Binding of aromatic mono- and di-N-oxides in water by resorcinarene sulfonates

Kwaku Twum ${ }^{1}$, Nicholas Schileru ${ }^{1,2}$, Bianca Elias ${ }^{1}$, Jordan Feder ${ }^{1}$, Leena Yaqoo ${ }^{1,}$ Rakesh Puttreddy ${ }^{3}$, Małgorzata M. Szczesniak ${ }^{1}$, Ngong Kodiah Beyeh ${ }^{* 1}$
${ }^{1}$ Department of Chemistry, Oakland University, 146 Library Drive, Rochester, MI, 48309-4479, USA.
${ }^{2}$ Department of Osteopathic Medicine, Midwestern University, 555 31 ${ }^{\text {st }}$ St. Downers Grove, IL, 60515, USA.
${ }^{3}$ Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, P. O. Box 541, FI-33101, Tampere, Finland

SUPPORTING INFORMATION

CONTENTS
I. NMR Spectroscopy 2
II. Isothermal Titration Calorimetry 8
III. Computation Calculatons 11

I. NMR Spectroscopy

Figure S1: ${ }^{1} \mathrm{H}$ NMR spectra ($\mathrm{D}_{2} \mathrm{O}, 298 \mathrm{~K}$) of 1, equimolar mixtures of $\mathbf{2} @ 1$ and $\mathbf{2}$. The dash lines give an indication of the signal changes in ppm. Asterisks is the residual NMR solvent.

Figure S2: ${ }^{1} \mathrm{H}$ NMR spectra ($\mathrm{D}_{2} \mathrm{O}, 298 \mathrm{~K}$) of 1, equimolar mixtures of $\mathbf{3} @ 1$ and 3 . The dash lines give an indication of the signal changes in ppm. Asterisks is the residual NMR solvent.

Figure S3: ${ }^{1} \mathrm{H}$ NMR spectra ($\mathrm{D}_{2} \mathrm{O}, 298 \mathrm{~K}$) of 1, equimolar mixtures of $4 @ 1$ and 4 . The dash lines give an indication of the signal changes in ppm. Asterisks is the residual NMR solvent.

Figure S4: ${ }^{1} \mathrm{H}$ NMR spectra ($\mathrm{D}_{2} \mathrm{O}, 298 \mathrm{~K}$) of 1, equimolar mixtures of $\mathbf{5} @ 1$ and 5 . The dash lines give an indication of the signal changes in ppm. Asterisks is the residual NMR solvent.

Figure S5: ${ }^{1} \mathrm{H}$ NMR spectra ($\mathrm{D}_{2} \mathrm{O}, 298 \mathrm{~K}$) of 1, equimolar mixtures of $\mathbf{6} @ 1$ and $\mathbf{6}$. The dash lines give an indication of the signal changes in ppm. Asterisks is the residual NMR solvent.

Figure S6: ${ }^{1} \mathrm{H}$ NMR spectra ($\mathrm{D}_{2} \mathrm{O}, 298 \mathrm{~K}$) of 1, equimolar mixtures of $\mathbf{7} @ 1$ and 7 . The dash lines give an indication of the signal changes in ppm. Asterisks is the residual NMR solvent.

II. Isothermal Titration Calorimetry

Table S1: Thermodynamic binding parameters of formed complexes between the receptors and the guests in $\mathrm{H}_{2} \mathrm{O}$ by ITC.

Complexes	K_{1} $\left(\times 10^{4}\right) \mathbf{M}^{-1}$	ΔH_{1} $\mathbf{k c a l} / \mathbf{m o l}$	$T \Delta S_{1}$ $\mathbf{k c a l} / \mathbf{m o l}$	ΔG_{1} $\mathbf{k c a l} / \mathbf{m o l}$	K_{2} $\left(\times \mathbf{1 0}^{3}\right) \mathbf{M}^{-1}$	ΔH_{2} $\mathbf{k c a l} / \mathbf{m o l}$	$T \Delta S_{2}$ $\mathbf{k c a l} / \mathbf{m o l}$	ΔG_{2} $\mathbf{k c a l} / \mathbf{m o l}$
$\mathbf{2 @ 1}$	-	-	-	-				
$\mathbf{3 @ 1}$	0.66 ± 0.07	-28.4 ± 1.92	-23.15	-5.25				
$\mathbf{4 @ 1}$	0.19 ± 0.05	-0.57 ± 0.07	3.87	-4.44				
$\mathbf{5 @ 1}$	1.32 ± 0.12	-6.99 ± 0.02	-1.29	-5.70	3.36 ± 0.84	4.57 ± 0.31	8.75	-4.18
$\mathbf{6 @ 1}$	2.65 ± 0.81	-10.96 ± 0.55	-4.59	-6.37	2.64 ± 0.17	-16.87 ± 0.84	-11.37	-5.50
$\mathbf{7 @ 1}$	3.15 ± 0.36	-3.94 ± 0.05	2.20	-6.14	1.37 ± 0.34	-1.52 ± 0.25	2.75	-4.27

Table S2: Complexation derived interaction parameter (α) that describes cooperativity in binding constants for thermodynamics in deionized $\mathrm{H}_{2} \mathrm{O}$.

Complex	$\alpha=\left(4 \mathrm{~K}_{2} / \mathrm{K}_{1}\right)$
$\mathbf{2 @ 1}$	-
$\mathbf{3 @ 1}$	-
$\mathbf{4 @ 1}$	-
$\mathbf{5 @ 1}$	1.02
$\mathbf{6 @ 1}$	0.40
$\mathbf{7 @ 1}$	0.17

Figure S7: ITC traces of the titration of receptor 1 with n-oxides (2-7) in 10mM Tris buffer, pH 7.4 at $\mathbf{2 9 8}$ K. (a) 2@1, (b) 3@1, (c) $\mathbf{4} @ 1$ were fitted to a one set of site binding model. (d) $\mathbf{5 @ 1}$ (e) 6@1 (f) 7@1 were fitted to sequential two set of sites binding model.

Figure S8: ITC traces of the titration of receptor 1 with n-oxides (2-7) in water at 298 K . (a) 2@1, (b) 3@1, (c) 4@1 were fitted to a one set of site binding model. (d) 5@1 (e) 6@1 (f) 7@1 were fitted to sequential two set of sites binding model.

III. Computation Calculations

Table S2. Equilibrium structures and properties of guest molecules from B3LYP-D3 calculation with $6-31 \mathrm{G}^{* *}$ basis set within the implicit PCM water solvent; the electrostatic potential scale shown is in $\mathrm{kJ} / \mathrm{mole}$.
Symmetry:
$\mathrm{C}_{2 \mathrm{~h}}$
$\mu=0.0 \mathrm{D}$
$\mathrm{N}--\mathrm{N}=8.43 \mathrm{~A}$

