
symmetryS S

Article

An Integral Operational Matrix of Fractional-Order
Chelyshkov Functions and Its Applications

M. S. Al-Sharif, A. I. Ahmed * and M. S. Salim

Department of Mathematics, Faculty of Science, Al-Azhar University, Assiut 71254, Egypt;
mto.alsharif@gmail.com (M.S.A.-S.); m_s_salim@yahoo.com (M.S.S.)
* Correspondence: aiahmed@azhar.edu.eg

Received: 26 July 2020; Accepted: 16 October 2020; Published: 23 October 2020
����������
�������

Abstract: Fractional differential equations have been applied to model physical and engineering
processes in many fields of science and engineering. This paper adopts the fractional-order Chelyshkov
functions (FCHFs) for solving the fractional differential equations. The operational matrices of fractional
integral and product for FCHFs are derived. These matrices, together with the spectral collocation
method, are used to reduce the fractional differential equation into a system of algebraic equations.
The error estimation of the presented method is also studied. Furthermore, numerical examples
and comparison with existing results are given to demonstrate the accuracy and applicability of the
presented method.
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1. Introduction

Fractional differential and integral operators are generalizations of differential and integral
operators of integer order. In physical sciences, differential equations are used to model phenomena.
However, differential equations of integer order cannot give acceptable results for complex systems.
So, fractional differential equations are used to improve these models [1–4]. Several papers have been
devoted for studying existence and uniqueness of solutions to the fractional differential equations [5,6].
Solving fractional differential equations is a desirable objective. There are some issues in solving these
equations analytically except for a limited number of these equations. So, several studies have been
reported for the development of new methods for finding numerical or approximate solutions, such as
fractional differential transformation method [7], Adomian decomposition method [8], homotopy
perturbation method [9], homotopy analysis method [10], variational iteration method [11], Galerkin
method [12], collocation method [13], wavelet method [14], B-Spline operational matrix method [15]
and Jacobi operational matrix method [16].

Spectral methods, finite differences and finite element methods are the main methods of
discretization that provide a numerical solution of differential equations. The spectral methods
have the advantage that they are accurate for a given number of unknowns [17,18]. These methods
exhibit exponential rates of convergence/spectral accuracy for smooth problems, and this differs
from finite difference and finite element methods, which offer only algebraic convergence rates [19].
In spectral methods, the solution of differential equations is approximated as an expansion in terms
of orthogonal polynomials. The most commonly used spectral schemes are the collocation, tau and
Galerkin approaches [20,21].
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Orthogonal functions play an important role in finding numerical solution of differential equations.
These functions simplify the treatment of differential equations via converting its solution into the solution
of a system of algebraic equations. Some examples are shifted Legendre polynomials [22], Chebyshev
wavelets [23], shifted Chebyshev polynomials [17], shifted Jacobi polynomials [24], block pulse operational
matrix [25], etc. Orthogonal Chelyshkov polynomials were presented in [26]. Using these polynomials,
a solution has been given of weakly singular integral equations in [27], Volterra–Fredholm integral
equations in [28], linear functional integro-differential equations with variable coefficients in [29] and
Volterra–Fredholm–Hammerstein integral equations in [30]. Furthermore, the operational matrix of
fractional derivatives based on Chelyshkov polynomials for solving multi-order fractional differential
equations has been presented in [31] and the operational matrix of fractional integration to solve a class of
nonlinear fractional differential equations has been introduced in [32]. Recently, Talaei [33] has proposed
a numerical algorithm based on FCHFs for solving linear weakly singular Volterra integral equation.

Solving fractional differential equations by using series expansion of the form
n
∑

i=0
qixiα(x), α > 0,

such as Adomian’s decomposition method, homotopy perturbation method and He’s variational
iteration method, is a common and efficient method [34]. So, building orthogonal functions of
fractional-order may be useful in solving fractional differential equations more successfully.

The motivation of this paper is to construct the FCHFs based on Chelyshkov polynomials.
Additionally, the operational matrices of the fractional integration and product for FCHFs are derived.
In addition to that, an application of FCHFs for solving linear and nonlinear fractional differential
equations is presented. The paper is organized as follows. Following this introduction, some definitions
and preliminaries of fractional calculus, as well as the FCHFs and their properties are presented in
Section 2. In Section 3, we investigate the error of the proposed method. The FCHFs operational
matrices of fractional integration and product are given in Section 4. Section 5 presents a new
technique to use the FCHFs operational matrices for solving multi-order fractional differential equation.
The performance of the proposed algorithm is reported in Section 6 with satisfactory numerical results.
Finally, the paper ends with conclusions in Section 7.

2. Preliminaries

2.1. Fractional Calculus

Now, we will present some definitions and properties of fractional integration and differentiation
which will be used throughout this article [35,36]. In the literature, one can find many definitions
of fractional integration of order α ≥ 0, but these definitions may not equivalent to each other [37].
The definition of Riemann–Liouville is the more widely used, which can be stated as follows

Definition 1. The Riemann–Liouville fractional integral operator of order α ≥ 0 of a function y(x) is given by

Iαy(x) =


1

Γ(α)

∫ x

0
(x− t)α−1y(t)dt, α > 0, x > 0,

y(x), α = 0.
(1)

For Riemann–Liouville fractional integral operator Iα we have

Iαxη =
Γ(η + 1)

Γ(η + α + 1)
xη+α, η ≥ −1, (2)

Iα Iγy(x) = Iα+γy(x) = Iγ Iαy(x), α, γ ≥ 0, (3)

Iα(λ1y1(x) + λ2y2(x)) = λ1 Iαy1(x) + λ2 Iαy2(x), (4)

where λ1 and λ2 are constants.
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Definition 2. The fractional derivative of order α > 0 in the Caputo sense is defined in the form

Dαy(x) = Idαe−αDdαey(x) =
1

Γ(dαe − α)

∫ x

0
(x− t)dαe−α−1y(dαe)(t)dt, dαe − 1 < α ≤ dαe, x > 0 (5)

where dαe is the smallest integer greater than or equal to α.

Some characteristics of the operator Dα are given as follows

Dαxη =


0, η ∈ N0 & η < dαe,

Γ(η + 1)
Γ(η − α + 1)

xη−α, η ∈ N0 & η ≥ dαe or η /∈ N & η > bαc,
(6)

DαC = 0, C is constant, (7)

Dα Iαy(x) = y(x), (8)

IαDαy(x) = y(x)−
dαe−1

∑
i=0

y(i)(0+)
i!

xi, x > 0, (9)

Dα(µ1y1(x) + µ2y2(x)) = µ1Dαy1(x) + µ2Dαy2(x), (10)

where bαc denotes the largest integer less than or equal to α, N = {1, 2, . . .}, N0 = {0, 1, 2, . . .} and µ1,
µ2 are constants.

Definition 3. (Generalized Taylor’s formula). Assume that Djηy(x) ∈ C(0, 1] for j = 0, 1, . . . , n + 1 and
0 < η ≤ 1, then

y(x) =
n

∑
l=0

xlη

Γ(lη + 1)
Dlηy(0+) +

x(n+1)η

Γ ((n + 1)η + 1)
D(n+1)ηy(z), 0 < z ≤ x, ∀x ∈ (0, 1], (11)

where Dlη = Dη Dη . . . Dη︸ ︷︷ ︸
l times

.

In the case of η = 1, the generalized Taylor’s formula reduces to the classical Taylor’s formula.

2.2. Fractional Chelyshkov Functions

The set Cn = {Cni}n
i=0 of Chelyshkov polynomials is a set of orthogonal polynomials of degree n

over the interval [0, 1] with the weight function ω(z) = 1 and has the form

Cni(z) =
n

∑
j=i

(−1)j−i

(
n− i
j− i

)(
n + j + 1

n− i

)
zj, i = 0, 1, . . . n. (12)

It can be seen that, all members of the set Cn have the same degree n, which represents the
main difference with other sets of orthogonal polynomials. The orthogonality condition of these
polynomials is ∫ 1

0
Cnl(z)Cnr(z)dz =


0, l 6= r,

1
l + r + 1

, l = r,
l, r = 0, 1, . . . , n. (13)

Chelyshkov polynomials Cni(z) are related to Jacobi polynomials P(α,β)
m (z), where α, β > −1 and

m ≥ 0 by the following relation

Cni(z) = (−1)n−iziP(0,2i+1)
n−i (2z− 1), i = 0, 1, . . . , n. (14)
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The fractional-order Chelyshkov functions (FCHFs) can be built by substituting z = xη and
η > 0 in the Chelyshkov polynomials. Suppose that Cη

ni(x) denotes the FCHFs Cni(xη). Then,
from Equation (12), Cη

ni(x) can be defined as

Cη
ni(x) =

n

∑
j=i

(−1)j−i

(
n− i
j− i

)(
n + j + 1

n− i

)
xjη , i = 0, 1, . . . n. (15)

These functions are orthogonal with respect to the weight function ωη(x) = xη−1 over the interval
[0, 1] and satisfy the orthogonality property

∫ 1

0
Cη

nl(x)Cη
nr(x)ωη(x)dx =


0, l 6= r,

1
η(l + r + 1)

, l = r,
l, r = 0, 1, . . . , n. (16)

Let the FCHFs vector be

Cη(x) =
(

Cη
n0(x), Cη

n1(x), . . . , Cη
nn(x)

)T
, (17)

which can take the form
Cη(x) = EXη(x), (18)

where the vector Xη(x) and the upper triangular matrix E are given by

Xη(x) =
(

1, xη , x2η , . . . , xnη
)T

, (19)

E = [eij]
n
i,j=0, eij =


0, 0 ≤ j < i,

(−1)j−i
(

n− i
j− i

)(
n + j + 1

n− i

)
, i ≤ j ≤ n.

(20)

3. Function Approximation and Error Estimation

Assume that Λ = [0, 1] and define the weighted space L2
ωη
(Λ) by

L2
ωη
(Λ) =

{
ρ : Λ −→ R; ρ is measurable on Λ &

∫ 1

0
|ρ(x)|2ωη(x)dx < ∞

}
, (21)

with inner product and norm

〈ρ, σ〉ωη =
∫ 1

0
ρ(x)σ(x)ωη(x)dx, (22)

‖ρ‖ωη = 〈ρ, ρ〉
1
2
ωη . (23)

Suppose that Sn = span
{

Cη
n0(x), Cη

n1(x), . . . , Cη
nn(x)

}
, which is finite dimensional and closed

subspace of L2
ωη
(Λ), then for each y(x) ∈ L2

ωη
(Λ) there is a unique best approximation yn(x) ∈ Sn

that satisfies
‖y− yn‖ωη ≤ ‖y− ξ‖ωη , ∀ξ ∈ Sn. (24)

Additionally, yn(x) ∈ Sn, thus it can be expanded in terms of FCHFs as

yn(x) =
n

∑
i=0

qiC
η
ni(x) = QTCη(x), (25)
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where the coefficient vector Q is given by

Q =
(

q0, q1, . . . , qn

)T
, qi =

〈y, Cη
ni〉ωη

〈Cη
ni, Cη

ni〉ωη

, i = 0, 1, . . . , n. (26)

The following theorem gives an upper bound for estimating the error.

Theorem 1. Assume that Djηy(x) ∈ C(0, 1] for j = 0, 1, . . . , n + 1 and yn(x) is the best approximation to y
out of Sn then the error bound is given by

‖y(x)− yn(x)‖ωη ≤
Mη

Γ ((n + 1)η + 1)

√
1

(2n + 3)η
, (27)

where
Mη = sup

{
|D(n+1)ηy(x)|

}
, x ∈ (0, 1]. (28)

Proof. Let p(x) be the generalized Taylor’s formula of y(x), then from Definition 3 we get

p(x) =
n

∑
l=0

xlη

Γ(lη + 1)
Dlηy(0+), x ∈ (0, 1], (29)

with error bound as

|y(x)− p(x)| =
∣∣∣∣∣ x(n+1)η

Γ ((n + 1)η + 1)
D(n+1)ηy(z)

∣∣∣∣∣ , 0 < z ≤ x

≤
Mη x(n+1)η

Γ ((n + 1)η + 1)
. (30)

However, p(x) ∈ Sn and yn is the best approximation to y from Sn then

‖y(x)− yn(x)‖2
ωη
≤ ‖y(x)− p(x)‖2

ωη

=
∫ 1

0
(y(x)− p(x))2ωη(x)dx

≤
∫ 1

0

(
Mη x(n+1)η

Γ ((n + 1)η + 1)

)2

ωη(x)dx

=
M2

η

Γ ((n + 1)η + 1)2

∫ 1

0
x(2n+3)η−1dx

=
M2

η

Γ ((n + 1)η + 1)2 (2n + 3)η
, (31)

and by taking the square roots, we have the desired result.

4. The Fractional Integration Operational Matrix of FCHFs

In this section, the FCHFs operational matrices of fractional integration and product are obtained,
which can be built easily and their numerical results are accurate.

Theorem 2. Suppose Cη(x) is the FCHFs vector, then

IαCη(x) ' P(α)Cη(x), (32)
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where P(α) = [pik]
n
i,k=0 is the (n + 1)× (n + 1) operational matrix of fractional integration of order α > 0 in

the Riemann–Liouville sense and its elements are given by

pik =
n

∑
l=i

n

∑
s=k

(−1)l+s−i−k η(2k + 1)Γ(lη + 1)
(η(l + s + 1) + α) Γ(lη + α + 1)

(
n− i
l − i

)(
n + l + 1

n− i

)(
n− k
s− k

)(
n + s + 1

n− k

)
. (33)

Proof. By integrating Equation (18), we obtain

IαCη(x) = IαEXη(x)

= EIαXη(x), (34)

and by using Equation (2), we get

IαXη(x) =
(

1
Γ(α + 1)

xα,
Γ(η + 1)

Γ(η + α + 1)
xη+α,

Γ(2η + 1)
Γ(2η + α + 1)

x2η+α, . . . ,
Γ(nη + 1)

Γ(nη + α + 1)
xnη+α

)T

= BXη(x), (35)

where

B = diag
(

1
Γ(α + 1)

,
Γ(η + 1)

Γ(η + α + 1)
,

Γ(2η + 1)
Γ(2η + α + 1)

, . . . ,
Γ(nη + 1)

Γ(nη + α + 1)

)
, (36)

Xη(x) =
(

xα, xη+α, x2η+α, . . . , xnη+α
)T

. (37)

The vector Xη(x) can be approximated in terms of FCHFs as follows

xrη+α '
n

∑
k=0

arkCη
nk(x), r = 0, 1, . . . , n, (38)

where ark can be obtained from Equations (15) and (26) as follows

ark = η(2k + 1)
∫ 1

0
xrη+αCη

nk(x)ωη(x)dx

= η(2k + 1)
n

∑
s=k

(−1)s−k
(

n− k
s− k

)(
n + s + 1

n− k

) ∫ 1

0
x(r+s+1)η+α−1dx

= η(2k + 1)
n

∑
s=k

(−1)s−k

η(r + s + 1) + α

(
n− k
s− k

)(
n + s + 1

n− k

)
. (39)

Then,
Xη(x) ' ACη(x), (40)

where A = [ark]
n
r,k=0

is a (n + 1)× (n + 1) matrix and its elements are given by Equation (39).
From Equations (34), (35) and (40), we can write

IαCη(x) ' EBACη(x), (41)

and by using Equations (20), (36) and (39) for multiplying the matrices E, B and A, we get

IαCη(x) ' P(α)Cη(x). (42)

Remark 1. It can be noted that the operational matrix of fractional integration in [32] is a special case of the
operational matrix of fractional integration of FCHFs with η = 1.
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In the following, we present the operational matrix of product of two FCHFs vectors, which will
be useful to reduce the fractional differential equation into a set of algebraic equations.

Theorem 3. Suppose U = [u0, u1, . . . , un]T is an arbitrary vector, then

Cη(x)CT
η (x)U ' UCη(x), (43)

where

U = [url ]
n
r,l=0, url =

n

∑
k=0

n

∑
j=0

n

∑
i=0

ujejierkhikl , hikl = (2l + 1)
n

∑
s=l

(−1)s−l

i + k + s + 1

(
n− l
s− l

)(
n + s + 1

n− l

)
. (44)

Proof. From Equations (18)–(20), we have

Cη(x)CT
η (x)U = EXη(x)XT

η (x)ETU

=



n
∑

k=0

n
∑

j=0

n
∑

i=0
ujejie0kx(i+k)η

n
∑

k=0

n
∑

j=0

n
∑

i=0
ujejie1kx(i+k)η

...
n
∑

k=0

n
∑

j=0

n
∑

i=0
ujejienkx(i+k)η


. (45)

Now, we approximate x(i+k)η for i, k = 0, 1, 2, . . . , n, in terms of FCHFs, as follows

x(i+k)η '
n

∑
l=0

hiklC
η
nl(x), (46)

where

hikl = η(2l + 1)
∫ 1

0
x(i+k)ηCη

nl(x)ωη(x)dx

= η(2l + 1)
n

∑
s=l

(−1)s−l
(

n− l
s− l

)(
n + s + 1

n− l

) ∫ 1

0
x(i+k+s+1)η−1dx

= (2l + 1)
n

∑
s=l

(−1)s−l

i + k + s + 1

(
n− l
s− l

)(
n + s + 1

n− l

)
. (47)

Then, for every r = 0, 1, . . . , n, we get

n

∑
k=0

n

∑
j=0

n

∑
i=0

ujejierkx(i+k)η '
n

∑
k=0

n

∑
j=0

n

∑
i=0

ujejierk

n

∑
l=0

hiklC
η
nl(x)

=
n

∑
l=0

(
n

∑
k=0

n

∑
j=0

n

∑
i=0

ujejierkhikl

)
Cη

nl(x)

=
n

∑
l=0

urlC
η
nl(x). (48)



Symmetry 2020, 12, 1755 8 of 17

By using Equation (48) into Equation (45) we obtain

Cη(x)CT
η (x)U '



n
∑

l=0
u0lC

η
nl(x)

n
∑

l=0
u1lC

η
nl(x)

...
n
∑

l=0
unlC

η
nl(x)


= UCη(x), (49)

which completes the proof.

5. Solution Method

In this section, the operational matrices of fractional integral and product for FCHFs together
with the spectral collocation method are applied for solving the fractional differential equations.

Consider the multi-order fractional differential equation

F(x, y(x), Dα1 y(x), Dα2 y(x), . . . , Dαm y(x), Dαy(x)) = 0, (50)

with initial conditions
y(i)(0) = λi, i = 0, 1, . . . , dαe − 1, (51)

where, y(x) is the unknown function, 0 < α1 < α2 < . . . < αm < α, x ∈ [0, 1] and Dα denotes the
Caputo fractional derivative of order α. To find a solution of problem (50), we approximate Dαy(x) as

Dαy(x) '
n

∑
k=0

qkCη
nk(x) = QTCη(x). (52)

By using the Riemann–Liouville integral operator Iα and Equations (9) and (32), we get

y(x)−
dαe−1

∑
i=0

y(i)(0)
i!

xi ' QT IαCη(x)

' QT P(α)Cη(x). (53)

Employing Equation (51) in Equation (53) gives

y(x) ' QT P(α)Cη(x) +
dαe−1

∑
i=0

λi
i!

xi. (54)

Therefore, for j = 1, 2, . . . , m

Dαj y(x) ' QT P(α−αj)Cη(x) +
dαe−1

∑
i=0

λi
i!

Dαj xi,

= QT P(α−αj)Cη(x) +
dαe−1

∑
i=dαje

λi
Γ(i− αj + 1)

xi−αj , dαje ≤ dαe − 1, (55)
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clearly if dαje ≥ dαe the second term of Equation (55) will vanish. Combining Equations (54) and
(55) yields

Dαj y(x) ' QT P(α−αj)Cη(x) +
dαe−1

∑
i=dαje

λi
Γ(i− αj + 1)

xi−αj , j = 0, 1, . . . , m, (56)

where α0 = 0. Now, approximate
dαe−1

∑
i=dαje

λi

Γ(i− αj + 1)
xi−αj in terms of FCHFs as

dαe−1

∑
i=dαje

λi
Γ(i− αj + 1)

xi−αj '
n

∑
r=0

gjrCη
nr(x) = GT

j Cη(x), j = 0, 1, . . . , m, (57)

where the vectors Gj = [gj0, gj1, . . . , gjn]
T are given by

gjr = η(2r + 1)
dαe−1

∑
i=dαje

λi

Γ(i− αj + 1)

∫ 1

0
xi−αj Cη

nr(x)ωη(x)dx,

= η(2r + 1)
dαe−1

∑
i=dαje

n

∑
l=r

(−1)l−rλi

Γ(i− αj + 1)

(
n− r
l − r

)(
n + l + 1

n− r

) ∫ 1

0
x(l+1)η+i−αj−1dx,

= η(2r + 1)
dαe−1

∑
i=dαje

n

∑
l=r

(−1)l−rλi(
η(l + 1) + i− αj

)
Γ(i− αj + 1)

(
n− r
l − r

)(
n + l + 1

n− r

)
, j = 0, 1, . . . , m, r = 0, 1, . . . , n. (58)

Then, Equation (56) becomes

Dαj y(x) =
(

QT P(α−αj) + GT
j

)
Cη(x), j = 0, 1, . . . , m. (59)

Additionally, from Theorem 3, we can write

(Dαj y(x))2 =
(

QT P(α−αj) + GT
j

)
Cη(x)CT

η (x)
((

P(α−αj)
)T

Q + Gj

)
,

=
(

QT P(α−αj) + GT
j

)
Q1Cη(x), (60)

where Q1 is the operational matrix of the product, also

(Dαj y(x))3 =
(

QT P(α−αj) + GT
j

)
Q1Cη(x)CT

η (x)
((

P(α−αj)
)T

Q + Gj

)
,

=
(

QT P(α−αj) + GT
j

)
Q2Cη(x), (61)

...

(Dαj y(x))s =
(

QT P(α−αj) + GT
j

)
Qs−2Cη(x)CT

η (x)
((

P(α−αj)
)T

Q + Gj

)
,

=
(

QT P(α−αj) + GT
j

)
Qs−1Cη(x), s ∈ N. (62)

By substituting as needed from Equations (52), (59) and (62) in Equation (50), the multi-order
fractional differential Equation (50) is converted into the following algebraic equation

F
(

x,
(

QT P(α) + GT
0

)
Cη(x),

(
QT P(α−α1) + GT

1

)
Cη(x), . . . ,

(
QT P(α−αm) + GT

m

)
Cη(x), QTCη(x)

)
= 0. (63)
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To find the unknown vector Q, let Ψn = {xi : xi =
i
n , i = 0, 1, .....n} be a set of equidistant nodes

and collocate Equation (63) at the nodes xi, i = 0, 1, .....n, which gives

F
(

xi,
(

QT P(α) + GT
0

)
Cη(xi),

(
QT P(α−α1) + GT

1

)
Cη(xi), . . . ,

(
QT P(α−αm) + GT

m

)
Cη(xi), QTCη(xi)

)
= 0. (64)

Equation (64) represents a system of n + 1 nonlinear algebraic equations and can be solved to find
the vector Q. So, an approximate solution of Equation (50) can be determine.

6. Illustrative Examples

In order to demonstrate the efficiency of the proposed method, we apply it to solve some linear
and nonlinear fractional differential equations. A comparison with other methods reveals that the
presented method is effective and accurate.

Example 1. Consider the inhomogeneous Bagley–Torvik equation [16,22]

D2y(x) + D
3
2 y(x) + y(x) = x + 1,

y(0) = y′(0) = 1.
(65)

The exact solution of this problem is y(x) = x + 1. By using the technique presented in Section 5,
we have

D2y(x) = QTCη(x),

D
3
2 y(x) =

(
QT P( 1

2 ) + GT
1

)
Cη(x), (66)

y(x) =
(

QT P(2) + GT
0

)
Cη(x).

Substituting Equations (66) in (65), gives

QT
(

I + P( 1
2 ) + P(2)

)
Cη(x) +

(
GT

1 + GT
0

)
Cη(x)− x− 1 = 0. (67)

By taking n = 2, η = 1, we obtain

G0 =

(
1
3

,
5
4

,
35
12

)T
, (68)

G1 =
(

0, 0, 0
)T

, (69)

P( 1
2 ) =

1

11
√

π


124
21

3172
315

340
63

−
832
945

64
7

320
27

32
315

−
32
45

32
3

 , (70)

P(2) =
1
7


−

1
15

17
30

3

−
1

180
−

1
20

65
36

1
60

−
1

12
5
12

 . (71)
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Using Equations (68)–(71) and collocate Equation (67) at the nodes xi =
i
2 , i = 0, 1, 2, we obtain(

104
105

+
124

231
√

π

)
q0 −

(
1

1260
+

832

10395
√

π

)
q1 +

(
1

420
+

32

3465
√

π

)
q2 = 0,(

−
55

168
+

172

315
√

π

)
q0 +

(
17
21

+
3232

3465
√

π

)
q1 +

(
107
420
−

1024

3465
√

π

)
q2 +

5
6
= 0, (72)(

281
210

+
388

3465
√

π

)
q0 −

(
103
140
−

64

385
√

π

)
q1 +

(
451
420
−

3104

3465
√

π

)
q2 = 0.

Solving Equation (72) gives Q =
(

0, 0, 0
)T

, and therefore

y(x) = GT
0 C1(x) =

(
1
3

,
5
4

,
35
12

)3− 12x + 10x2

4x− 5x2

x2

 = x + 1, (73)

which is the exact solution. Additionally, for the same n = 2 with η = 1
2 we can obtain the exact

solution, where

G0 =

(
1
3

, 1,
8
3

)T
, (74)

G1 =
(

0, 0, 0
)T

, (75)

P( 1
2 ) =

1
3
√

π


2
3

1
2

335− 108π

6

−
1
3

2
18π − 50

3
1

15
−

2
5

10
3

 , (76)

P(2) =
1
9


−

1
21

1
5

−
1

42
19

420
−

41
140

11
6

5
84

−
1
4

5
6

 . (77)

Similarly, by collocating Equation (67) at the nodes xi =
i
2 , i = 0, 1, 2 and solving the resulting

system, we get the solution Q =
(

0, 0, 0
)T

, which yields

y(x) = GT
0 C 1

2
(x) =

(
1
3

, 1,
8
3

)3− 12
√

x + 10x
4
√

x− 5x
x

 = x + 1. (78)

Example 2. Consider the following linear fractional differential equation [38,39]

D
1
2 y(x) + y(x) =

√
x +

√
π

2
,

y(0) = 0.
(79)
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The exact solution of this problem is y(x) =
√

x. Using the proposed method yields

D
1
2 y(x) = QTCη(x),

y(x) =
(

QT P( 1
2 ) + GT

0

)
Cη(x).

(80)

Equation (79) can be written after using Equation (80) in the form

QT
(

I + P( 1
2 )
)

Cη(x) + GT
0 Cη(x)− 2

√
x +
√

π

2
= 0. (81)

With n = 1 and η = 1
2 , we get

G0 =
(

0, 0
)T

, (82)

P( 1
2 ) =


√

π

8
32− 9π

8
√

π

−
√

π

24
3
√

π

8

 , (83)

and the generated set of linear algebraic equations is(
1 +

√
π

8

)
q0 −

√
π

24
q1 −

√
π

4
= 0,

(
1−

16− 5π

4
√

π

)
q0 −

(
1 +

5
√

π

12

)
q1 + 1 +

√
π

2
= 0.

(84)

The solution of Equation (84) is Q =

(√
π

4
,

3
√

π

4

)T
. Then

y(x) = QT P( 1
2 )C 1

2
(x) =

(√
π

4
,

3
√

π

4

)
√

π

8
32− 9π

8
√

π

−
√

π

24
3
√

π

8


(

2− 3
√

x√
x

)
=
√

x, (85)

which is the exact solution.

Example 3. Consider the nonlinear initial value problem [16,22,31]

D3y(x) + D
5
2 y(x) + y2(x) = x4,

y(0) = y′(0) = 0, y”(0) = 2.
(86)

The exact solution of the problem is y(x) = x2. By applying the method described in Section 5,
we obtain

D3y(x) = QTCη(x),
D

5
2 y(x) =

(
QT P( 1

2 ) + GT
1

)
Cη(x),

y(x) =
(

QT P(3) + GT
0

)
Cη(x),

y2(x) =
(

QT P(3) + GT
0

)
Q1Cη(x).

(87)

where Q1 can be calculated from Equation (43). Equation (87) transforms Equation (86) to

QT
(

I + P( 1
2 ) + P(3)Q1

)
Cη(x) +

(
GT

1 + GT
0 Q1

)
Cη(x)− x4 = 0. (88)
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With n = 3 and η = 1, the resulting system of nonlinear algebraic equations can be written in the form

1

3
(1 +

359

3024
q0 +

13

432
q1 +

11

5040
q2 +

1

3024
q3)

2 + (17−
34816

3003
√

π
)q0 − (21 +

1102592

45045
√

π
)q1 + (11 +

566864

225225
√

π
)q2

+(1 +
23552

45045
√

π
)q3 −

1

3
= 0,

1

12
(4 +

55

108
q0 +

269

945
q1 +

991

12600
q2 +

47

7560
q3)

2 + (2 +
12192

9009
√

π
)q0 + (−3 +

90544

45045
√

π
)q1 + (4 +

234884

9009
√

π
)q2

+(2 +
67264

45045
√

π
)q3 −

4

3
= 0,

(1 +
125

1008
q0 +

67

720
q1 +

211

5040
q2 +

13

1680
q3)

2 + (−1 +
512

1001
√

π
)q0 + (1 +

1024

3003
√

π
)q1 + (−1 +

2084

45045
√

π
)q2

+(1 +
8192

9009
√

π
)q3 − 1 = 0,

4(
1

2520
q1 −

1

10080
q2 −

1

10080
q3)

2 + (1 +
32

77
√

π
)q0 −

304

4095
√

π
q1 +

128

9009
√

π
q2 −

64

45045
√

π
q3 = 0.

(89)

The solution of system (89) is Q =
(

0, 0, 0, 0
)T

, which leads to the exact solution.

Example 4. Consider the nonlinear multi-order fractional differential equation [40]

Dαy(x) + y2(x) = x +

(
xα+1

Γ(α + 2)

)2

, 0 < α ≤ 2,

y(0) = y′(0) = 0.

(90)

The problem has the exact solution y(x) =
xα+1

Γ(α + 2)
. Applying the proposed technique in

Section 5 for this problem, we get

Dαy(x) = QTCη(x),
y(x) =

(
QT P(α) + GT

0

)
Cη(x),

y2(x) =
(

QT P(α) + GT
0

)
Q1Cη(x).

(91)

Then (90) takes the form

QT
(

I + P(α)Q1

)
Cη(x) + GT

0 Q1Cη(x)− x−
(

xα+1

Γ(α + 2)

)2

= 0. (92)
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Consider α = 1 with the exact solution y(x) =
x2

2
. For solving this case we take n = 2 and η = 1,

which leads to the following system of nonlinear algebraic equations

1
36

q2
0 +

1
144

q2
1 +

1
3600

q2
2 −

1
36

q0q1 +
1

180
q0q2 +

1
360

q1q2 + 3q0 = 0,

25
144

q2
0 +

49
576

q2
1 +

121
14400

q2
2 +

35
144

q0q1 +
55
720

q0q2 +
77

1440
q1q2 −

1
2

q0 +
3
4

q1 +
1
4

q2 −
33
64

= 0,

1
36

q2
0 +

25
144

q2
1 +

361
3600

q2
2 +

5
36

q0q1 +
19
180

q0q2 +
95

360
q1q2 + q0 − q1 + q2 −

5
4
= 0.

(93)

Solving these equations yields Q =

(
0,

1
4
,

5
4

)T
, which leads to the exact solution.

Example 5. Consider the following fractional differential equation [31]

Dy(x) + D
1
4 y(x) + y(x) =

5
2

x
3
2 + x

5
2 +

15
8

√
π

Γ( 13
4 )

x
9
4 ,

y(0) = 0.
(94)

The exact solution of this problem is y(x) = x2√x. Table 1 shows a comparison of the results
obtained by the present method and those in [31] in terms of L∞

ωη
and L2

ωη
errors for different values of n

and η. Note that the results for the method that we compare have been executed by the method in [31]
and we use these results to make a direct comparison with the presented method. Symbol “–” means
that the result for n is unavailable for that method. From Table 1, it can be seen that the errors achieved
by the presented method are less than those in [31] for all values of n. In addition to that, when n
increases, the errors are reduced until they become zero at n = 10, η = 0.25 and n = 13, η = 0.25.
This means that the presented method is more accurate than that in [31] for this problem.

Table 1. Comparison of the results for Example 5.

n
Our Method Talaei’s [31]

η L∞
ωη

L2
ωη

L∞ L2

4 1.0 3.82 × 10−4 3.81 × 10−4 1.21 × 10−3 5.92 × 10−4

8 0.5 1.18 × 10−7 4.06 × 10−7 5.80 × 10−5 2.50 × 10−5

10 0.25 0.0 0.0 – –
13 0.25 0.0 0.0 – –
16 0.25 8.13 × 10−17 5.36 × 10−17 2.45 × 10−6 9.89 × 10−7

20 0.25 1.78 × 10−15 0.0 8.59 × 10−7 3.42 × 10−7

Example 6. Consider the fractional differential equation [31,41,42]

Dαy(x) + y(x) = x4 −
1
2

x3 −
3

Γ(4− α)
x3−α +

24
Γ(5− α)

x4−α, 0 < α < 1,

y(0) = 0.
(95)

The exact solution of this problem is y(x) = x4 −
1
2

x3. Table 2 describes the results obtained by

the present method and those in [31,41] in terms of L2
ωη

errors for different values of n with α =
1
4
.

It can be seen that the new method performs better than the method in [31] and much better than the
technique in [41]. The error achieved by the presented method becomes smaller and smaller with the



Symmetry 2020, 12, 1755 15 of 17

increment of n and converge to zero at n = 20. Which means that the introduced method is more
coincidental with exact solutions than those in [31,41].

Table 2. Comparison of the results for Example 6.

n
Our Method Talaei’s [31] Chen’s [41]

η L2
ωη

L2 L2

8 0.5 5.68 × 10−6 3.07 × 10−7 4.50 × 10−3

16 0.25 6.70 × 10−17 2.87 × 10−9 1.80 × 10−3

20 0.25 0.0 – –

7. Conclusions

In this paper, the FCHFs have been adopted for solving fractional differential equations.
The operational matrices of fractional integral and product for FCHFs have been derived.
These matrices are used to approximate solutions of fractional differential equations where the
fractional derivatives are considered in Caputo sense. The introduced method is a spectral collocation
method which reduces the fractional differential equation to a system of algebraic equations.
The efficiency and applicability of the presented method are tested on some problems. Comparison
with some other methods has been performed. The numerical results show that the new method is
more efficient, its performance is quite satisfactory, and only a small number of FCHFs is needed to
obtain good results. Finally, we can say that employing fractional-order basis functions achieves more
accurate results than the corresponding integer-order basis functions, which shows the applicability of
this method for solving the fractional problems.
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