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Abstract: In his 1892 paper, L. Bianchi noticed, among other things, that quite simple transformations
of the formulas that describe the Bäcklund transformation of the sine-Gordon equation lead to what is
called a nonlocal conservation law in modern language. Using the techniques of differential coverings,
we show that this observation is of a quite general nature. We describe the procedures to construct such
conservation laws and present a number of illustrative examples.
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1. Introduction

In [1], L. Bianchi, dealing with the celebrated Bäcklund auto-transformation (I changed the
original notation slightly)

∂(u− w)

∂x
= sin(u + w),

∂(u + w)

∂y
= sin(u− w) (1)

for the sine-Gordon equation
∂2(2u)
∂x∂y

= sin(2u) (2)

in the course of intermediate computations (see ([1], p. 10)) notices that the function

ψ = ln
∂u
∂C

,

where C is an arbitrary constant on which the solution u may depend, enjoys the relations

∂ψ

∂x
= cos(u + w),

∂ψ

∂y
= cos(u− w).

Reformulated in modern language, this means that the 1-form

ω = cos(u + w) dx + cos(u− w) dy

is a nonlocal conservation law for Equation (1).
It became clear much later, some 100 years after the publication of [1], that nonlocal conservation

laws are important invariants of PDEs and are used in numerous applications, e.g.,: numerical
methods [2,3], sociological models [4,5], integrable systems [6], electrodynamics [7,8], mechanics [9–11],
etc.
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Actually, Bianchi’s observation is of a very general nature and this is shown below.
In Section 2, I shortly introduce the basic constructions in nonlocal geometry of PDEs,

i.e., the theory of differential coverings, [12]. Section 3 contains an interpretation of the result by
L. Bianchi in the most general setting. In Section 4, a number of examples is discussed.

Everywhere below we use the notation F (·) for the R-algebra of smooth functions, D(·) for the
Lie algebra of vector fields, and Λ∗(·) = ⊕k≥0Λk(·) for the exterior algebra of differential forms.

2. Preliminaries

Following [13], we deal with infinite prolongations E ⊂ J∞(π) of smooth submanifolds in Jk(π),
where π : E → M is a smooth locally trivial vector bundle over a smooth manifold M, dim M = n,
rank π = m. These E are differential equations for us. Solutions of E are graphs of infinite jets that lie
in E . In particular, E = J∞(π) is the tautological equation 0 = 0.

The bundle π∞ : E → M is endowed with a natural flat connection C : D(M)→ D(E ) called the
Cartan connection. Flatness of C means that C[X,Y] = [CX, CY] for all X, Y ∈ D(M). The distribution
on E spanned by the fields of the form CX (the Cartan distribution) is Frobenius integrable. We denote
it by C ⊂ D(E ) as well.

A (higher infinitesimal) symmetry of E is a π∞-vertical vector field S ∈ D(E ) such that [X, C ] ⊂ C .
Consider the submodule Λk

h(E ) generated by the forms π∗∞(θ), θ ∈ Λk(M). Elements ω ∈ Λk
h(E )

are called horizontal k-forms. Generalizing slightly the action of the Cartan connection, one can apply
it to the de Rham differential d : Λk(M)→ Λk+1(M) and obtain the horizontal de Rham complex

0 // F (E ) // . . . // Λk
h(E )

dh // Λk+1
h (E ) // . . . // Λn

h(E ) // 0

on E . Elements of its (n− 1)st cohomology group Hn−1
h (E ) are called conservation laws of E . We always

assume E to be differentially connected which means that H0
h(E ) = R.

Remark 1. The concept of a differentially connected equation reflects Vinogradov’s correspondence
principle [14], (p. 195): when ‘secondary dimension’ (dimension of the Cartan distribution) Dim → 0,
the objects of PDE geometry degenerate to their counterparts in geometry of finite-dimensional manifolds.
Following this principle, we informally have

lim
Dim→0

Hi
h(E ) = Hi

dR(M).

Since H0
dR(M) is responsible for topological connectedness of M, the group H0

h(E ) stands for differential one.

Coordinates. Consider a trivialization of π with local coordinates x1, . . . , xn in U ⊂ M and u1, . . . , um

in the fibers of π|U . Then in π−1
∞ (U ) ⊂ J∞(π) the adapted coordinates ui

σ arise and the Cartan
connection is determined by the total derivatives

C :
∂

∂xi 7→ Di =
∂

∂xi + ∑
j,σ

uj
σi

∂

∂uj
σ

.

Let F = (F1, . . . , Fr), where Fj are smooth functions on Jk(π). The the infinite prolongation of the locus

{ z ∈ Jk(π) | F1(z) = · · · = Fr(z) = 0 } ⊂ Jk(π)

is defined by the system

E = EF = { z ∈ J∞(π) | Dσ(Fj)(z) = 0, j = 1, . . . , r, |σ| ≥ 0 },
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where Dσ denotes the composition of the total derivatives corresponding to the multi-index σ. The
total derivatives, as well as all differential operators in total derivatives, can be restricted to infinite
prolongations and we preserve the same notation for these restrictions. Given an E , we always choose
internal local coordinates in it for subsequent computations. To restrict an operator to E is to express
this operator in terms of internal coordinates.

Any symmetry of E is an evolutionary vector field

Eϕ = ∑ Dσ(ϕj)
∂

∂uj
σ

(summation on internal coordinates), where the functions ϕ1, . . . , ϕm ∈ F (E ) satisfy the system

∑
σ,α

∂Fj

∂uα
σ

Dσ(ϕα) = 0, j = 1, . . . , r.

A horizontal (n− 1)-form

ω = ∑
i

ai dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxn

defines a conservation law of E if

∑
i
(−1)i+1Di(ai) = 0.

We are interested in nontrivial conservation laws, i.e., such that ω is not exact.
Finally, E is differentially connected if the only solutions of the system

D1( f ) = · · · = Dn( f ) = 0, f ∈ F (E ),

are constants.
Consider now a locally trivial bundle τ : Ẽ → E such that there exists a flat connection C̃ in

π∞ ◦ τ : Ẽ → M. Following [12], we say that τ is a (differential) covering over E if one has

τ∗(C̃X) = CX

for any vector field X ∈ D(M). Objects existing on Ẽ are nonlocal for E : e.g., symmetries of Ẽ are
nonlocal symmetries of E , conservation laws of Ẽ are nonlocal conservation laws of E , etc. A derivation
S : F (E )→ F (Ẽ ) is called a nonlocal shadow if the diagram

F (E )
CX //

S
��

F (E )

S
��

F (Ẽ )
C̃X // F (Ẽ )

is commutative for any X ∈ D(M). In particular, any symmetry of the equation E , as well as
restrictions S̃

∣∣
F (E ) of nonlocal symmetries may be considered as shadows. A nonlocal symmetry is

said to be invisible if its shadow S̃
∣∣
F (E ) vanishes.
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A covering τ is said to be irreducible if Ẽ is differentially connected. Two coverings are equivalent
if there exists a diffeomorphism g : Ẽ1 → Ẽ2 such that the diagrams

Ẽ1
g

//

τ1
��

Ẽ2

τ2
��

E ,

D(Ẽ1)
g∗

// D(Ẽ2)

D(M)

C̃1

dd

C̃2

::

are commutative. Note also that for any two coverings their Whitney product is naturally defined.
A covering is called linear if τ is a vector bundle and the action of vector fields C̃X preserves the
subspace of fiber-wise linear functions in F (Ẽ ).

In the case of 2D equations, there exists a fundamental relation between special type of coverings
over E and conservation laws of the latter. Let τ be a covering of rank l < ∞. We say that τ is an
Abelian covering if there exist l independent conservation laws [ωi] ∈ H1

h(E ), i = 1, . . . , l, such that the
forms τ∗(ωi) are exact. Then equivalence classes of such coverings are in one-to-one correspondence
with l-dimensional R-subspaces in H1

h(E ).

Coordinates. Choose a trivialization of the covering τ and let w1, . . . , wl , . . . be coordinates in fibers
(the are called nonlocal variables). Then the covering structure is given by the extended total derivatives

D̃i = Di + Xi, i = 1, . . . , n,

where
Xi = ∑

α

Xα
i

∂

∂wα

are τ-vertical vector fields (nonlocal tails) enjoying the condition

Di(Xj)− Dj(Xi) + [Xi, Xj] = 0, i < j. (3)

Here Di(Xj) denotes the action of Di on coefficients of Xj. Relations (3) (flatness of C̃ ) amount to the
fact that the manifold Ẽ endowed with the distribution C̃ coincides with the infinite prolongation of
the overdetermined system

∂wα

∂xi = Xα
i ,

which is compatible modulo E .
Irreducible coverings are those for which the system of vector fields D̃1, . . . , D̃n has no nontrivial

integrals. If τ̄ is another covering with the nonlocal tails X̄i = ∑ X̄β
i ∂/∂w̄β, then the Whitney product

τ ⊕ τ̄ of τ and τ̄ is given by

D̃i = Di + ∑
α

Xα
i

∂

∂wα
+ ∑

β

X̄β
i

∂

∂w̄β
.

A covering is Abelian if the coefficients Xα
i are independent of nonlocal variables wj. If n = 2 and

ωα = Xα
1 dx1 + Xα

2 dx2, α = 1, . . . , l, are conservation laws of E then the corresponding Abelian covering is
given by the system

∂wα

∂xi = Xα
i , i = 1, 2, α = 1, . . . , l,

or
D̃i = Di + ∑

α

Xα
i

∂

∂wα
.

Vice versa, if such a covering is given, then one can construct the corresponding conservation law.
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The horizontal de Rham differential on Ẽ is d̃h = ∑i dxi ∧ D̃i. A covering is linear if

Xα
i = ∑

β

Xα
i,βwβ, (4)

where Xα
i,β ∈ F (E ).

Remark 2. Denote by Xi the F (E )-valued matrix (Xα
i,β) that appears in (4). Then Equation (3) may be

rewritten as
Di(Xj)− Dj(Xi) + [Xi, Xj] = 0.

for linear coverings. Thus, a linear covering defines a zero-curvature representation for E and vice versa.

A nonlocal symmetry in τ is a vector field

Sϕ,ψ = ∑ D̃σ(ϕj)
∂

∂uj
σ

+ ∑ ψα ∂

∂wα
,

where the vector functions ϕ = (ϕ1, . . . , ϕm) and ψ = (ψ1, . . . , ψα, . . . ) on Ẽ satisfy the system of
equations

∑
∂Fj

∂uj
σ

D̃σ(ϕj) = 0, (5)

D̃i(ψ
α) = ∑

∂Xα
i

∂uj
σ

D̃σ(ϕj) + ∑
∂Xα

i
∂wβ

ψβ. (6)

Nonlocal shadows are the derivations

Ẽϕ = ∑ D̃σ(ϕj)
∂

∂uj
σ

,

where ϕ satisfies Equation (5), invisible symmetries are

S0,ψ = ∑ ψα ∂

∂wα
,

where ψ satisfies

D̃i(ψ
α) = ∑

∂Xα
i

∂wβ
ψβ. (7)

In what follows, we use the notation τI : Ẽ I → Ẽ for the covering defined by Equation (7).

Remark 3. Equation (7) defines a linear covering over Ẽ . Due to Remark 2, we see that for any non-Abelian
covering we obtain in such a way a nonlocal zero-curvature representation with the matrices Xi = (∂Xα

i /∂wβ).

Remark 4. The covering τI : Ẽ I → Ẽ is the vertical part of the tangent covering t : T Ẽ → Ẽ , see the
definition in [15].

3. The Main Result

From now on we consider two-dimensional scalar equations with the independent variables x
and y. We shall show that any such an equation that admits an irreducible covering possesses a
(nonlocal) conservation law.
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Example 1. Let us revisit the Bianchi example discussed in the beginning of the paper. Equation (1) define
a one-dimensional non-Abelian covering τ : Ẽ = E × R → E over the sine-Gordon Equation (2) with the
nonlocal variable w. Then the defining Equation (7) for invisible symmetries in this covering are

∂ψ

∂x
= − cos(u + w)ψ,

∂ψ

∂y
= − cos(u− w)ψ.

This is a one-dimensional linear covering over Ẽ which is equivalent to the Abelian covering

∂ψ̄

∂x
= − cos(u + w),

∂ψ̄

∂y
= − cos(u− w),

where ψ̄ = ln ψ. Thus, we obtain the nonlocal conservation law

ω = − cos(u + w) dx− cos(u− w) dy

of the sine-Gordon equation.

The next result shows that Bianchi’s observation is of a quite general nature.

Proposition 1. Let τ : Ẽ → E be a one-dimensional non-Abelian covering over E . Then, if τ is irreducible,
τI : Ẽ I → Ẽ defines a nontrivial conservation law of the equation Ẽ (and, consequently, of E too).

Proof. Consider the total derivatives

DI
x = D̃x +

∂X
∂w

ψ
∂

∂ψ
= Dx + X

∂

∂w
+

∂X
∂w

ψ
∂

∂ψ

DI
y = D̃y +

∂Y
∂w

ψ
∂

∂ψ
= Dy + Y

∂

∂w
+

∂Y
∂w

ψ
∂

∂ψ

on E I and assume that a ∈ F (Ẽ ) is a common nontrivial integral of these fields:

DI
x(a) = DI

y(a) = 0, a 6= const . (8)

Choose a point in E I and assume that the formal series

a0 + a1ψ + · · ·+ ajψ
j + . . . , aj ∈ F (Ẽ ), (9)

converges to a in a neighborhood of this point. Substituting relations (9) to (8) and equating coefficients
at the same powers of ψ, we get

D̃x(aj) + j
∂X
∂w

aj = 0, D̃y(aj) + j
∂Y
∂w

aj = 0, j = 0, 1, . . . ,

and, since τ is irreducible, this implies that a0 = k0 = const and

D̃x(aj)

aj
= j

D̃x(a1)

a1
,

D̃y(aj)

aj
= j

D̃y(a1)

a1
.

Hence, aj = k j(a1)
j, j > 0. Substituting these relations to (9), we see that a = a(θ), where θ = a1ψ,

a1 ∈ F (E ). Then Equation (8) take the form

ȧψ

(
D̃x(a1) +

∂X
∂w

)
= 0, ȧψ

(
D̃y(a1) +

∂Y
∂w

)
= 0, ȧ =

da
dθ

.
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Thus
∂X
∂w

= −D̃x(a1),
∂Y
∂w

= −D̃y(a1)

and the function w + a1 is a nontrivial integral of D̃x and D̃y. Contradiction.
Finally, repeating the scheme of Example 1, we pass to the equivalent covering by setting ψ̄ = ln ψ

and obtain the nontrivial conservation law

ω =
∂X
∂w

dx +
∂Y
∂w

dy

on E I.

Indeed, Bianchi’s result has a further generalization. To formulate the latter, let us say that a
covering τ : Ẽ → E is strongly non-Abelian if for any nontrivial conservation law ω of the equation E

its lift τ∗(ω) to the manifold Ẽ is nontrivial as well. Now, a straightforward generalization of
Proposition 1 is

Proposition 2. Let τ : Ẽ → E be an irreducible covering over a differentially connected equation. Then τ is a
strongly non-Abelian covering if and only if the covering τI is irreducible.

We shall now need the following construction. Let τ : Ẽ → E be a linear covering. Consider
the fiber-wise projectivization τP : Ẽ P → E of the vector bundle τ. Denote by p : Ẽ → E P the natural
projection. Then, obviously, the projection p∗(C̃ ) is well defined and is an n-dimensional integrable
distribution on E P. Thus, we obtain the following commutative diagram of coverings

Ẽ
p

//

τ
��

E P

τP
~~

E ,

where rank(p) = 1 and rank(τP) = rank(τ)− 1.

Proposition 3. Let τ : Ẽ → E be an irredicible covering. Then the covering τP is irreducible as well.

Coordinates. Let rank(τ) = l > 1 and

wα
xi =

l

∑
β=1

Xα
i,βwβ, i = 1, . . . , n, α = 1, . . . , l, (10)

be the defining equations of the covering τ, see Equation (4). Choose an affine chart in the fibers of τP.
To this end, assume for example that wl 6= 0 and set

w̄α =
wα

wl , l = 1, . . . , l − 1,

in the domain under consideration. Then from Equation (10) it follows that the system

w̄α
xi = Xα

i,l − Xl
i,lw̄

α +
l−1

∑
β=1

Xα
i,βw̄β − w̄α

l−1

∑
β=1

Xl
i,βw̄β, i = 1, . . . , n, α = 1, . . . , l − 1.

locally provides the defining equation for the covering τP.
We are now ready to state and prove the main result.
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Theorem 1. Assume that a differentially connected two-dimensional equation E admits a nontrivial covering
τ : Ẽ → E of finite rank. Then it possesses at least one nontrivial (nonlocal) conservation law.

Proof. Actually, the proof is a description of a procedure that allows one to construct the desired
conservation law.

Note first that we may assume the covering τ to be irreducible. Indeed, otherwise the space Ẽ

is foliated by maximal integral manifolds of the distribution C̃ . Let l0 denote the codimension of the
generic leaf and l = rank(τ). Then

• l > l0, because τ is a nontrivial covering;
• the integral leaves project to E surjectively, because E is a differentially connected equation.

This means that in vicinity of a generic point we can consider τ as an l0-parametric family of irreducible
coverings whose rank is r = l − l0 > 0. Let us choose one of them and denote it by τ0 : E0 → E .

If τ0 is not strongly non-Abelian, then this would mean that E possesses at least one nontrivial
conservation law and we have nothing to prove further. Assume now that the covering τ0 is strongly
non-Abelian. Then due to Proposition 2 the linear covering τI

0 is irreducible and by Proposition 3

its projectivization τ1 = (τI
0)

P possesses the same property and rank(τ1) = r − 1. Repeating the
construction, we arrive to the diagram

E I
0

p
��

τI
0

ww

. . . E I
r−2

p
��

τI
r−2

vvE E0
τ0oo (E I

0 )
P
= E1

τ1=(τI
0)

P
oo . . .oo (E I

r−2)
P
= Er−1,

τr−1=(τI
r−2)

P
oo

where rank(τi) = l − i. Thus, in r− 1 steps at most we shall arrive to a one-dimensional irreducible
covering and find ourselves in the situation of Proposition 1 and this finishes the proof.

4. Examples

Let us discuss several illustrative examples.

Example 2. Consider the Korteweg-de Vries equation in the form

ut = uux + uxxx (11)

and the well known Miura transformation [16]

u = wx −
1
6

w2.

The last formula is a part of the defining equations for the non-Abelian covering

wx = u +
1
6

w2,

wt = uxx +
1
3

wux +
1
3

u2 +
1

18
w2u,

the covering equation being

wt = wxxx −
1
6

w2wx,
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i.e., the modified KdV equation. Then the corresponding covering τI is defined by the system

ψx =
1
3

wψ,

ψt =
1
3

(
ux +

1
3

wu
)

ψ

that, after relabeling ψ 7→ 3 ln ψ gives us the nonlocal conservation law

ω = w dx +

(
ux +

1
3

wu
)

dt

of the KdV equation.

Example 3. The well known Lax pair, see [17], for the KdV equation may be rewritten in terms of zero-curvature
representation

Dx(T)− Dt(X) + [X, T] = 0.

The (2× 2) matrices X and T become much simpler if we present the equation in the form

ut = 6uux − uxxx.

In this case, they are

X =

(
0 1

u− λ 0

)
, T =

(
−ux 2(u + 2λ)

2u2 − uxx + 2λu− 4λ2 ux

)
,

λ ∈ R being a real parameter. As it follows from Remark 2, this amounts to existence of the two-dimensional
linear covering τ given by the system

w1,x = w2,

w1,t = −uxw1 + 2(u + 2λ)w2,

w2,x = (u− λ)w1,

w2,t = (2u2 − uxx + 2λu− 4λ2)w1 + uxw2.

Let us choose for the affine chart the domain w2 6= 0 and set ψ = w1/w2. Then the covering τP is described by
the system

ψx = 1− (u− λ)ψ,

ψt = 2(u + 2λ)− 2uxψ− (2u2 − uxx + 2λu− 4λ2)ψ2,

while τ1 = (τP)
I is given by

ψ̃x = (λ− u)ψ̃,

ψ̃t = −2
(
ux + (2u2 − uxx + 2λu− 4λ2)ψ

)
ψ̃.

Thus, we obtain the conservation law

ω = (λ− u) dx− 2
(
ux + (2u2 − uxx + 2λu− 4λ2)ψ

)
dt

that depends on the nonlocal variable ψ.
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Example 4. Consider the potential KdV equation in the form

ut = 3u2
x + uxxx

Its Bäcklund auto-transformation is associated to the covering τ

wx = λ− ux −
1
2
(w− u)2,

wt = 2λ2 − 2λux − u2
x − uxxx + 2uxx(w− u)− (λ + ux)(w− u)2,

where λ ∈ R, see [18]. Then the covering τI is

ψx = −(w− u)ψ,

ψt = 2
(
uxxψ− (λ + ux)(w− u)

)
ψ,

which leads to the nonlocal conservation law

ω = −(w− u) dx + 2
(
uxxψ− (λ + ux)(w− u)

)
dt

of the potential KdV equation.

Example 5. The Gauss-Mainardi-Codazzi equations read

uxy =
g− f h
sin u

, fy = gx +
h− g cos u

sin u
ux, gy = hx −

f − g cos u
sin u

uy, (12)

see [19]. This is an under-determined system, and imposing additional conditions on the unknown functions u,
f , g, and h one obtains equations that describe various types of surfaces in R2, cf. [20]. System (12) always
admits the following C-valued zero-curvature representation

Dx(Y)− Dy(X) + [X, Y] = 0

with the matrices

X =
i
2

 ux
eiu f − g

sin u
e−iu f − g

sin u
−ux

 , Y =
i
2

 0
eiug− h

sin u
e−iug− h

sin u
0


The corresponding two-dimensional linear covering τ is defined by the system

w1
x = uxw1 +

eiu f − g
sin u

w2,

w1
y =

eiug− h
sin u

w2,

w2
x =

e−iu f − g
sin u

w1 − uxw2,

w2
y =

e−iug− h
sin u

w1.

Hence, the covering τP in the domain w2 6= 0 is

ψx =
eiu f − g

sin u
+ 2uxψ− e−iu f − g

sin u
ψ2, ψy =

eiug− h
sin u

− e−iug− h
sin u

ψ2.

Thus, the covering (τP)
I, given by

ψ̃x = 2
(

ux −
e−iu f − g

sin u
ψ

)
ψ̃, ψ̃y = −2

e−iug− h
sin u

ψψ̃,
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defines the nonlocal conservation law

ω =

(
ux −

e−iu f − g
sin u

ψ

)
dx− e−iug− h

sin u
ψ dy

of the Gauss-Mainardi-Codazzi equations.

Example 6. The last example shows that the above described techniques fail for infinite-dimensional coverings
(such coverings are typical for equations of dimension greater than two).

Consider the equation
uyy = utx + uyuxx − uxuxy

that arises in the theory of integrable hydrodynamical chains, see [21]. This equation admits the covering τ with
the nonlocal variables wi, i = 0, 1, . . . , that enjoy the defining relations

w0
t + uyw1

x = 0, w0
y + uxw1

x = 0,

wi
x = wi+1, i ≥ 0,

wi
t + Di

x(uyw1
x) = 0, wi

y + Di
x(uxw1

x) = 0, i ≥ 1.

see [22]. This is a linear covering, but its projectivization does not lead to construction of conservation laws.

5. Discussion

We described a procedure that allows one to associate, in an algorithmic way, with any nontrivial
finite-dimensional covering over a differentially connected equation a nonlocal conservation law.
Nevertheless, this method fails in the case of infinite-dimensional coverings. It is unclear, at the
moment at least, whether this is an immanent property of such coverings or a disadvantage of the
method. I hope to clarify this in future research.
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