,
the extra dimension in effect allows for variation of the reference observer w. In fact, the 4× 4 matrix
gathering components of non-relativistic S appears in Chapter 12 of Ref. [16], and as a submatrix of the
4× 5 matrix of “energy-momentum-mass-tensor” components in Chapter 13 of that book. The present
work exhibits S in geometric terms and motivates its existence on G as an instantly recognizable c→ ∞
limit of an easily understood tensor on M (see Equations (28), (45), (46) and (51) for expressions on M
and G, which enter a unified Equation (55)).

Curved spacetime generalizations can be examined by allowing for non-constant fiducial fields
associated with the 3 + 1 foliation (t and w in the present work).

A final remark is that, as on M [2], a free particle on G can be given a Hamiltonian but not
Lagrangian formulation. The free particle energy on G can be expressed ev = P · U = P · I/m,
corresponding to the Hamiltonian

H = P ·w +
1
m

P · ←→γ · P (60)

yielding the expected canonical relation

dX
dτ

=
∂H
∂P

= w +
1
m

P · ←→γ = U. (61)

The absence of a corresponding Lagrangian formulation is signaled by det
(
∂H/∂Pµ∂Pν

)
= det (γµν) = 0.

This is a reminder of the range of possibilities allowed by a symplectic view of physics
on spacetime [19,20]: there is more to life, and perhaps to nature, than Lagrangians on
pseudo-Riemann manifolds.
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