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Abstract: For a complex catalytic reaction with a single-route linear mechanism, a new,
kinetico-thermodynamic form of the steady-state reaction rate is obtained, and we show how its
symmetries in terms of the kinetic and thermodynamic parameters allow better discerning their influence
on the result. Its reciprocal is equal to the sum of n terms (n is the number of complex reaction steps),
each of which is the product of a kinetic factor multiplied by a thermodynamic factor. The kinetic factor
is the reciprocal apparent kinetic coefficient of the i-th step. The thermodynamic factor is a function of
the apparent equilibrium constants of the i-th equilibrium subsystem, which includes the (n− 1) other
steps. This kinetico-thermodynamic form separates the kinetic and thermodynamic factors. The result is
extended to the case of a buffer substance. It is promising for distinguishing the influence of kinetic and
thermodynamic factors in the complex reaction rate. The developed theory is illustrated by examples
taken from heterogeneous catalysis.

Keywords: kinetico-thermodynamic rate equation; separation of kinetic and thermodynamic factors;
driving force

1. Introduction

How do we derive the reaction rate for a complex reaction, e.g., for a complex catalytic reaction?
Based on graph theory, this general problem was posed by King and Atman [1] and, then, Volkenstein and
Goldstein [2,3]. Yablonsky and Bykov, using graph theory as well, introduced the concept of relationships
between the complex reaction rate equation and structure of the detailed mechanism [4,5]; see also the
monographs [6,7]. The kinetic equation for a single-route catalytic reaction with a linear mechanism can
always be presented in the form (see [1,2]):

R =
Cc

W
(1)

in which Cc is the cycle characteristic. It is related to the overall reaction, Cc = k+ f+(Cr)− k− f−(Cp),
in which k+ = ∏s k+s , k− = ∏s k−s , k+/k− = K. The functions f+(Cr), f−(Cp) are the products of the
reactant and product concentrations raised to certain powers, assuming that the rate of reaction follows
the mass-action law formally, as if the overall reaction were an elementary reaction. The denominator,

Symmetry 2020, 12, 1748; doi:10.3390/sym12101748 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0001-8970-1943
https://orcid.org/0000-0002-6826-6185
https://orcid.org/0000-0002-6733-1213
http://www.mdpi.com/2073-8994/12/10/1748?type=check_update&version=1
http://dx.doi.org/10.3390/sym12101748
http://www.mdpi.com/journal/symmetry


Symmetry 2020, 12, 1748 2 of 7

W, reflects the detailed mechanism. Physically, it represents a “resistance” to the overall reaction rate by
the “resistances” of the individual steps of the catalytic cycle. The term W equals ∑l kl ∏i Cpli

i where kl
is the sum of the products of the kinetic parameters of elementary reactions, Ci is a reactant or product
concentration, and pli is a positive integer. Equation (1) can be written in one of the following forms:

R =

k+
(

f+(Cr)−
f−(Cp)

K

)
W

(2)

R =

k+
(

f+(Cr)−
f−(Cp)

K

)
∑

l
kl ∏

i
Cpli

i
(3)

or using the phenomenological forms (see Equation (5.63) in [8]):

Reaction Rate =
Driving Force

Kinetic Resistance
(4)

and:
Kinetic Resistance =

Driving Force
Reaction rate

(5)

where the expression f+(Cr)− f−(Cp)/K is a “driving force”. Equations (4) and (5) are very similar to
the well-known Ohm’s Law considering the analogy between the reaction rate and current and between
kinetic “driving force” and voltage as well.

2. Results

2.1. Formulation of the Problem

Z1
k+1
k−1

Z2
k+2
k−2

. . .
k+n−1

k−n−1
Zn

k+n
k−n

Z1

Applying Equation (3) to this mechanism, the equation for the rate can also be written in the form:

1− Q
K

R
= ∑

i

Ti

k̃i
(6)

where Q = f+(Cr)/ f−(Cp) is the quotient of the overall reaction and K is its equilibrium constant.
The expression (1− Q/K) is a driving force, which does not depend on the details of the mechanism,
but only on the overall reaction. As for k̃i, it is the apparent forward rate constant of the i-th step, which can
include the concentration of a gas substance as a parameter. Furthermore, Ti is a function obtained under
the assumption that all steps except for the i-th one are under equilibrium conditions. Therefore, every i-th
step is characterized by the ensemble of equilibrium reactions. Previously, the concept of the ensemble of
equilibrium subsystems was proposed as an efficient method for the mathematical analysis of nonlinear
models (see the monographs [8–10] and the papers [11,12]). In fact, the concept of equilibrium subsystems
is a generalization of the physico-chemical concept of the equilibrium step, which is well accepted in
chemical kinetics. An equilibrium subsystem can be defined by two requirements: that (n− 1) steps are
at equilibrium and that one step is rate limiting. In the papers [9,10], it was shown that the solutions of
these n equilibrium subsystems (i.e., all roots, not just one root) determine the coefficients of the kinetic
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polynomial. In the theory of steady-state kinetic models, the kinetic polynomial is the general description
of a single-route catalytic reaction.

2.2. Research Analysis

The advantage of Equation (6) is that it is fully symmetric in the mechanism’s parameter values,
every term presenting the product of a pure kinetic factor 1/k̃i by a purely thermodynamic term Ti. If one

or more steps are irreversible, K = ∞ and
1
R

= ∑
i

Ti

k̃i
.

Proof of Equation (6). For this proof, we assume that all gas concentrations are absorbed in the apparent

rate constants, so that the mechanism is of the form Z1
k+1
k−1

Z2
k+2
k−2

. . .
k+n−1

k−n−1
Zn

k+n
k−n

Z1,

with global quotient Q = 1. The rate of the i-th step is denoted Ri and the i-th intermediate as
Zi; we also write [a] for the value in {1, . . . , n} that is equal to a modulo n. We then have that
Ri = k+i Zi − k−i Z[i+1]; the equilibrium constant of the i-th step is Ki = k+i /k−i , and the balance of
intermediates is Z1 + · · ·+ Zn = 1. In terms of (n + 1)× (n + 1) matrices, for instance, when n = 4,

k+1 −k−1 0 0 R1

0 k+2 −k−2 0 R2

0 0 k+3 −k−3 R3

−k−4 0 0 k+4 R4

1 1 1 1 1




Z1

Z2

Z3

Z4

−1

 =


0
0
0
0
0

 . (7)

The determinant of the square matrix must therefore be zero. Expanding it along the rightmost
column, a1R1 + · · ·+ anRn = 1 must hold for some values a1, . . . , an. The equilibrium rate of the i-th

step being denoted Ri,e, by definition, one must have that ai = 1/Ri,e; consequently,
1
R

=
n

∑
i=1

1
Ri,e

.

Calculating the coefficients ai from the determinant,

1− Q
K

R
=

n

∑
i=1

1
k̃i

(
1 +

1
K[i−1]

+
1

K[i−1]K[i−2]
+ · · ·+ 1

K[i−1] · · ·K[i−(n−1)]

)
=

n

∑
i,j=1

Tij

k̃i
, (8)

where Tij =
1

j−1

∏
k=1

K[i−k]

. The concentrations then are determined by:

1− Q
K

R
Zj =

n

∑
i=1

Ti,[i−j+1]

k̃i
. (9)
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2.3. Special Cases

2.3.1. Single-Route Catalytic Reaction: All Reactions Are Irreversible

In this case, Equation (6) is extremely simplified;

1
R

=
n

∑
i=1

1
k̃i

(10)

2.3.2. Single-Route Catalytic Reaction: One Step Is Irreversible and Rate Limiting.

Assuming that the rate limiting step’s 1/k̃l is so large that the other terms with i 6= l can be neglected,

1
R

=
1
k̃l

n

∑
j=1

Tl j (11)

2.4. Extension of the Single-Route Result: Application to Other Mechanisms

2.4.1. Single-Route Catalytic Reaction with a Buffer Step

Let Z0 be a buffer attached to Z1. In the steady-state, the reaction step between Z0 and Z1 must be
balanced; hence, Z0 = Z1/K0 always.

Z0
k+0
k−0

Z1
k+1
k−1

Z2
k+2
k−2

. . .
k+n−1

k−n−1
Zn

k+n
k−n

Z1

This is reflected in the formulas:

1− Q
K

R
=

1
k̃1

(
1 +

1
K2

+
1

K0

)
+

1
k̃2

(
1 +

1
K1

+
1

K0K1

)
(12)

when n = 2, and for general n,

1− Q
K

R
=

n

∑
i,j=1

(
1 +

δij

K0

) Ti,[i−j+1]

k̃i
,

1− Q
K

R
Z0 =

1
K0

n

∑
i=1

Ti,i

k̃i
,

1− Q
K

R
Zj =

n

∑
i=1

Ti,[i−j+1]

k̃i
, j = 1, . . . , n. (13)

2.4.2. Two Cycles that Have a Common Intermediate

For n = 2, see [8],

Z1

k−W,2

k+W,2
W2

k−W,1

k+W,1
Z1

k+Z,1

k−Z,1
Z2

k+Z,2

k−Z,2
Z1

and:

1− Q
K

RZ
=

1
k+Z,1

(
1 +

1
KZ,2

)
+

1
k+Z,2

(
1 +

1
KZ,1

)
+

(
1

k+W,2
+

1
k+W,1KW,2

) 1
k+Z,1

+
1

k+Z,2KZ,1

1
k+W,1

+
1

k+W,2KW,1

. (14)
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2.5. Examples

2.5.1. Two Step Single Route Mechanism (Water-Gas Shift Mechanism)

1. Z + H2O
k+1
k−1

ZO + H2

2. ZO + CO
k+2
k−2

Z + CO2,t

where Z is the active catalytic center.
The overall reaction is CO + H2O CO2 + H2:

1− Q
K

R
=

1
k̃+1

(
1 +

1
K̃2

)
+

1
k̃+2

(
1 +

1
K̃1

)
(15)

where k̃+1 = k+1 CH2O, k̃+2 = k+2 CCO, K̃1 = (k+1 CH2O)/(k−1 CH2
), K̃2 = (k+2 CCO)/(k−2 CCO2

) and
Q = (CCO2

CH2
)/(CCOCH2O).

2.5.2. Three Step Mechanism of Sulfur Dioxide Oxidation

1. ZO + SO2
k+1
k−1

Z + SO3

2. Z + SO2
k+2
k−2

ZSO2

3. ZSO2 + O2
k+3
k−3

ZO + SO3

The overall equation is 2 SO2 + O2 2 SO3.

1− Q
K

R
=

1
k̃+1

(
1 +

1
K̃3

+
1

K̃3K̃2

)
+

1
k̃+2

(
1 +

1
K̃1

+
1

K̃1K̃3

)
+

1
k̃+3

(
1 +

1
K̃2

+
1

K̃2K̃1

)
(16)

where k̃+1 = k+1 CSO2
, k̃+2 = k+2 CSO2

, k̃+3 = k+3 CO2
, K̃1 = (k+1 CSO2

)/(k−1 CSO3
), K̃2 = (k+2 CSO2

)/k−2 ,
K̃3 = (k+3 CO2

)/(k−3 CSO3
); Q = C2

SO3
/(CO2

C2
SO2

).

3. Discussion

The new kinetico-thermodynamic expressions for the complex catalytic reaction rate presented here,
Equation (8) and similar ones, are convenient for analyzing different aspects of kinetic behavior.

First, it is possible to characterize the contributions of different steps because the proposed expression
is a sum of terms that correspond to different steps. Based on this expression, the problem of distinguishing
the domain of validity of a rate limiting assumption can be posed, at least qualitatively [13].

In a special case, if all steps are irreversible, the answer is obvious (see Equation (10)), and the i-th
reaction will be limiting as k̃i tends to zero. Generally, two interwoven problems arise: Which step is rate
limiting? What is the domain of the validity of the rate limiting assumption?

It is possible to simplify Equation (8) by reducing the number of terms that correspond to different
steps. Our qualitative analysis shows that a step can be eliminated when both the apparent forward
kinetic parameter and the apparent equilibrium constant are large enough. However, it is possible that
some step may have a moderate (finite) equilibrium constant despite having both the kinetic parameters,
forward and reverse, large. In this case, the corresponding rate term of this step can be eliminated,
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but the equilibrium parameter of this step will remain present in the other rate terms. In most cases,
determining the rate-determining step requires an analysis based on concrete parameters.

Every term of Equation (8) is an explicit function of the temperature and concentrations: the apparent
kinetic coefficient k̃i is characterized by an Arrhenius dependence on the temperature and a linear
dependence on the gas concentration, and the thermodynamic term Ti is a function of the temperature as
well: it is increasing or decreasing with temperature if all present steps are exothermic or endothermic,
respectively. Regarding the concentration dependences, Ti is proportional to the reactant concentrations
and inversely proportional to the product concentrations.

4. Conclusions

A new, kinetico-thermodynamic form expressing the rate of a complex catalytic single route equation
is obtained. According to this form, the reciprocal rate equals the sum of n terms (n is the number of steps),
and every i-th term equals the product of the i-th kinetic factor, i.e., the reciprocal i-th apparent kinetic
coefficient, multiplied by the i-th apparent thermodynamic term. The latter is a function of the apparent
equilibrium constants of the (n− 1) other steps. Generally, the kinetico-thermodynamic form separates
kinetic and thermodynamic factors. This form allows estimating the contribution of every step from both
kinetic and thermodynamic aspects.
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