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Abstract: The aim of this article is to use the Homotopy Analysis Method (HAM) to pinpoint the optimal
location of leakage in an inclined pipeline containing hydrogen-natural gas mixture by obtaining quick
and accurate analytical solutions for nonlinear transportation equations. The homotopy analysis
method utilizes a simple and powerful technique to adjust and control the convergence region of the
infinite series solution using auxiliary parameters. The auxiliary parameters provide a convenient
way of controlling the convergent region of series solutions. Numerical solutions obtained by HAM
indicate that the approach is highly accurate, computationally very attractive and easy to implement.
The solutions obtained with HAM have been shown to be in good agreement with those obtained using
the method of characteristics (MOC) and the reduced order modelling (ROM) technique.

Keywords: hydrogen; natural gas; gas mixture; homotopy analysis method; method of characteristics;
reduced order modelling; leak locations

1. Introduction

One of the strategies to reduce gas transportation costs is the use of natural gas pipeline networks
by petroleum companies [1]. These networks are capable of supplying gas in long distances under
high pressure and through compression stations [2]. Changes in pipeline pressure are a function of gas
velocity, valve closure time, and arrangement of the closing valve [3].

When the valve is closed at the end of the pipeline, there is the possibility of the occurrence of
maximum pressure, which can be decreased in short times during its closure. It is of utmost importance
to control factors affecting transient pressure, such as initial pressure and mass ratio. This is because
the damage caused by this pressure is not evident shortly after the event [4–6].

Several studies have been conducted on transient flow in the mixtures of hydrogen and natural
gas with the use of isothermal flow and horizontal pipelines, which is not the case in reality [2,7–9].
Furthermore, another study has made an attempt to study the flow of these mixtures under high
pressure through inclined pipelines [10]. In most pipelines working under high pressure, there are slow
and fast fluid transients. As gas properties are not constant, a one-dimensional and non-isothermal
gas flow model should be presented to simulate these transients [2].

The reason for proposing hydrogen and natural gas mixtures is their transportation through the
same pipelines for the purpose of cost reduction. This is while the existing lines are just designed for
natural gas, whose properties are significantly different from that of hydrogen [11,12]. The solution to
this problem has been the mixture of the both with a great deal of care and attention, as hydrogen is a
reactive gas with high pressure that can cause leakage [13,14]. This problem is of great importance
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since leakage can cause many economic, environmental, and safety problems and threaten industries
and citizens by wasting natural gas [14].

According to the reports, two thirds of the 375 pipeline events between 1994 and 1999 were caused
by leakage [4]. In addition, high-pressure wave celerity causes pipe splitting, and even, exploding,
sometimes making intense holes that lead to inward collapse of pipes, necessitating the careful study
of pressure wave celerity.

Studies have been done on leakage and its location for natural gas [15,16], leading to the
introduction of methods [17,18], such as the acoustic method (AM) [18,19] and the negative pressure
wave method (NPW) [20,21]. Means of transients and using unsteady-state tests, which give rise
to small overpressure, can be considered as an appropriate method for detecting leaks locations in
pressurised pipes [22]. Autocorrelation analysis of vibro-acoustic signals measured in a test field and
amplitude distortion of measured leak noise signals caused by instrumentation have been used for
water leak detection in [23,24]. In water-filled small-diameter polyethylene pipes by means of acoustic
Emission Measurements, [25] has been used for detecting leak locations. However, there is paucity of
research on this issue for hydrogen or its mixture with natural gas [15,16]. In this regard, isothermal
and non-isothermal flow models have been proposed for hydrogen and natural gas mixtures [7,8,14].

There have been several studies on the detection of leakage location through novel approaches.
For example, new leakage detection using AM [26] and new algorithm based on the attenuation of
NPW in isothermal cases have been introduced in recent years [27].

Accordingly, the present study made an attempt to determine leakage location in an inclined
pipe for isothermal flow containing hydrogen-natural gas mixture with the use of homotpy analysis
method. This method is used for solving the governing equations, leading to quick and accurate
analytical solutions for nonlinear transportation equations. Factors affecting pressure and celerity
waves in inclined pipes, such as inclination angles and mass ratio of mixtures, have also been discussed.
The obtained results are in good agreement for isothermal flow in a horizontal pipeline. Results showed
that pressure drop and leak discharge are increased with an increase in the inclination angle, while the
celerity wave and the leak location do not seem to be affected.

2. Mathematical Formulation

Figure 1 shows an inclined pipeline, which has a reservoir at the top and a valve at its bottom.
The governing equations consist of three partial differential equations that are all coupled, non-linear and
hyperbolic. The non-isothermal flow in the pipeline, a homogenous mixture of hydrogen and natural
gas, was considered to be one-dimensional that is compressible and covers transient condition [7].
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Figure 1. An inclined pipeline with a reservoir at the top and a valve at its bottom.

2.1. Governing Equation

The governing equations for the transport of hydrogen/natural gas mixture in an inclined pipeline
from the principle of conserving mass and momentum are given by the following,
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∂ρ

∂t
+

∂ρu
∂x

= 0, (1)

∂ρu
∂t

+
∂(ρu2 + P)

∂x
+

f ρu|u|
2D

+ ρg sin(θ) = 0, (2)

with u = Q/A, A = πD2/4, ρ is density, u is the gas velocity, P is the pressure, e is the gas internal
energy per unit mass, D is the diameter of the pipeline, f is the coefficient of friction, g is the gravitational
force and θ is an angle between the friction force and the direction.

Boundary conditions of this equations depend on the types of closure and the valve operational
time. The boundary conditions at the initial point x = 0 and at the end point x = L, respectively are
given by,

ρ(0, t) = ρ0(t), u(0, t) = u0(t), (3)

ρ(L, t) = ρL(t), u(L, t) = uL(t), (4)

where ρ0 and u0 are defined as density and gas velocity at the inlet pipeline, respectively and ρL and
uL are defined as density and gas velocity at the outlet pipeline, respectively. The initial conditions
that are assumed to be in a steady state condition at t = 0 are [7],

∂ρu
∂x

(x, 0) = 0, (5)

∂(ρu2 + P)
∂x

(x, 0) +
f ρu|u|

2D
+ ρg sin(θ) = 0, (6)

The commonly used equation of state for perfect gas is as follows:

P = ρRT, (7)

where,

R: is the specific gas constant.
T: is temperature.

The equation of state for the compressible flow, where there is a celerity pressure wave, is:

P = c2ρ, (8)

The following equations are also achieved from ideal gas relation,

Cp − Cv = R, γ =
Cp

Cv
, Cv =

R
γ− 1

. (9)

where,

Cv: is the specific heat at constant volume.
Cp: is the specific heat at constant pressure.
R: is the specific gas constant.
P: is pressure.
γ: is the flow process index.

2.2. Hydrogen-Natural Gas Mixture Equation

The mass ratio and the density of hydrogen-natural gas mixture are defined as,
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φ =
mh

mh + mg
,

1
ρ
=

vh + vg

mh + mg
, (10)

with ρh = mh
vh

, ρg =
mg
vg

, ρh = ρh0

( P0
P
) 1

n1 and ρg = ρg0

( P0
P
) 1

n2 . Where mg, mh, Vg and Vh are defined as
the mass of natural gas and hydrogen and volume of natural gas and hydrogen, respectively.

Therefore, the expression of the average density of the gas mixture is given by,

ρ =

[
φ

ρh0

(
P0

P

) 1
n1

+
1− φ

ρg0

(
P0

P

) 1
n2

]−1

. (11)

The celerity pressure wave for compressible flow is defined as,

c =
(

∂ρ

∂P

)− 1
2

s
, (12)

where the subscript s is defined the constant entropy condition. The derivative of Equation (11) with
respect to P, and substituting into Equation (12), then the celerity pressure wave yields [7],

c =

[
φ

ρh0

(
P0

P

) 1
n1

+
1− φ

ρg0

(
P0

P

) 1
n2

]
×
[

1
P

[
φ

n1ρh0

(
P0

P

) 1
n1

+
1− φ

n2ρg0

(
P0

P

) 1
n2
]]− 1

2

. (13)

The properties of hydrogen and natural gas used in the calculations are shown in the Table 1.
For the simulation, the parameters are assumed as Table 2.

Table 1. Hydrogen properties in working conditions, P = 35 bar and T = 15 ◦C = 288 K (See [7]).

Symbol Fluid Properties Values (J/kgK)

Hydrogen Natural Gas

Cp Specific heat at constant pressure 14,600 1497.5
Cv Specific heat at constant volume 10,440 1056.8
R Gas constant 4160 440.7

Table 2. Parameters used for the simulation (See [7]).

Symbols Values Symbols Values

Pipe length L = 600 m Mass ratio φ = 0, 0.5, 1
Time t = 20 Angle θ = 0, π/6, π/4, π/3

Pipe diameter D = 0.4 m Mass flow Q0 = 55 kg/s
Friction coefficient f = 0.03 Absolute pressure P0 = 35 bar

Temperature T = 15 ◦C = 288 K

3. Homotopy Analysis Method

A brief description of the standard homotopy analysis method (HAM) presented by [28–32].
This will be followed by a description of the algorithm of the homotopy analysis method (HAM). First,
we consider the following differential equation,

N
[
u(x, t)

]
= G (x, t), (14)

where N are nonlinear operators, x and t denotes the independent variable, u(x, t) are unknown
functions, and G (x, t) are known analytic functions. For G (x, t) = 0, Equation (14) reduces to
the homogeneous equation. By means of generalizing the traditional homotopy method, Liao [28]
constructed the so-called zero-order deformation equation,
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(
1− q

)
L
[
Ψ(x, t; q)− u0(x, t)

]
= qh̄H (x, t)

{
N
[
Ψ(x, t; q)

]
− G (x, t)

}
(15)

where p ∈ [0, 1] is an embedding parameter, h̄ are nonzero auxiliary functions, L is an auxiliary
linear operator, u0(x, t) are initial guesses of u(x, t), H (x, t) denotes a nonzero auxiliary function and
Ψ(x, t; q) are unknown functions. It is important to note that one has great freedom to choose auxiliary
objects such as h̄ and L in HAM. Obviously, when q = 0 and q = 1, Equation (15) becomes,

Ψ(x, t; 0) = u0(x, t), Ψ(x, t; 1) = u(x, t), (16)

Thus, as q increases from 0 to 1, the solution Ψ(x, t; q) varies from the initial guesses u0(x, t) to the
solutions u(x, t). Expanding Ψ(x, t; q) in Taylor series with respect to q, one has

Ψ(x, t; q) = u0(x, t) +
∞

∑
m=1

um(x, t)qm, (17)

where,

um(x, t) =
1

m!
∂mΨ(x, t; q)

∂qm |q=0, (18)

If the auxiliary linear operator, the initial guesses, the auxiliary parameters h̄, and the auxiliary
functions are so properly chosen, then series Equation (17) converges at q = 1, and one has,

u(x, t) = u0(x, t) +
∞

∑
m=1

um(x, t), (19)

which must be one of the solutions of the original nonlinear equations, as proved by Liao [28]. As h̄ = −1
and H (x, t) = 1, Equation (15) becomes,

(
1− q

)
L
[
Ψ(x, t; q)− u0(x, t)

]
=q
{

N
[
Ψ(x, t; q)

]
− G (x, t)

}
, (20)

which is used mostly in the homotopy perturbation method. Define the vectors,

−→u m =
{

u0(x, t), u1(x, t), ..., um(x, t)
}

, (21)

Differentiate the zeroth-order deformation Equation (14) m-times with respect to q and then
dividing them by m! and finally setting q = 0, we get the following mth-order deformation equation,

L
[
um(x, t)− χmum−1(x, t)

]
= h̄Rm

(−→u m−1(x, t)
)

, (22)

where,

Rm

(−→u m−1(x, t)
)
=

1
(1−m)!

∂m−1
{

N
[
Ψ(x, t; q)

]
− G (x, t)

}
∂qm−1 , (23)

with,

χm =

{
0, m ≤ 1

1, m > 1
(24)

It should be noted that the linear Equation (22), which has linear boundary conditions, governs
um(x, t) for m ≤ 1 [33]. Boundary conditions stem from the main problem, the solution for which can
be provided by Matlab, Maple, or Mathematica. The requirement for the limit of Equation (17) is that
it should meet the conditions of the main equation N

[
u(x, t)

]
= 0 when it is convergent at q = 1.

It is noteworthy that drawing “h̄-curves” or “curves for convergence-control parameter” aim to find a
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proper convergence-control parameter h̄, a convergent series solution, or and accelerate its convergence
rate. It is such that these curves with unknown quantities are drawn against h̄ to approximately find
the convergence region, though they are just graphical. This is because it is not possible to find which
h̄0 ∈ Rh provides the fastest convergent series (see Liao [28,34] for further reading). Another note to be
made is that a unique solution is achieved when Equation (14) accepts a unique solution; otherwise,
many possible solutions will be obtained from HAM.

3.1. Solving the Steady State Equations by High-Order Deformation HAM

We define the vectors, 
−→
P (x) =

{
P0(x), P1(x), ..., Pm(x)

}
−→u (x) =

{
u0(x), u1(x), ..., um(x)

} (25)

Differentiating Equations (5) and (6) m times with respect to the embedding parameter q and then
setting q = 0 and finally dividing them by m!, we have the so-called mth-order deformation equations,L1

[
Pm(x)− χmPm−1(x)

]
= h̄R1

m

(−→
P m−1(x),−→u m−1(x)

)
,

L2

[
um(x)− χmum−1(x)

]
= h̄R2

m

(−→
P m−1(x),−→u m−1(x)

)
,

(26)

with the initial conditions,

P(0) = P0, u(0) = u0, (27)

where, 

R1
m

(−→
P m−1(x),−→u m−1(x)

)
= dPm−1(x)

dx + ∑m−1
i=0 Pm−1−i(x)∑i

j=0
1

uj(x)
dui−j(x)

dx ,

R2
m

(−→
P m−1(x),−→u m−1(x)

)
= dum−1(x)

dx + ∑m−1
i=0 um−1−i(x)∑i

j=0
1

Pj(x)
dPi−j(x)

dx

+ ∑m−1
i=0 cm−1−i ∑i

j=0 ci−j ∑
j
k=0 Pj−k(x)∑k

l=0
1

ul(x)
dPk−l(x)

dx

+ f
2D |um−1(x)|+ um−1(x)g sin(θ),

(28)

with the celerity pressure wave ci defined as follows,

ci =

[
φ

ρh0

(
P0

Pi(x)

) 1
n1

+
1− φ

ρg0

(
P0

Pi(x)

) 1
n2

]

×
[

1
Pi(x)

[
φ

n1ρh0

(
P0

Pi(x)

) 1
n1

+
1− φ

n2ρg0

(
P0

Pi(x)

) 1
n2
]]− 1

2

.

with the following linear operators,

L1

[
Ψ1(x; q)

]
=

dΨ1(x; q)
dx

, L2

[
Ψ2(x; q)

]
=

dΨ2(x; q)
dx

, (29)

with the property that,

L1

[
C1

]
= 0, L2

[
C2

]
= 0, (30)

which implies that,

L −1
1

(
.
)
=
∫ x

0

(
.
)

dx, L2

(
.
)
=
∫ x

0

(
.
)

d, (31)
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Now, the solution of the mth-order deformation Equations (5) and (6) becomes,Pm(x) = χmPm−1(x) + h̄L −1
1

[
H (x, t)R1

m

(−→
P m−1(x),−→u m−1(x)

)]
,

um(x) = χmum−1(x) + h̄L −1
2

[
H (x, t)R2

m

(−→
P m−1(x),−→u m−1(x)

)]
,

(32)

which can be easily solved by a symbolic computation software such as Matlab, Maple, and Mathematica.
Therefore, we will have P(x) and u(x) as follows,

P(x) ' PM(x) = P0(x) +
M

∑
m=1

Pm(x), (33)

u(x) ' uM(x) = u0(x) +
M

∑
m=1

um(x). (34)

Furthermore, to construct the zeroth-order deformation equations we can define the nonlinear

operators N1

[
Ψ1(x; q)

]
and N2

[
Ψ2(x; q)

]
as follows,


N1

[
Ψ1(x; q)

]
= Ψ1(x; q) dΨ2(x;q)

dx + Ψ2(x; q) dΨ1(x;q)
dx

N2

[
Ψ2(x; q)

]
=

d
[

Ψ1(x;q)Ψ2(x;q)2+c2Ψ1(x;q)
]

dx + f
2D Ψ1(x; q)Ψ2(x; q)|Ψ2(x; q)|+ Ψ1(x; q)g sin(θ)

(35)

with the celerity pressure wave c defined as follows,

c =

[
φ

ρh0

(
P0

Ψ1(x; q)

) 1
n1

+
1− φ

ρg0

(
P0

Ψ1(x; q)

) 1
n2

]

×
[

1
Ψ1(x; q)

[
φ

n1ρh0

(
P0

Ψ1(x; q)

) 1
n1

+
1− φ

n2ρg0

(
P0

Ψ1(x; q)

) 1
n2
]]− 1

2

. (36)

3.2. Solving Isothermal Flow of Hydrogen-Natural Gas Mixture by HAM

We define the vectors,
−→
P (x, t) =

{
P0(x, t), P1(x, t), ..., Pm(x, t)

}
−→u (x, t) =

{
u0(x, t), u1(x, t), ..., um(x, t)

} (37)

Differentiating Equations (1) and (2) m times with respect to the embedding parameter q and then
setting q = 0 and finally dividing them by m!, we have the so-called mth-order deformation equations,L1

[
Pm(x, t)− χmPm−1(x, t)

]
= h̄R1

m

(−→
P m−1(x, t),−→u m−1(x, t)

)
,

L2

[
um(x, t)− χmum−1(x, t)

]
= h̄R2

m

(−→
P m−1(x, t),−→u m−1(x, t)

)
,

(38)

with the initial and boundary conditions as follows,{
P(x, 0) = P0(x), u(x, 0) = u0(x);

P(0, t) = P0(t), u(0, t) = u0(t) or P(L, t) = PL(t), u(L, t) = uL(t),
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where, 

R1
m

(−→
P m−1(x, t),−→u m−1(x, t)

)
= ∂Pm−1(x,t)

∂t + ∑m−1
i=0 ui(x, t) ∂Pm−1−i(x,t)

∂x

+ ∑m−1
i=0 Pi(x, t) ∂um−1−i(x,t)

∂x ,

R2
m

(−→
P m−1(x),−→u m−1(x)

)
= ∂um−1(x,t)

∂t + ∑m−1
i=0 um−1−i(x)∑i

j=0
1

Pj(x,t)
∂Pi−j(x,t)

∂t

+ ∑m−1
i=0 ui(x, t) ∂um−1−i(x,t)

∂x

+ ∑m−1
i=0 um−1−i(x, t)∑i

j=0 ui−j(x, t)∑
j
k=0

1
Pk(x,t)

∂Pj−k(x,t)
∂x

+ ∑m−1
i=0 cm−1−i(x, t)∑i

j=0 ci−j(x, t)∑
j
k=0

1
Pk(x,t)

∂Pj−k(x,t)
∂x

+ f
2D ∑m−1

i=0 ui(x, t)|um−1−i(x, t)|+ g sin(θ)

(39)

with the celerity pressure wave ci defined as follows,

ci =

[
φ

ρh0

(
P0

Pi(x, t)

) 1
n1

+
1− φ

ρg0

(
P0

Pi(x, t)

) 1
n2

]

×
[

1
Pi(x, t)

[
φ

n1ρh0

(
P0

Pi(x, t)

) 1
n1

+
1− φ

n2ρg0

(
P0

Pi(x, t)

) 1
n2
]]− 1

2

.

with the following linear operators,

L1

[
Ψ1(x, t; q)

]
=

∂Ψ1(x, t; q)
∂t

, L2

[
Ψ2(x, t; q)

]
=

∂Ψ2(x, t; q)
∂t

, (40)

with the property that,

L1

[
C1

]
= 0, L2

[
C2

]
= 0, (41)

which implies that,

L −1
1

(
.
)
=
∫ t

0

(
.
)

dt, L2

(
.
)
=
∫ t

0

(
.
)

dt, (42)

Now, the solution of the mth-order deformation Equations (1) and (2) becomes,Pm(x, t) = χmPm−1(x, t) + h̄L −1
1

[
H (x, t)R1

m

(−→
P m−1(x, t),−→u m−1(x, t)

)]
,

um(x, t) = χmum−1(x, t) + h̄L −1
2

[
H (x, t)R2

m

(−→
P m−1(x, t),−→u m−1(x, t)

)]
,

(43)

which can be easily solved by a symbolic computation software such as Matlab, Maple, and Mathematica.
Therefore, we will have P(x, t) and u(x, t) as follows,

P(x, t) ' PM(x, t) = P0(x, t) +
M

∑
m=1

Pm(x, t), (44)

u(x, t) ' uM(x, t) = u0(x, t) +
M

∑
m=1

um(x, t). (45)
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Furthermore, to construct the zeroth-order deformation equations we can define the nonlinear

operators N1

[
Ψ1(x, t; q)

]
and N2

[
Ψ2(x, t; q)

]
as follows,


N1

[
Ψ1(x, t; q)

]
= ∂Ψ1(x,t;q)

∂t +
∂

[
Ψ1(x,t;q)Ψ2(x,t;q)

]
∂x

N2

[
Ψ2(x, t; q)

]
=

∂

[
Ψ1(x,t;q)Ψ2(x,t;q)

]
∂t +

∂

[
Ψ1(x,t;q)Ψ2(x,t;q)2+c2Ψ1(x,t;q)

]
∂x

+ f
2D Ψ1(x, t; q)Ψ2(x, t; q)|Ψ2(x, t; q)|+ Ψ1(x, t; q)g sin(θ)

with the celerity pressure wave c defined as follows,

c =

[
φ

ρh0

(
P0

Ψ1(x,t;q)

) 1
n1

+ 1−φ
ρg0

(
P0

Ψ1(x,t;q)

) 1
n2

]

×
[

1
Ψ1(x,t;q)

[
φ

n1ρh0

(
P0

Ψ1(x,t;q)

) 1
n1

+ 1−φ
n2ρg0

(
P0

Ψ1(x,t;q)

) 1
n2
]]− 1

2

.

(46)

3.3. Results and Discussion

For solving the Equations (5) and (6) by suing the homotopy analysis method according the
Equations (25)–(36) we can have,

R1
1 = 0,

R2
m = f u0

2d + g sin(θ)
u0

,
P1(x) = P0,

u1(x) = u0 + h̄
(

f u0x
2d + g sin(θ)x

u0

)
,

R1
2 = P0 h̄

u0

(
f u0
2d + g sin(θ)

u0

)
,

R2
2 = h̄

(
f u0
2d + g sin(θ)

u0

)
+ 1102500 h̄

P0u0

(
f u0
2d + g sin(θ)

u0

)
+ f

2d

(
u0 + h̄

(
f u0x
2d + g sin(θ)x

u0

))
+
(

1
u0
− h̄ x

u0
2

(
f u0
2d + g sin(θ)

u0

))
g sin (θ)

+

(
h̄2(2 g sin(θ)d+ f u0

2)x2

2u0
4d

(
f u0
2d + g sin(θ)

u0

))
g sin (θ) ,

P2(x) = P0 +
h̄2P0x

u0

(
f u0
2d + g sin(θ)

u0

)
,

u2(x) = u0 + h̄
(

f u0x
2d + g sin(θ)x

u0

)
+h̄

(
h̄2(2 g sin(θ)d+ f u0

2)g sin(θ)x3

6u0
4d

(
f u0
2d + g sin(θ)

u0

))
+ h̄

2

(
f h̄
2d

(
f u0
2d + g sin(θ)

u0

)
− h̄ g sin(θ)

u0
2

(
f u0
2d + g sin(θ)

u0

))
x2

+h̄
(

h̄
(

f u0
2d + g sin(θ)

u0

)
x + 1102500 h̄ x

P0u0

(
f u0
2d + g sin(θ)

u0

))
+h̄
(

f u0x
2d + g sin(θ)x

u0

)
,

...

therefore, pressure P(x) is as follows,

P(x) ' P0 +
3h̄2P0x f

4d + 3h̄2P0xg sin(θ)
2u0

2 + 5 P0x3 h̄4g2(sin(θ))2 f
24 u0

4d

+ P0x3 h̄4g3(sin(θ))3

6u0
6 + P0x3 h̄4g sin(θ) f 2

12u0
2d2 + P0x3 h̄4 f 3

96 d3

− P0x2 h̄3g2(sin(θ))2

4u0
4 − P0x2 h̄3 f g sin(θ)

8u0
2d + h̄3P0x f

4d

+ h̄3P0xg sin(θ)
2u0

2 + 275625 xh̄3 f
2 du0

+ 275625 xh̄3g sin(θ)
u0

3 + ...,

(47)



Symmetry 2020, 12, 1769 10 of 22

Equation (47) is a approximation solution for pressure P to the problem Equations (25)–(36) in
terms of the convergence parameters h̄ and order m = 12 with H (x) = 1. To find the valid region
of h̄, the h̄-curves given by the 12th-order HAM approximation at different values of x are drawn in
Figure 2; this figure shows the interval of h̄ in which the value of P12 is constant at certain x, and M;
we chose the horizontal line parallel to x-axis (h̄) as a valid region which provides us with a simple
way to adjust and control the convergence region.

Figure 3 is showing the comparison between the homotopy analysis method with Subani et al.,
2017 and Elaoud et al., 2010 methods. In this comparison the order of homotopy analysis method
have been used as M = 5 and M = 12. The auxiliary parameter h̄ is chosen as h̄ = −0.15 from the
convergence interval as showed in the Figure 2. As seen from this figure, with order M = 12 the
homotopy analysis method is comparable with Subani et al., 2017 and Elaoud et al., 2010 methods.
In this problem the auxiliary parameter H (x, t) is chosen equal 1.

Figure 2. h̄-curve for HAM approximation solution P12(x) of the problem Equations (5) and (6) at
different values of x.

Figure 3. Comparison between homotopy analysis method of orders M = 5, 12 for h̄ = −0.1; with
Subani et al., 2017 and Elaoud et al., 2010 methods.
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Now we want to solve the Equations (1) and (2) with the homotopy analysis method
(Equations (37)–(46)) using the following initial approximations,

P0(x, t) = x(x−L)(1+t)
(x+t)(x−L+t)P0(x) + t(x−L)(1+x)

(x+t)(x−L+x)P0(t) +
xt(1+x−L)

xt+x−L PL(t), (48)

u0(x, t) = x(x−L)(1+t)
(x+t)(x−L+t)u0(x) + t(x−L)(1+x)

(x+t)(x−L+x)u0(t) +
xt(1+x−L)

xt+x−L uL(t), (49)

we guessed the initial approximations Equations (48) and (49) using the initial and boundary conditions
(for x = 0, L results will be as Equations (3) and (4)). Therefore, using the homotopy analysis method
for solving the Equations (1) and (2) with the initial approximation Equations (48) and (49) can obtain
the following results,

P0(x, t) = − xa0

P0
2t

+
x

P0t
+

1
P0
− xa0

P0
2 −

xa0

P0
2L
− x

P0L
− x

P0
− xta0

P0
2L
− xta0

P0
2L2

+
xtPL

P0
2L
− xtPL

P0
2 ,

u0(x, t) = − xb0

u02t
+

x
u0t

+
1
u0
− xb0

u02 −
xb0

u02L
− x

u0L
− x

u0
− xtb0

u02L
− xtb0

u02L2

+
xtuL

u02L
− xtuL

u02 ,

R1
1 = xPL + u0a0 + 2 u0P0 + P0b0 + 2 xuLa0 − 2 xuLP0 + 2 xb0PL − 2 xu0PL

− xPL
L

+
xa0

L
+

xa0

L2 +
P0b0

L
+ 2 xP0b1 + 2 xb0a0 + 2 xu0a1 + 2 xu0a0

+2 xu0P0 + 2 xP0b0 − 2
u0P0

t
+

u0a0

t
+

P0b0

t
+

xP0

t2 −
xa0

t2 +
u0a0

L

+2
u0P0

L
+ 4

xb0a0

tL
− 2

xP0b0

tL
− 2

xu0a0

tL
− 8

xu0P0

tL
− 4

xP0b0

t2

+6
xu0P0

t2 + 2
xb0a0

t2 − 4
xu0a0

t2 + 8
xb0a0

L
+ 8

xu0P0

L
+ 2

xP0b1

t

+4
xb0a0

t
+ 2

xu0a1

t
− 2

xu0a0

t
− 8

xu0P0

t
− 2

xP0b0

t
+ 2

xuLP0

L

+2
xP0b1

L
+ 2

xu0a1

L
+ 10

xu0P0

L2 + 6
xb0a0

L2 − 2
xb0PL

L
+ 2

xu0PL
L

−2
xuLa0

L
,
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R1
2 = 1102501− 1102500 x + u0 +

u0

L
+ 2

xu0b0a0

t2P0
+ 8

xu0b0a0

P0L
− 2

xu0a0

P0tL

−2
xu0a0

2

P0
2tL

+ 2
xb0a0

P0tL
− 2

xu0
2a0

P0tL
− 2

xu0
2a0

2

P0
2tL

+
x f u0b0

tD
+ 4

xu0b0a0

P0t

+2
xu0a0PL

P0
2L

+ 2
xu0

2a0PL

P0
2L

+ 6
xu0b0a0

P0L2 − 2
xu0b0PL

P0L
− 2

xu0uLa0

P0L

+
x f u0b0

DL
+ u0

2 + 1102500 L−1 − 1102500 t−1 + g sin (θ)− 2
xu0

2a0PL

P0
2

+2
xu0b0PL

P0
− 3

xu0a0

P0L
− 4

xu0a0
2

P0
2L

+ 4
xb0a0

P0L
− 2

xu0
2a0

P0L
− 4

xu0
2a0

2

P0
2L

+
x f u0b0

D
− 2

xu0a0

P0t
− 2

xu0a0
2

P0
2t

+ 2
xu0

2a1

P0t
− 2205000

xa0

P0tL

−2205000
xa0

2

P0
2tL
− 2

xu0
2a0

2

P0
2t

+ 2
xb0a0

P0t
− 2

xu0
2a0

P0t
+ 2

xu0a1

P0t

− f u0
2x

tD
+ 2

xu0uLa0

P0
+ 2205000

xa0PL

P0
2L

+
f u0

2x
DL

+ 2
xu0a1

P0L
− 3

xu0a0
2

P0
2L2

−2
xu0a0PL

P0
2 + 3

xb0a0

P0L2 −
xb0PL
P0L

− xu0PL
P0L

− xuLa0

P0L
+ 2

xu0
2a1

P0L

−3
xu0

2a0
2

P0
2L2

+ xb0 + 3307500
x
L2 + xu0

2 − u0
2

t
+ 1102500

a0

P0
+ 4

xu0b0a0

P0tL

+4
xu0

L2 + 5
xu0

2

L2 − 2 xu0uL + 2 xu0b0 + 2
xb0

L
+

xb0

L2 + 2205000
xPL
P0

+
u0a0

P0
+ 3

xu0
2

t2 + 3
xu0

t2 +
u0

2

L
+ 1102500

a0

P0L
+ 2

xu0

L
+ 2205000

xa1

P0

−2205000
xa0

P0
− 1102500

xa0
2

P0
2 + 4

xu0
2

L
− 2

xu0

t
− 4

xu0
2

t
+ 1102500

a0

P0t

+
u0

2a0

P0
− 2

xb0

t2 + 1102500
x
t2 +

1
2

f u0
2

D
− u0

t
− xu0a0

t2P0
− xu0a0

2

t2P0
2 +

xb0a0

t2P0

−2
xu0

2a0

t2P0
− xu0

2a0
2

t2P0
2 + 2

xu0b0a0

P0
+

xb0PL
P0

+
xu0PL

P0
+

xuLa0

P0

+2205000
xa1

P0L
− 3307500

xa0
2

P0
2L2
− 2205000

xa0PL

P0
2 − 2205000

xPL
P0L

+2
xu0uL

L
+ 2

xu0b0

L
− 2

xu0

tL
+ 2205000

xa1

P0t
− 2205000

xa0

P0t

−2205000
xa0

2

P0
2t
− 4

xu0
2

tL
+

u0
2a0

P0t
− 2

xu0b0

t2 − 1102500
xa0

2

t2P0
2 +

u0a0

P0L

+
u0

2a0

P0L
− xu0a0

P0
− xu0a0

2

P0
2 + 2

xu0
2a1

P0
− 4410000

xa0

P0L
− 4410000

xa0
2

P0
2L

− xu0
2a0

2

P0
2 +

xb0a0

P0
+ 2

xu0a1

P0
+

u0a0

P0t
+

f u0
2x

D
,
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P1(x, t) =
xtPL

xt− L + x
− x2Lta1

(x + t) (x− L + t)
− xLta0

(x + t) (x− L + t)

− P0tLx
(x + t) (2 x− L)

+ 2
h̄ x2b0a0

tL
− h̄ x2P0b0

tL
− h̄ x2u0a0

tL

−4
h̄ x2u0P0

tL
+

1
2

h̄ x2PL +
1
2

h̄ x2P0

t2 − 1
2

h̄ x2a0

t2 + h̄ x2uLa0

−h̄ x2uLP0 + h̄ x2P0b1 + h̄ x2b0PL − h̄ x2u0PL + h̄ x2b0a0

+h̄ x2u0a1 + h̄ x2u0a0 + h̄ x2u0P0 + h̄ x2P0b0 −
1
2

h̄ x2PL
L

+
1
2

h̄ x2a0

L
+

1
2

h̄ x2a0

L2 + h̄ xu0a0 + 2 h̄ xu0P0 + h̄ xP0b0

+
x3a1

(x + t) (x− L + t)
+

x2a0

(x + t) (x− L + t)
+

x2tPL
xt− L + x

+
h̄ x2u0a1

L
+ 5

h̄ x2u0P0

L2 + 3
h̄ x2b0a0

L2 − h̄ x2b0PL
L

+
h̄ x2u0PL

L

− h̄ x2uLa0

L
+ 4

h̄ x2u0P0

L
+ 2

h̄ x2b0a0

t
+

h̄ x2u0a1

t
+

h̄ x2P0b1

t

−2
h̄ x2P0b0

t2 +
h̄ x2b0a0

t2 + 3
h̄ x2u0P0

t2 − 2
h̄ x2u0a0

t2 +
h̄ x2uLP0

L

+
h̄ x2P0b1

L
+ 4

h̄ x2b0a0

L
− 4

h̄ x2u0P0

t
+

h̄ xP0b0

L
+

h̄ xu0a0

L

+2
h̄ xu0P0

L
+

h̄ xu0a0

t
− 2

h̄ xu0P0

t
+

h̄ xP0b0

t
+

x3ta1

(x + t) (x− L + t)

− x2La1

(x + t) (x− L + t)
+

x2ta0

(x + t) (x− L + t)
− xa0L

(x + t) (x− L + t)

+
P0tx2

(x + t) (2 x− L)
− P0tL

(x + t) (2 x− L)
+

P0tx
(x + t) (2 x− L)

− xtPLL
xt− L + x

− h̄ x2u0a0

t
− h̄ x2P0b0

t
,
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u1(x, t) =
x3tb1

(x + t) (x− L + t)
− x2Lb1

(x + t) (x− L + t)
+

x2tb0

(x + t) (x− L + t)

− xLb0

(x + t) (x− L + t)
+

u0tx2

(x + t) (2 x− L)
− u0tL

(x + t) (2 x− L)

+
u0tx

(x + t) (2 x− L)
+

xtuL
xt− L + x

− xtuLL
xt− L + x

+ 1102500
h̄ x2a1

P0L

−1653750
h̄ x2a0

2

P0
2L2
− 1102500

h̄ x2a0PL

P0
2 − 1102500

h̄ x2PL
P0L

−551250
h̄ x2a0

2

t2P0
2 −

1
2

h̄ x2u0a0
2

P0
2 +

h̄ x2u0
2a1

P0
− 2205000

h̄ x2a0
2

P0
2L

− h̄ x2u0

tL
− 2

h̄ x2u0
2

tL
+ 1102500

h̄ x2a1

P0t
− 1102500

h̄ x2a0
2

P0
2t

+
1
2

h̄ x2b0PL
P0

+
1
2

h̄ x2u0PL
P0

− 1
2

h̄ x2u0
2a0

2

P0
2 − h̄ x2u0b0

t2

+
h̄ x2u0a1

P0
+

1
2

h̄ x2b0a0

P0
+

h̄ x2u0uL
L

+
h̄ x2u0b0

L
− 1

2
h̄ x2u0a0

P0

−2205000
h̄ x2a0

P0L
− 1102500

h̄ x2a0

P0t
+

1
2

h̄ x2 f u0
2

D
+

h̄ xu0
2a0

P0

+
1
2

h̄ x2uLa0

P0
+ 1102500

h̄ xa0

P0t
+

h̄ xu0a0

P0
+ 1102500

h̄ xa0

P0L

+
1
2

h̄ f u0
2x

D
− h̄ x2u0

2a0PL

P0
2 +

h̄ x2u0b0PL
P0

+
h̄ x2u0uLa0

P0

+1102500
h̄ x2a0PL

P0
2L

+
1
2

h̄ x2 f u0
2

DL
− 2

h̄ x2u0
2a0

2

P0
2L

+
1
2

h̄ x2 f u0b0

D

− h̄ x2u0a0
2

P0
2t

+
h̄ x2u0

2a1

P0t
− 1102500

h̄ x2a0
2

P0
2tL
− h̄ x2u0

2a0
2

P0
2t

+
h̄ x2u0a1

P0t
+

h̄ x2b0a0

P0t
− 1102500

h̄ x2a0

P0tL
− 1

2
h̄ x2 f u0

2

tD

+
h̄ x2u0a1

P0L
− 3

2
h̄

x2u0a0
2P0

2L2 − h̄ x2u0a0PL

P0
2 +

3
2

h̄ x2b0a0

P0L2

−1
2

h̄ x2b0PL
P0L

+
h̄ x2u0b0a0

P0
− 1

2
h̄ x2u0a0

t2P0
− 1

2
h̄ x2u0a0

2

t2P0
2

+
1
2

h̄ x2b0a0

t2P0
− h̄ x2u0

2a0

t2P0
− 1

2
h̄ x2u0

2a0
2

t2P0
2 − 2

h̄ x2u0a0
2

P0
2L

+2
h̄ x2b0a0

P0L
− h̄ x2u0

2a0

P0t
− 3

2
h̄ x2u0a0

P0L
− h̄ x2u0

2a0

P0L
− h̄ x2u0a0

P0t

+
h̄ xu0a0

P0L
+

h̄ xu0
2a0

P0L
+

h̄ xu0a0

P0t
+

h̄ xu0
2a0

P0t
− x2Ltb1

(x + t) (x− L + t)

− xLtb0

(x + t) (x− L + t)
− u0tLx

(x + t) (2 x− L)
− 1

2
h̄ x2u0PL

P0L
− 1

2
h̄ x2uLa0

P0L

+
h̄ x2u0

2a1

P0L
− 3

2
h̄ x2u0

2a0
2

P0
2L2

+ 3
h̄ x2u0b0a0

P0L2 − h̄ x2u0b0PL
P0L

− h̄ x2u0uLa0

P0L
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+
1
2

h̄ x2 f u0b0

DL
+ 1102500

h̄ x
L

+ h̄ u0x− 1102500
h̄ x
t

+ h̄ xu0
2 +

1
2

h̄ x2b0

+
1
2

h̄ x2u0
2 + 1653750

h̄ x2

L2 + 551250
h̄ x2

t2 −
h̄ xu0

2

t
+ h̄ g sin (θ) x

+
h̄ x2b0

L
+

h̄ x2u0

L
+

5
2

h̄ x2u0
2

L2 − h̄ x2u0uL +
1
2

h̄ x2b0

L2 + 2
h̄ x2u0

L2

+h̄ x2u0b0 − 2
h̄ x2u0

2

t
− 1102500

h̄ x2a0

P0
+ 2

h̄ x2u0
2

L
− h̄ x2u0

t

+1102500
h̄ x2PL

P0
+ 1102500

h̄ x2a1

P0
− 551250

h̄ x2a0
2

P0
2 − h̄ x2b0

t2

+
3
2

h̄ x2u0

t2 +
3
2

h̄ x2u0
2

t2 +
h̄ u0x

L
+ 1102500

h̄ xa0

P0
+

h̄ xu0
2

L
− h̄ u0x

t

+
x3b1

(x + t) (x− L + t)
+

x2b0

(x + t) (x− L + t)
+

x2tuL
xt− L + x

+
h̄ x2u0b0a0

t2P0

+4
h̄ x2u0b0a0

P0L
− h̄ x2u0

2a0
2

P0
2tL

+
1
2

h̄ x2 f u0b0

tD
+ 2

h̄ x2u0b0a0

P0t
− h̄ x2u0a0

2

P0
2tL

+
h̄ x2b0a0

P0tL
− h̄ x2u0a0

P0tL
− h̄ x2u0

2a0

P0tL
+

h̄ x2u0a0PL

P0
2L

+
h̄ x2u0

2a0PL

P0
2L

+2
h̄ x2u0b0a0

P0tL
− 551250 h̄ x2 + 1102501 h̄ x,

therefore, pressure P(x, t) is as follows,

P(x, t) ' 2txPL
tx−L+x −

2x2Lta1
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(50)

Equation (50) is a approximation solution for pressure P(x, t) to the problem Equations (1) and (2)
in terms of the convergence parameters h̄ with H (x) = 1. To find the valid region of h̄, the h̄-curves
given by the 12th-order HAM approximation at different values of t and x = 0 are drawn in Figure 4;
this figure shows the interval of h̄ in which the value of P12(0, t) is constant at certain t, and M; we chose
the horizontal line parallel to t-axis (h̄) as a valid region which provides us with a simple way to adjust
and control the convergence region.
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Figure 4. h̄-curve for HAM approximation solution P12(x, t) of the problem Equations (1) and (2)
at different values of t and x = 0.

3.4. Leak Detection Using Homotopy Analysis Method

Because of a small orifice between the high-pressure pipeline and the environment, the orifice of
leak can be simulated leaning on the flow rate. The discharged flow from the orifice can be computed
by the following Equation [7],

Ql =
ρlCd Al

√
2Pl/ρl

XL
, (51)

where Al is the leak orifice area with radius rl , Pl is the pressure of gas mixture at the leak position and
ρl is the density of gas mixture at the leak position respectively, Cd is a discharge coefficient and XL is
the distance of leak from the reservoir.

Analyzing transient pressure wave for hydrogen/natural gas mixtures is based on transmission
and reflection properties of pressure wave effected by a downstream valves sudden closure. When the
initial pressure wave reaches the leak, it will produce a reflection as it arrives back at the downstream
end section. Then, the difference in time between the initial transient wave and the reflected wave is
measured and the leakage position in the pipeline is computed by,

XL = L−
∆tlc∆tl

2
, (52)

where XL is defined as the distance between the leak and upstream end section, ∆tl is the difference of
time between the initial transient wave and reflected wave and c∆tl is defined as the transient celerity
wave at time.

3.5. Results and Discussion

Figure 5 presents the transient pressure of hydrogen natural gas mixture for isothermal flow when
leakage occurs at XL = L/3 in horizontal pipeline. The homotopy analysis method of order M = 12
with h̄ = −0.5 has been used. This figure shows the comparison between homotopy analysis method
from order 12 and Subani et al. method [7] when φ = 0.25 and φ = 0.5.

Figure 6 shows the transient pressure of hydrogen natural gas mixture (φ = 0.5) for isothermal
flow when leakage occurs at XL = L/3 in an inclined pipeline with θ = 15. Black line is homotopy
analysis method from order 12 with h̄ = −0.5 and red line is Subani et al. method. As indicated in
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Figures 5 and 6, the leak point are estimated at ts = 0.81 and at ts = 0.808 for Subani et al. method and
HAM respectively.

The transient pressure of mixture of natural gas and hydrogen with a mass ratio of φ = 0.5
is shown in Figure 7 in case of isothermal flow and leak location at XL = L/3 with diverse angles.
The homotopy analysis method from order 12 and h̄ = −0.5 has been used. Red line is for θ = 0 and
black line is for θ = 15.

The celerity wave distribution is presented in Figure 8 as a function of time. In this case, the valve
of the horizontal pipeline containing different mass ratios of a mixture of gas and hydrogen is abruptly
closed when the leakage is at XL = L/3. The values of celerity wave of the leak point for various mass
rations are 819.20 ms−1, 964.60 ms−1 and 1086.60 ms−1 for φ = 0.25, 0.5 and 0.75, respectively.

As shown in Figures 6 and 7, the occurrence of the leakage is possible when ∆tl is equal to 0.808 s.
Equation (53) can be used to calculate the leak location of the mixture of natural gas and hydrogen in
case of an isothermal flow in a horizontal pipeline as follows:

XL = 600− 0.808× 964.6
2

' 210.3. (53)

As seen earlier, there are various mass ratios of the mixture and various angles of the pipeline
each with a specific leak location at XL = L/3, the values of which are presented in Table 3. It can be
inferred that the leak location is not a function of pipe angle, it is rather a function of the mass ratio of
the natural gas and hydrogen mixture. Therefore, mass ratio is of utmost importance here.

The real location of leak is 200 m, when the leak location is at XL = L/3. The leak location
calculations by Subani et al. and HAM turned out to be 211.10 m and 210.30 m, respectively. It is a
mixture of natural gas and hydrogen with a mass ratio of 0.5. When the mass ration is increased to
0.75, the leakage location is less than 200 m. Therefore, when the mass ratio is decreased, the location
is greater than 200 m. This is contrary to the calculations since the calculated value is less than 200 m
when the mass ratio is 0.5. This is an indication of the dependence of leak location of mass ratio of the
mixture considered. As Elaoud et al., (2010) state, the most important part in early determination of a
leak close to the reservoir or compressor is the bottom of the pipeline.

Figure 9 shows the leak location with respect to the gas mixture (φ). As can be seen from this
figure, there is a steep slope for the values φ ∈ [0, 0.25] and φ ∈ [0.75, 1], but for values φ ∈ [0.25, 0.75]
there is a mild slope.

Table 3. Leak location for the hydrogen-natural gas mixture for isothermal flow at leakage XL = L/3.

Gas Mixture Pipeline’s Angle Leak Location (m)

(φ) (θ) Subani et al., Method HAM

0 0◦ 439.4 439.8
15◦ 439.4 439.8

0.25 0◦ 268.3 269.04
15◦ 268.3 269.04

0.5 0◦ 211.1 210.3
15◦ 211.1 210.3

0.75 0◦ 160.6 161.01
15◦ 160.6 161.01

1 0◦ 95.8 96.2
15◦ 95.8 96.2
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Figure 5. Transient pressure of hydrogen natural gas mixture for isothermal flow when leakage occurs
at XL = L/3 in horizontal pipeline when φ = 0.25 and φ = 0.5.
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Figure 6. Transient pressure of hydrogen natural gas mixture for isothermal flow when leakage occurs
at XL = L/3 in an inclined pipeline when θ = 15◦ and φ = 0.5.
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Figure 7. Transient pressure of hydrogen natural gas mixture with φ = 0.5 for isothermal flow when
leakage occurs at XL = L/3 with different angles θ. HAM with order 12 and h̄ = −0.5.
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Figure 8. Celerity wave of hydrogen natural gas mixture for isothermal flow when leakage occurs at
XL = L/3 in horizontal pipeline with different mass ratio φ.
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Figure 9. Leak location with respect to the gas mixture (φ).

In real (physical) pipelines, noise is expected to affect measurements [35,36]. The possible effects
of noisy signals on the performance of the proposed method are Brownian motion or Wiener process
or White noise, as the physical model of the stochastic procedure, as an indexed collection random
variables. A Wiener process (notation W = (Wt)t≥0) is named in the honor of Prof. Norbert Wiener;
other name is the Brownian motion (notation B = (Bt)t≥0). Wiener process is Gaussian process. As any
Gaussian process, Wiener process is completely described by its expectation and correlation functions.
A Brownian motion, also called a Wiener process, is obtained as the integral of a white noise signal
as follows,
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W(t) =
∫ t

0

dW(τ)

dτ
dτ. (54)

The effects of noisy signals on the effectiveness of the proposed method and possible effects of
noisy signals on the performance of leak locations will be proposed in the future works, by introducing
white noise in the simulations.

For accurate pinpointing, we can use the zero-gradient control (ZGC) method which we have
discussed in our recently published paper [6] about optimal mixture and controlling the pressure.
In our next manuscript with title “Detecting Optimal Leak Locations using Delta Method and Zero
Gradient Control for Non-isothermal Hydrogen/Natural Gas Mixture in an Inclined Pipeline” we used
the delta method (DM) and zero gradient control (ZGC) method for detecting optimal leak locations.
In our future works we will mixed the proposed methods with Artificial intelligence, Neural Network
and Deep Learning [37] to predict and estimate the optimal mixture parameter for achieving more
accurate pinpointing.

4. Conclusions

The homotopy analysis method used to solve the flow equations of hydrogen natural gas mixture
in an inclined pipeline. To validate the approximation series for pressure compared with the Subani et al.
method. The results in Figures 3, 5 and 6 show that the obtained results using proposed method are in
good agreement with the reduced order modelling (ROM) proposed by Subani et al, in 2017. Then,
homotopy analysis method is working as well as other methods and give the semi-analytical solutions.

The leak locations were detected using the homotopy analysis method for horizontal pipeline
(θ = 0◦) and inclined pipeline (θ = 15◦) for gas mixture φ = 0, 0.25, 0.5, 0.27, 1. Using the homotopy
analysis method the celerity wave at leak point of the pipeline are 819.20 ms−1, 964.60 ms−1 and
1086.60 ms−1 for φ = 0.25, 0.5 and 0.75, respectively.

In an inclined pipeline θ = 15◦ the leak location for gas mixture φ = 0.5 using the Subani et al.
method (ROM) and homotopy analysis method respectively are 211.1 m and 210.3 m. Because of
the real leak location is supposed at 200 m when the leak is located at XL = L/3, the result of HAM
method is more accurate than ROM method. As can be seen from Figure 9, with increases the gas
mixture φ from 0 to 1 the leak location decreases and there is a steep slope for φ ∈ [0, 0.25] ∪ [0.75, 1],
and a mild slope for φ ∈ [0.25, 0.75].

The proposed HAM method is employed without using linearization, discretization, or
transformation. It may be concluded that the HAM is very powerful and efficient in finding the
analytical solutions for a wide class of gas transportation equations in a pipeline.
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