Binding of aromatic mono- and di-N-oxides in water by resorcinarene sulfonates

Kwaku Twum¹, Nicholas Schileru^{1,2}, Bianca Elias¹, Jordan Feder¹, Leena Yaqoo¹, Rakesh Puttreddy³, Małgorzata M. Szczesniak¹, Ngong Kodiah Beyeh^{*1}

¹ Department of Chemistry, Oakland University, 146 Library Drive, Rochester, MI, 48309-4479, USA. ² Department of Osteopathic Medicine, Midwestern University, 555 31st St. Downers Grove, IL, 60515, USA.

³ Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, P. O. Box 541, FI-33101, Tampere, Finland

SUPPORTING INFORMATION

CONTENTS

I. NMR Spectroscopy	2
II. Isothermal Titration Calorimetry	8
III. Computation Calculatons	11
in computation curculations	

I. NMR Spectroscopy

Figure S1: ¹H NMR spectra (D₂O, 298 K) of **1**, equimolar mixtures of **2**@**1** and **2**. The dash lines give an indication of the signal changes in ppm. Asterisks is the residual NMR solvent.

Figure S2: ¹H NMR spectra (D₂O, 298 K) of **1**, equimolar mixtures of **3**@**1** and **3**. The dash lines give an indication of the signal changes in ppm. Asterisks is the residual NMR solvent.

Figure S3: ¹H NMR spectra (D₂O, 298 K) of **1**, equimolar mixtures of **4**@**1** and **4**. The dash lines give an indication of the signal changes in ppm. Asterisks is the residual NMR solvent.

Figure S4: ¹H NMR spectra (D₂O, 298 K) of **1**, equimolar mixtures of **5**@**1** and **5**. The dash lines give an indication of the signal changes in ppm. Asterisks is the residual NMR solvent.

Figure S5: ¹H NMR spectra (D₂O, 298 K) of **1**, equimolar mixtures of **6**@**1** and **6**. The dash lines give an indication of the signal changes in ppm. Asterisks is the residual NMR solvent.

Figure S6: ¹H NMR spectra (D₂O, 298 K) of **1**, equimolar mixtures of **7**@**1** and **7**. The dash lines give an indication of the signal changes in ppm. Asterisks is the residual NMR solvent.

II. Isothermal Titration Calorimetry

receptors and the guests in 1120 by 11C.								
Complexes	K_1	ΔH_1	$T\Delta S_1$	ΔG_1	K 2	ΔH_2	$T\Delta S_2$	ΔG_2
	(× 10 ⁴) M ⁻¹	kcal/mol	kcal/mol	kcal/mol	(× 10 ³) M ⁻¹	kcal/mol	kcal/mol	kcal/mol
2@1	-	-	-	-				
3@1	0.66±0.07	-28.4±1.92	-23.15	-5.25				
4@1	0.19±0.05	-0.57±0.07	3.87	-4.44				
5@1	1.32±0.12	-6.99±0.02	-1.29	-5.70	3.36±0.84	4.57±0.31	8.75	-4.18
6@1	2.65±0.81	-10.96±0.55	-4.59	-6.37	2.64±0.17	-16.87±0.84	-11.37	-5.50
7@1	3.15±0.36	-3.94±0.05	2.20	-6.14	1.37±0.34	-1.52±0.25	2.75	-4.27

Table S1: Thermodynamic binding parameters of formed complexes between the receptors and the guests in H₂O by ITC.

Table S2: Complexation derived interaction parameter (α) that describes cooperativity in binding constants for thermodynamics in deionized H₂O.

Complex	$\alpha = (4K_2/K_1)$
2@1	-
3@1	-
4@1	-
5@1	1.02
6@1	0.40
7@1	0.17

Figure S7: ITC traces of the titration of receptor 1 with n-oxides (2-7) in 10mM Tris buffer, pH 7.4 at 298 K. (a) 2@1, (b) 3@1, (c) 4@1 were fitted to a one set of site binding model. (d) 5@1 (e) 6@1 (f) 7@1 were fitted to sequential two set of sites binding model.

Figure S8: ITC traces of the titration of receptor 1 with n-oxides (2-7) in water at 298 K. (a) 2@1, (b) 3@1, (c) 4@1 were fitted to a one set of site binding model. (d) 5@1 (e) 6@1 (f) 7@1 were fitted to sequential two set of sites binding model.

III. Computation Calculations

Table S2. Equilibrium structures and properties of guest molecules from B3LYP-D3 calculation with 6-31G** basis set within the implicit PCM water solvent; the electrostatic potential scale shown is in kJ/mole.

